kern_malloc.c revision 1.45.2.4 1 /* $NetBSD: kern_malloc.c,v 1.45.2.4 2001/02/11 19:16:46 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
5 * Copyright (c) 1987, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
37 */
38
39 #include "opt_lockdebug.h"
40
41 #include <sys/param.h>
42 #include <sys/proc.h>
43 #include <sys/map.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/systm.h>
47
48 #include <uvm/uvm_extern.h>
49
50 static struct vm_map_intrsafe kmem_map_store;
51 vm_map_t kmem_map = NULL;
52
53 #include "opt_kmempages.h"
54
55 #ifdef NKMEMCLUSTERS
56 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
57 #endif
58
59 /*
60 * Default number of pages in kmem_map. We attempt to calculate this
61 * at run-time, but allow it to be either patched or set in the kernel
62 * config file.
63 */
64 #ifndef NKMEMPAGES
65 #define NKMEMPAGES 0
66 #endif
67 int nkmempages = NKMEMPAGES;
68
69 /*
70 * Defaults for lower- and upper-bounds for the kmem_map page count.
71 * Can be overridden by kernel config options.
72 */
73 #ifndef NKMEMPAGES_MIN
74 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
75 #endif
76
77 #ifndef NKMEMPAGES_MAX
78 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
79 #endif
80
81 #include "opt_kmemstats.h"
82 #include "opt_malloclog.h"
83
84 struct kmembuckets bucket[MINBUCKET + 16];
85 struct kmemstats kmemstats[M_LAST];
86 struct kmemusage *kmemusage;
87 char *kmembase, *kmemlimit;
88 const char * const memname[] = INITKMEMNAMES;
89
90 #ifdef MALLOCLOG
91 #ifndef MALLOCLOGSIZE
92 #define MALLOCLOGSIZE 100000
93 #endif
94
95 struct malloclog {
96 void *addr;
97 long size;
98 int type;
99 int action;
100 const char *file;
101 long line;
102 } malloclog[MALLOCLOGSIZE];
103
104 long malloclogptr;
105
106 static void domlog __P((void *a, long size, int type, int action,
107 const char *file, long line));
108 static void hitmlog __P((void *a));
109
110 static void
111 domlog(a, size, type, action, file, line)
112 void *a;
113 long size;
114 int type;
115 int action;
116 const char *file;
117 long line;
118 {
119
120 malloclog[malloclogptr].addr = a;
121 malloclog[malloclogptr].size = size;
122 malloclog[malloclogptr].type = type;
123 malloclog[malloclogptr].action = action;
124 malloclog[malloclogptr].file = file;
125 malloclog[malloclogptr].line = line;
126 malloclogptr++;
127 if (malloclogptr >= MALLOCLOGSIZE)
128 malloclogptr = 0;
129 }
130
131 static void
132 hitmlog(a)
133 void *a;
134 {
135 struct malloclog *lp;
136 long l;
137
138 #define PRT \
139 if (malloclog[l].addr == a && malloclog[l].action) { \
140 lp = &malloclog[l]; \
141 printf("malloc log entry %ld:\n", l); \
142 printf("\taddr = %p\n", lp->addr); \
143 printf("\tsize = %ld\n", lp->size); \
144 printf("\ttype = %s\n", memname[lp->type]); \
145 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
146 printf("\tfile = %s\n", lp->file); \
147 printf("\tline = %ld\n", lp->line); \
148 }
149
150 for (l = malloclogptr; l < MALLOCLOGSIZE; l++)
151 PRT
152
153 for (l = 0; l < malloclogptr; l++)
154 PRT
155 }
156 #endif /* MALLOCLOG */
157
158 #ifdef DIAGNOSTIC
159 /*
160 * This structure provides a set of masks to catch unaligned frees.
161 */
162 const long addrmask[] = { 0,
163 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
164 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
165 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
166 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
167 };
168
169 /*
170 * The WEIRD_ADDR is used as known text to copy into free objects so
171 * that modifications after frees can be detected.
172 */
173 #define WEIRD_ADDR ((unsigned) 0xdeadbeef)
174 #ifdef DEBUG
175 #define MAX_COPY PAGE_SIZE
176 #else
177 #define MAX_COPY 32
178 #endif
179
180 /*
181 * Normally the freelist structure is used only to hold the list pointer
182 * for free objects. However, when running with diagnostics, the first
183 * 8 bytes of the structure is unused except for diagnostic information,
184 * and the free list pointer is at offst 8 in the structure. Since the
185 * first 8 bytes is the portion of the structure most often modified, this
186 * helps to detect memory reuse problems and avoid free list corruption.
187 */
188 struct freelist {
189 int32_t spare0;
190 int16_t type;
191 int16_t spare1;
192 caddr_t next;
193 };
194 #else /* !DIAGNOSTIC */
195 struct freelist {
196 caddr_t next;
197 };
198 #endif /* DIAGNOSTIC */
199
200 /*
201 * Allocate a block of memory
202 */
203 #ifdef MALLOCLOG
204 void *
205 _malloc(size, type, flags, file, line)
206 unsigned long size;
207 int type, flags;
208 const char *file;
209 long line;
210 #else
211 void *
212 malloc(size, type, flags)
213 unsigned long size;
214 int type, flags;
215 #endif /* MALLOCLOG */
216 {
217 struct kmembuckets *kbp;
218 struct kmemusage *kup;
219 struct freelist *freep;
220 long indx, npg, allocsize;
221 int s;
222 caddr_t va, cp, savedlist;
223 #ifdef DIAGNOSTIC
224 int32_t *end, *lp;
225 int copysize;
226 const char *savedtype;
227 #endif
228 #ifdef KMEMSTATS
229 struct kmemstats *ksp = &kmemstats[type];
230
231 if (__predict_false(((unsigned long)type) > M_LAST))
232 panic("malloc - bogus type");
233 #endif
234 indx = BUCKETINDX(size);
235 kbp = &bucket[indx];
236 s = splvm();
237 #ifdef KMEMSTATS
238 while (ksp->ks_memuse >= ksp->ks_limit) {
239 if (flags & M_NOWAIT) {
240 splx(s);
241 return ((void *) NULL);
242 }
243 if (ksp->ks_limblocks < 65535)
244 ksp->ks_limblocks++;
245 tsleep((caddr_t)ksp, PSWP+2, memname[type], 0);
246 }
247 ksp->ks_size |= 1 << indx;
248 #endif
249 #ifdef DIAGNOSTIC
250 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
251 #endif
252 if (kbp->kb_next == NULL) {
253 kbp->kb_last = NULL;
254 if (size > MAXALLOCSAVE)
255 allocsize = roundup(size, PAGE_SIZE);
256 else
257 allocsize = 1 << indx;
258 npg = btoc(allocsize);
259 va = (caddr_t) uvm_km_kmemalloc(kmem_map, uvmexp.kmem_object,
260 (vsize_t)ctob(npg),
261 (flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0);
262 if (__predict_false(va == NULL)) {
263 /*
264 * Kmem_malloc() can return NULL, even if it can
265 * wait, if there is no map space avaiable, because
266 * it can't fix that problem. Neither can we,
267 * right now. (We should release pages which
268 * are completely free and which are in buckets
269 * with too many free elements.)
270 */
271 if ((flags & M_NOWAIT) == 0)
272 panic("malloc: out of space in kmem_map");
273 splx(s);
274 return ((void *) NULL);
275 }
276 #ifdef KMEMSTATS
277 kbp->kb_total += kbp->kb_elmpercl;
278 #endif
279 kup = btokup(va);
280 kup->ku_indx = indx;
281 if (allocsize > MAXALLOCSAVE) {
282 if (npg > 65535)
283 panic("malloc: allocation too large");
284 kup->ku_pagecnt = npg;
285 #ifdef KMEMSTATS
286 ksp->ks_memuse += allocsize;
287 #endif
288 goto out;
289 }
290 #ifdef KMEMSTATS
291 kup->ku_freecnt = kbp->kb_elmpercl;
292 kbp->kb_totalfree += kbp->kb_elmpercl;
293 #endif
294 /*
295 * Just in case we blocked while allocating memory,
296 * and someone else also allocated memory for this
297 * bucket, don't assume the list is still empty.
298 */
299 savedlist = kbp->kb_next;
300 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
301 for (;;) {
302 freep = (struct freelist *)cp;
303 #ifdef DIAGNOSTIC
304 /*
305 * Copy in known text to detect modification
306 * after freeing.
307 */
308 end = (int32_t *)&cp[copysize];
309 for (lp = (int32_t *)cp; lp < end; lp++)
310 *lp = WEIRD_ADDR;
311 freep->type = M_FREE;
312 #endif /* DIAGNOSTIC */
313 if (cp <= va)
314 break;
315 cp -= allocsize;
316 freep->next = cp;
317 }
318 freep->next = savedlist;
319 if (kbp->kb_last == NULL)
320 kbp->kb_last = (caddr_t)freep;
321 }
322 va = kbp->kb_next;
323 kbp->kb_next = ((struct freelist *)va)->next;
324 #ifdef DIAGNOSTIC
325 freep = (struct freelist *)va;
326 savedtype = (unsigned)freep->type < M_LAST ?
327 memname[freep->type] : "???";
328 if (kbp->kb_next) {
329 int rv;
330 vaddr_t addr = (vaddr_t)kbp->kb_next;
331
332 vm_map_lock(kmem_map);
333 rv = uvm_map_checkprot(kmem_map, addr,
334 addr + sizeof(struct freelist),
335 VM_PROT_WRITE);
336 vm_map_unlock(kmem_map);
337
338 if (__predict_false(rv == 0)) {
339 printf(
340 "%s %ld of object %p size %ld %s %s (invalid addr %p)\n",
341 "Data modified on freelist: word",
342 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
343 va, size, "previous type", savedtype, kbp->kb_next);
344 #ifdef MALLOCLOG
345 hitmlog(va);
346 #endif
347 kbp->kb_next = NULL;
348 }
349 }
350
351 /* Fill the fields that we've used with WEIRD_ADDR */
352 #if BYTE_ORDER == BIG_ENDIAN
353 freep->type = WEIRD_ADDR >> 16;
354 #endif
355 #if BYTE_ORDER == LITTLE_ENDIAN
356 freep->type = (short)WEIRD_ADDR;
357 #endif
358 end = (int32_t *)&freep->next +
359 (sizeof(freep->next) / sizeof(int32_t));
360 for (lp = (int32_t *)&freep->next; lp < end; lp++)
361 *lp = WEIRD_ADDR;
362
363 /* and check that the data hasn't been modified. */
364 end = (int32_t *)&va[copysize];
365 for (lp = (int32_t *)va; lp < end; lp++) {
366 if (__predict_true(*lp == WEIRD_ADDR))
367 continue;
368 printf("%s %ld of object %p size %ld %s %s (0x%x != 0x%x)\n",
369 "Data modified on freelist: word",
370 (long)(lp - (int32_t *)va), va, size, "previous type",
371 savedtype, *lp, WEIRD_ADDR);
372 #ifdef MALLOCLOG
373 hitmlog(va);
374 #endif
375 break;
376 }
377
378 freep->spare0 = 0;
379 #endif /* DIAGNOSTIC */
380 #ifdef KMEMSTATS
381 kup = btokup(va);
382 if (kup->ku_indx != indx)
383 panic("malloc: wrong bucket");
384 if (kup->ku_freecnt == 0)
385 panic("malloc: lost data");
386 kup->ku_freecnt--;
387 kbp->kb_totalfree--;
388 ksp->ks_memuse += 1 << indx;
389 out:
390 kbp->kb_calls++;
391 ksp->ks_inuse++;
392 ksp->ks_calls++;
393 if (ksp->ks_memuse > ksp->ks_maxused)
394 ksp->ks_maxused = ksp->ks_memuse;
395 #else
396 out:
397 #endif
398 #ifdef MALLOCLOG
399 domlog(va, size, type, 1, file, line);
400 #endif
401 splx(s);
402 return ((void *) va);
403 }
404
405 /*
406 * Free a block of memory allocated by malloc.
407 */
408 #ifdef MALLOCLOG
409 void
410 _free(addr, type, file, line)
411 void *addr;
412 int type;
413 const char *file;
414 long line;
415 #else
416 void
417 free(addr, type)
418 void *addr;
419 int type;
420 #endif /* MALLOCLOG */
421 {
422 struct kmembuckets *kbp;
423 struct kmemusage *kup;
424 struct freelist *freep;
425 long size;
426 int s;
427 #ifdef DIAGNOSTIC
428 caddr_t cp;
429 int32_t *end, *lp;
430 long alloc, copysize;
431 #endif
432 #ifdef KMEMSTATS
433 struct kmemstats *ksp = &kmemstats[type];
434 #endif
435
436 #ifdef DIAGNOSTIC
437 /*
438 * Ensure that we're free'ing something that we could
439 * have allocated in the first place. That is, check
440 * to see that the address is within kmem_map.
441 */
442 if (__predict_false((vaddr_t)addr < kmem_map->header.start ||
443 (vaddr_t)addr >= kmem_map->header.end))
444 panic("free: addr %p not within kmem_map", addr);
445 #endif
446
447 kup = btokup(addr);
448 size = 1 << kup->ku_indx;
449 kbp = &bucket[kup->ku_indx];
450 s = splvm();
451 #ifdef MALLOCLOG
452 domlog(addr, 0, type, 2, file, line);
453 #endif
454 #ifdef DIAGNOSTIC
455 /*
456 * Check for returns of data that do not point to the
457 * beginning of the allocation.
458 */
459 if (size > PAGE_SIZE)
460 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
461 else
462 alloc = addrmask[kup->ku_indx];
463 if (((u_long)addr & alloc) != 0)
464 panic("free: unaligned addr %p, size %ld, type %s, mask %ld\n",
465 addr, size, memname[type], alloc);
466 #endif /* DIAGNOSTIC */
467 if (size > MAXALLOCSAVE) {
468 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt));
469 #ifdef KMEMSTATS
470 size = kup->ku_pagecnt << PGSHIFT;
471 ksp->ks_memuse -= size;
472 kup->ku_indx = 0;
473 kup->ku_pagecnt = 0;
474 if (ksp->ks_memuse + size >= ksp->ks_limit &&
475 ksp->ks_memuse < ksp->ks_limit)
476 wakeup((caddr_t)ksp);
477 ksp->ks_inuse--;
478 kbp->kb_total -= 1;
479 #endif
480 splx(s);
481 return;
482 }
483 freep = (struct freelist *)addr;
484 #ifdef DIAGNOSTIC
485 /*
486 * Check for multiple frees. Use a quick check to see if
487 * it looks free before laboriously searching the freelist.
488 */
489 if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
490 for (cp = kbp->kb_next; cp;
491 cp = ((struct freelist *)cp)->next) {
492 if (addr != cp)
493 continue;
494 printf("multiply freed item %p\n", addr);
495 #ifdef MALLOCLOG
496 hitmlog(addr);
497 #endif
498 panic("free: duplicated free");
499 }
500 }
501 #ifdef LOCKDEBUG
502 /*
503 * Check if we're freeing a locked simple lock.
504 */
505 simple_lock_freecheck(addr, (char *)addr + size);
506 #endif
507 /*
508 * Copy in known text to detect modification after freeing
509 * and to make it look free. Also, save the type being freed
510 * so we can list likely culprit if modification is detected
511 * when the object is reallocated.
512 */
513 copysize = size < MAX_COPY ? size : MAX_COPY;
514 end = (int32_t *)&((caddr_t)addr)[copysize];
515 for (lp = (int32_t *)addr; lp < end; lp++)
516 *lp = WEIRD_ADDR;
517 freep->type = type;
518 #endif /* DIAGNOSTIC */
519 #ifdef KMEMSTATS
520 kup->ku_freecnt++;
521 if (kup->ku_freecnt >= kbp->kb_elmpercl) {
522 if (kup->ku_freecnt > kbp->kb_elmpercl)
523 panic("free: multiple frees");
524 else if (kbp->kb_totalfree > kbp->kb_highwat)
525 kbp->kb_couldfree++;
526 }
527 kbp->kb_totalfree++;
528 ksp->ks_memuse -= size;
529 if (ksp->ks_memuse + size >= ksp->ks_limit &&
530 ksp->ks_memuse < ksp->ks_limit)
531 wakeup((caddr_t)ksp);
532 ksp->ks_inuse--;
533 #endif
534 if (kbp->kb_next == NULL)
535 kbp->kb_next = addr;
536 else
537 ((struct freelist *)kbp->kb_last)->next = addr;
538 freep->next = NULL;
539 kbp->kb_last = addr;
540 splx(s);
541 }
542
543 /*
544 * Change the size of a block of memory.
545 */
546 void *
547 realloc(curaddr, newsize, type, flags)
548 void *curaddr;
549 unsigned long newsize;
550 int type, flags;
551 {
552 struct kmemusage *kup;
553 long cursize;
554 void *newaddr;
555 #ifdef DIAGNOSTIC
556 long alloc;
557 #endif
558
559 /*
560 * Realloc() with a NULL pointer is the same as malloc().
561 */
562 if (curaddr == NULL)
563 return (malloc(newsize, type, flags));
564
565 /*
566 * Realloc() with zero size is the same as free().
567 */
568 if (newsize == 0) {
569 free(curaddr, type);
570 return (NULL);
571 }
572
573 /*
574 * Find out how large the old allocation was (and do some
575 * sanity checking).
576 */
577 kup = btokup(curaddr);
578 cursize = 1 << kup->ku_indx;
579
580 #ifdef DIAGNOSTIC
581 /*
582 * Check for returns of data that do not point to the
583 * beginning of the allocation.
584 */
585 if (cursize > PAGE_SIZE)
586 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
587 else
588 alloc = addrmask[kup->ku_indx];
589 if (((u_long)curaddr & alloc) != 0)
590 panic("realloc: unaligned addr %p, size %ld, type %s, mask %ld\n",
591 curaddr, cursize, memname[type], alloc);
592 #endif /* DIAGNOSTIC */
593
594 if (cursize > MAXALLOCSAVE)
595 cursize = ctob(kup->ku_pagecnt);
596
597 /*
598 * If we already actually have as much as they want, we're done.
599 */
600 if (newsize <= cursize)
601 return (curaddr);
602
603 /*
604 * Can't satisfy the allocation with the existing block.
605 * Allocate a new one and copy the data.
606 */
607 newaddr = malloc(newsize, type, flags);
608 if (__predict_false(newaddr == NULL)) {
609 /*
610 * Malloc() failed, because flags included M_NOWAIT.
611 * Return NULL to indicate that failure. The old
612 * pointer is still valid.
613 */
614 return NULL;
615 }
616 memcpy(newaddr, curaddr, cursize);
617
618 /*
619 * We were successful: free the old allocation and return
620 * the new one.
621 */
622 free(curaddr, type);
623 return (newaddr);
624 }
625
626 /*
627 * Compute the number of pages that kmem_map will map, that is,
628 * the size of the kernel malloc arena.
629 */
630 void
631 kmeminit_nkmempages()
632 {
633 int npages;
634
635 if (nkmempages != 0) {
636 /*
637 * It's already been set (by us being here before, or
638 * by patching or kernel config options), bail out now.
639 */
640 return;
641 }
642
643 /*
644 * We use the following (simple) formula:
645 *
646 * - Starting point is physical memory / 4.
647 *
648 * - Clamp it down to NKMEMPAGES_MAX.
649 *
650 * - Round it up to NKMEMPAGES_MIN.
651 */
652 npages = physmem / 4;
653
654 if (npages > NKMEMPAGES_MAX)
655 npages = NKMEMPAGES_MAX;
656
657 if (npages < NKMEMPAGES_MIN)
658 npages = NKMEMPAGES_MIN;
659
660 nkmempages = npages;
661 }
662
663 /*
664 * Initialize the kernel memory allocator
665 */
666 void
667 kmeminit()
668 {
669 #ifdef KMEMSTATS
670 long indx;
671 #endif
672
673 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
674 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
675 #endif
676 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
677 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
678 #endif
679 #if (MAXALLOCSAVE < NBPG)
680 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
681 #endif
682
683 if (sizeof(struct freelist) > (1 << MINBUCKET))
684 panic("minbucket too small/struct freelist too big");
685
686 /*
687 * Compute the number of kmem_map pages, if we have not
688 * done so already.
689 */
690 kmeminit_nkmempages();
691
692 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map,
693 (vsize_t)(nkmempages * sizeof(struct kmemusage)));
694 kmem_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&kmembase,
695 (vaddr_t *)&kmemlimit, (vsize_t)(nkmempages << PAGE_SHIFT),
696 VM_MAP_INTRSAFE, FALSE, &kmem_map_store.vmi_map);
697 #ifdef KMEMSTATS
698 for (indx = 0; indx < MINBUCKET + 16; indx++) {
699 if (1 << indx >= PAGE_SIZE)
700 bucket[indx].kb_elmpercl = 1;
701 else
702 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
703 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
704 }
705 for (indx = 0; indx < M_LAST; indx++)
706 kmemstats[indx].ks_limit = (nkmempages << PAGE_SHIFT) * 6 / 10;
707 #endif
708 }
709
710 #ifdef DDB
711 #include <ddb/db_output.h>
712
713 /*
714 * Dump kmem statistics from ddb.
715 *
716 * usage: call dump_kmemstats
717 */
718 void dump_kmemstats __P((void));
719
720 void
721 dump_kmemstats()
722 {
723 #ifdef KMEMSTATS
724 const char *name;
725 int i;
726
727 for (i = 0; i < M_LAST; i++) {
728 name = memname[i] ? memname[i] : "";
729
730 db_printf("%2d %s%.*s %ld\n", i, name,
731 (int)(20 - strlen(name)), " ",
732 kmemstats[i].ks_memuse);
733 }
734 #else
735 db_printf("Kmem stats are not being collected.\n");
736 #endif /* KMEMSTATS */
737 }
738 #endif /* DDB */
739