kern_malloc.c revision 1.79 1 /* $NetBSD: kern_malloc.c,v 1.79 2003/05/06 18:07:57 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
5 * Copyright (c) 1987, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)kern_malloc.c 8.4 (Berkeley) 5/20/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.79 2003/05/06 18:07:57 fvdl Exp $");
41
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/proc.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/systm.h>
49
50 #include <uvm/uvm_extern.h>
51
52 static struct vm_map kmem_map_store;
53 struct vm_map *kmem_map = NULL;
54
55 #include "opt_kmempages.h"
56
57 #ifdef NKMEMCLUSTERS
58 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
59 #endif
60
61 /*
62 * Default number of pages in kmem_map. We attempt to calculate this
63 * at run-time, but allow it to be either patched or set in the kernel
64 * config file.
65 */
66 #ifndef NKMEMPAGES
67 #define NKMEMPAGES 0
68 #endif
69 int nkmempages = NKMEMPAGES;
70
71 /*
72 * Defaults for lower- and upper-bounds for the kmem_map page count.
73 * Can be overridden by kernel config options.
74 */
75 #ifndef NKMEMPAGES_MIN
76 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
77 #endif
78
79 #ifndef NKMEMPAGES_MAX
80 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
81 #endif
82
83 #include "opt_kmemstats.h"
84 #include "opt_malloclog.h"
85 #include "opt_malloc_debug.h"
86
87 struct kmembuckets bucket[MINBUCKET + 16];
88 struct kmemusage *kmemusage;
89 char *kmembase, *kmemlimit;
90
91 struct malloc_type *kmemstatistics;
92
93 #ifdef MALLOCLOG
94 #ifndef MALLOCLOGSIZE
95 #define MALLOCLOGSIZE 100000
96 #endif
97
98 struct malloclog {
99 void *addr;
100 long size;
101 struct malloc_type *type;
102 int action;
103 const char *file;
104 long line;
105 } malloclog[MALLOCLOGSIZE];
106
107 long malloclogptr;
108
109 static void
110 domlog(void *a, long size, struct malloc_type *type, int action,
111 const char *file, long line)
112 {
113
114 malloclog[malloclogptr].addr = a;
115 malloclog[malloclogptr].size = size;
116 malloclog[malloclogptr].type = type;
117 malloclog[malloclogptr].action = action;
118 malloclog[malloclogptr].file = file;
119 malloclog[malloclogptr].line = line;
120 malloclogptr++;
121 if (malloclogptr >= MALLOCLOGSIZE)
122 malloclogptr = 0;
123 }
124
125 static void
126 hitmlog(void *a)
127 {
128 struct malloclog *lp;
129 long l;
130
131 #define PRT do { \
132 if (malloclog[l].addr == a && malloclog[l].action) { \
133 lp = &malloclog[l]; \
134 printf("malloc log entry %ld:\n", l); \
135 printf("\taddr = %p\n", lp->addr); \
136 printf("\tsize = %ld\n", lp->size); \
137 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
138 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
139 printf("\tfile = %s\n", lp->file); \
140 printf("\tline = %ld\n", lp->line); \
141 } \
142 } while (/* CONSTCOND */0)
143
144 for (l = malloclogptr; l < MALLOCLOGSIZE; l++)
145 PRT;
146
147 for (l = 0; l < malloclogptr; l++)
148 PRT;
149 }
150 #endif /* MALLOCLOG */
151
152 #ifdef DIAGNOSTIC
153 /*
154 * This structure provides a set of masks to catch unaligned frees.
155 */
156 const long addrmask[] = { 0,
157 0x00000001, 0x00000003, 0x00000007, 0x0000000f,
158 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
159 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
160 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
161 };
162
163 /*
164 * The WEIRD_ADDR is used as known text to copy into free objects so
165 * that modifications after frees can be detected.
166 */
167 #define WEIRD_ADDR ((uint32_t) 0xdeadbeef)
168 #ifdef DEBUG
169 #define MAX_COPY PAGE_SIZE
170 #else
171 #define MAX_COPY 32
172 #endif
173
174 /*
175 * Normally the freelist structure is used only to hold the list pointer
176 * for free objects. However, when running with diagnostics, the first
177 * 8/16 bytes of the structure is unused except for diagnostic information,
178 * and the free list pointer is at offset 8/16 in the structure. Since the
179 * first 8 bytes is the portion of the structure most often modified, this
180 * helps to detect memory reuse problems and avoid free list corruption.
181 */
182 struct freelist {
183 uint32_t spare0;
184 #ifdef _LP64
185 uint32_t spare1; /* explicit padding */
186 #endif
187 struct malloc_type *type;
188 caddr_t next;
189 };
190 #else /* !DIAGNOSTIC */
191 struct freelist {
192 caddr_t next;
193 };
194 #endif /* DIAGNOSTIC */
195
196 /*
197 * The following are standard, build-in malloc types are are not
198 * specific to any one subsystem.
199 */
200 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
201 MALLOC_DEFINE(M_DMAMAP, "DMA map", "bus_dma(9) structures");
202 MALLOC_DEFINE(M_FREE, "free", "should be on free list");
203 MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
204 MALLOC_DEFINE(M_SOFTINTR, "softintr", "Softinterrupt structures");
205 MALLOC_DEFINE(M_TEMP, "temp", "misc. temporary data buffers");
206
207 /* XXX These should all be elsewhere. */
208 MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
209 MALLOC_DEFINE(M_FTABLE, "fragtbl", "fragment reassembly header");
210 MALLOC_DEFINE(M_UFSMNT, "UFS mount", "UFS mount structure");
211 MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
212 MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
213 MALLOC_DEFINE(M_IPMADDR, "in_multi", "internet multicast address");
214 MALLOC_DEFINE(M_MRTABLE, "mrt", "multicast routing tables");
215 MALLOC_DEFINE(M_1394DATA, "1394data", "IEEE 1394 data buffers");
216
217 struct simplelock malloc_slock = SIMPLELOCK_INITIALIZER;
218
219 /*
220 * Allocate a block of memory
221 */
222 #ifdef MALLOCLOG
223 void *
224 _malloc(unsigned long size, struct malloc_type *ksp, int flags,
225 const char *file, long line)
226 #else
227 void *
228 malloc(unsigned long size, struct malloc_type *ksp, int flags)
229 #endif /* MALLOCLOG */
230 {
231 struct kmembuckets *kbp;
232 struct kmemusage *kup;
233 struct freelist *freep;
234 long indx, npg, allocsize;
235 int s;
236 caddr_t va, cp, savedlist;
237 #ifdef DIAGNOSTIC
238 uint32_t *end, *lp;
239 int copysize;
240 const char *savedtype;
241 #endif
242
243 #ifdef LOCKDEBUG
244 if ((flags & M_NOWAIT) == 0)
245 simple_lock_only_held(NULL, "malloc");
246 #endif
247 #ifdef MALLOC_DEBUG
248 if (debug_malloc(size, ksp, flags, (void **) &va))
249 return ((void *) va);
250 #endif
251 indx = BUCKETINDX(size);
252 kbp = &bucket[indx];
253 s = splvm();
254 simple_lock(&malloc_slock);
255 #ifdef KMEMSTATS
256 while (ksp->ks_memuse >= ksp->ks_limit) {
257 if (flags & M_NOWAIT) {
258 simple_unlock(&malloc_slock);
259 splx(s);
260 return ((void *) NULL);
261 }
262 if (ksp->ks_limblocks < 65535)
263 ksp->ks_limblocks++;
264 ltsleep((caddr_t)ksp, PSWP+2, ksp->ks_shortdesc, 0,
265 &malloc_slock);
266 }
267 ksp->ks_size |= 1 << indx;
268 #endif
269 #ifdef DIAGNOSTIC
270 copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
271 #endif
272 if (kbp->kb_next == NULL) {
273 kbp->kb_last = NULL;
274 if (size > MAXALLOCSAVE)
275 allocsize = round_page(size);
276 else
277 allocsize = 1 << indx;
278 npg = btoc(allocsize);
279 simple_unlock(&malloc_slock);
280 va = (caddr_t) uvm_km_kmemalloc(kmem_map, NULL,
281 (vsize_t)ctob(npg),
282 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
283 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0));
284 if (__predict_false(va == NULL)) {
285 /*
286 * Kmem_malloc() can return NULL, even if it can
287 * wait, if there is no map space avaiable, because
288 * it can't fix that problem. Neither can we,
289 * right now. (We should release pages which
290 * are completely free and which are in buckets
291 * with too many free elements.)
292 */
293 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
294 panic("malloc: out of space in kmem_map");
295 splx(s);
296 return (NULL);
297 }
298 simple_lock(&malloc_slock);
299 #ifdef KMEMSTATS
300 kbp->kb_total += kbp->kb_elmpercl;
301 #endif
302 kup = btokup(va);
303 kup->ku_indx = indx;
304 if (allocsize > MAXALLOCSAVE) {
305 if (npg > 65535)
306 panic("malloc: allocation too large");
307 kup->ku_pagecnt = npg;
308 #ifdef KMEMSTATS
309 ksp->ks_memuse += allocsize;
310 #endif
311 goto out;
312 }
313 #ifdef KMEMSTATS
314 kup->ku_freecnt = kbp->kb_elmpercl;
315 kbp->kb_totalfree += kbp->kb_elmpercl;
316 #endif
317 /*
318 * Just in case we blocked while allocating memory,
319 * and someone else also allocated memory for this
320 * bucket, don't assume the list is still empty.
321 */
322 savedlist = kbp->kb_next;
323 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
324 for (;;) {
325 freep = (struct freelist *)cp;
326 #ifdef DIAGNOSTIC
327 /*
328 * Copy in known text to detect modification
329 * after freeing.
330 */
331 end = (int32_t *)&cp[copysize];
332 for (lp = (int32_t *)cp; lp < end; lp++)
333 *lp = WEIRD_ADDR;
334 freep->type = M_FREE;
335 #endif /* DIAGNOSTIC */
336 if (cp <= va)
337 break;
338 cp -= allocsize;
339 freep->next = cp;
340 }
341 freep->next = savedlist;
342 if (kbp->kb_last == NULL)
343 kbp->kb_last = (caddr_t)freep;
344 }
345 va = kbp->kb_next;
346 kbp->kb_next = ((struct freelist *)va)->next;
347 #ifdef DIAGNOSTIC
348 freep = (struct freelist *)va;
349 /* XXX potential to get garbage pointer here. */
350 savedtype = freep->type->ks_shortdesc;
351 if (kbp->kb_next) {
352 int rv;
353 vaddr_t addr = (vaddr_t)kbp->kb_next;
354
355 vm_map_lock(kmem_map);
356 rv = uvm_map_checkprot(kmem_map, addr,
357 addr + sizeof(struct freelist), VM_PROT_WRITE);
358 vm_map_unlock(kmem_map);
359
360 if (__predict_false(rv == 0)) {
361 printf("Data modified on freelist: "
362 "word %ld of object %p size %ld previous type %s "
363 "(invalid addr %p)\n",
364 (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
365 va, size, savedtype, kbp->kb_next);
366 #ifdef MALLOCLOG
367 hitmlog(va);
368 #endif
369 kbp->kb_next = NULL;
370 }
371 }
372
373 /* Fill the fields that we've used with WEIRD_ADDR */
374 #ifdef _LP64
375 freep->type = (struct malloc_type *)
376 (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
377 #else
378 freep->type = (struct malloc_type *) WEIRD_ADDR;
379 #endif
380 end = (int32_t *)&freep->next +
381 (sizeof(freep->next) / sizeof(int32_t));
382 for (lp = (int32_t *)&freep->next; lp < end; lp++)
383 *lp = WEIRD_ADDR;
384
385 /* and check that the data hasn't been modified. */
386 end = (uint32_t *)&va[copysize];
387 for (lp = (int32_t *)va; lp < end; lp++) {
388 if (__predict_true(*lp == WEIRD_ADDR))
389 continue;
390 printf("Data modified on freelist: "
391 "word %ld of object %p size %ld previous type %s "
392 "(0x%x != 0x%x)\n",
393 (long)(lp - (uint32_t *)va), va, size,
394 savedtype, *lp, WEIRD_ADDR);
395 #ifdef MALLOCLOG
396 hitmlog(va);
397 #endif
398 break;
399 }
400
401 freep->spare0 = 0;
402 #endif /* DIAGNOSTIC */
403 #ifdef KMEMSTATS
404 kup = btokup(va);
405 if (kup->ku_indx != indx)
406 panic("malloc: wrong bucket");
407 if (kup->ku_freecnt == 0)
408 panic("malloc: lost data");
409 kup->ku_freecnt--;
410 kbp->kb_totalfree--;
411 ksp->ks_memuse += 1 << indx;
412 out:
413 kbp->kb_calls++;
414 ksp->ks_inuse++;
415 ksp->ks_calls++;
416 if (ksp->ks_memuse > ksp->ks_maxused)
417 ksp->ks_maxused = ksp->ks_memuse;
418 #else
419 out:
420 #endif
421 #ifdef MALLOCLOG
422 domlog(va, size, type, 1, file, line);
423 #endif
424 simple_unlock(&malloc_slock);
425 splx(s);
426 if ((flags & M_ZERO) != 0)
427 memset(va, 0, size);
428 return ((void *) va);
429 }
430
431 /*
432 * Free a block of memory allocated by malloc.
433 */
434 #ifdef MALLOCLOG
435 void
436 _free(void *addr, struct malloc_type *type, const char *file, long line)
437 #else
438 void
439 free(void *addr, struct malloc_type *ksp)
440 #endif /* MALLOCLOG */
441 {
442 struct kmembuckets *kbp;
443 struct kmemusage *kup;
444 struct freelist *freep;
445 long size;
446 int s;
447 #ifdef DIAGNOSTIC
448 caddr_t cp;
449 int32_t *end, *lp;
450 long alloc, copysize;
451 #endif
452
453 #ifdef MALLOC_DEBUG
454 if (debug_free(addr, ksp))
455 return;
456 #endif
457
458 #ifdef DIAGNOSTIC
459 /*
460 * Ensure that we're free'ing something that we could
461 * have allocated in the first place. That is, check
462 * to see that the address is within kmem_map.
463 */
464 if (__predict_false((vaddr_t)addr < kmem_map->header.start ||
465 (vaddr_t)addr >= kmem_map->header.end))
466 panic("free: addr %p not within kmem_map", addr);
467 #endif
468
469 kup = btokup(addr);
470 size = 1 << kup->ku_indx;
471 kbp = &bucket[kup->ku_indx];
472 s = splvm();
473 simple_lock(&malloc_slock);
474 #ifdef MALLOCLOG
475 domlog(addr, 0, type, 2, file, line);
476 #endif
477 #ifdef DIAGNOSTIC
478 /*
479 * Check for returns of data that do not point to the
480 * beginning of the allocation.
481 */
482 if (size > PAGE_SIZE)
483 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
484 else
485 alloc = addrmask[kup->ku_indx];
486 if (((u_long)addr & alloc) != 0)
487 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
488 addr, size, ksp->ks_shortdesc, alloc);
489 #endif /* DIAGNOSTIC */
490 if (size > MAXALLOCSAVE) {
491 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt));
492 #ifdef KMEMSTATS
493 size = kup->ku_pagecnt << PGSHIFT;
494 ksp->ks_memuse -= size;
495 kup->ku_indx = 0;
496 kup->ku_pagecnt = 0;
497 if (ksp->ks_memuse + size >= ksp->ks_limit &&
498 ksp->ks_memuse < ksp->ks_limit)
499 wakeup((caddr_t)ksp);
500 #ifdef DIAGNOSTIC
501 if (ksp->ks_inuse == 0)
502 panic("free 1: inuse 0, probable double free");
503 #endif
504 ksp->ks_inuse--;
505 kbp->kb_total -= 1;
506 #endif
507 simple_unlock(&malloc_slock);
508 splx(s);
509 return;
510 }
511 freep = (struct freelist *)addr;
512 #ifdef DIAGNOSTIC
513 /*
514 * Check for multiple frees. Use a quick check to see if
515 * it looks free before laboriously searching the freelist.
516 */
517 if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
518 for (cp = kbp->kb_next; cp;
519 cp = ((struct freelist *)cp)->next) {
520 if (addr != cp)
521 continue;
522 printf("multiply freed item %p\n", addr);
523 #ifdef MALLOCLOG
524 hitmlog(addr);
525 #endif
526 panic("free: duplicated free");
527 }
528 }
529 #ifdef LOCKDEBUG
530 /*
531 * Check if we're freeing a locked simple lock.
532 */
533 simple_lock_freecheck(addr, (char *)addr + size);
534 #endif
535 /*
536 * Copy in known text to detect modification after freeing
537 * and to make it look free. Also, save the type being freed
538 * so we can list likely culprit if modification is detected
539 * when the object is reallocated.
540 */
541 copysize = size < MAX_COPY ? size : MAX_COPY;
542 end = (int32_t *)&((caddr_t)addr)[copysize];
543 for (lp = (int32_t *)addr; lp < end; lp++)
544 *lp = WEIRD_ADDR;
545 freep->type = ksp;
546 #endif /* DIAGNOSTIC */
547 #ifdef KMEMSTATS
548 kup->ku_freecnt++;
549 if (kup->ku_freecnt >= kbp->kb_elmpercl) {
550 if (kup->ku_freecnt > kbp->kb_elmpercl)
551 panic("free: multiple frees");
552 else if (kbp->kb_totalfree > kbp->kb_highwat)
553 kbp->kb_couldfree++;
554 }
555 kbp->kb_totalfree++;
556 ksp->ks_memuse -= size;
557 if (ksp->ks_memuse + size >= ksp->ks_limit &&
558 ksp->ks_memuse < ksp->ks_limit)
559 wakeup((caddr_t)ksp);
560 #ifdef DIAGNOSTIC
561 if (ksp->ks_inuse == 0)
562 panic("free 2: inuse 0, probable double free");
563 #endif
564 ksp->ks_inuse--;
565 #endif
566 if (kbp->kb_next == NULL)
567 kbp->kb_next = addr;
568 else
569 ((struct freelist *)kbp->kb_last)->next = addr;
570 freep->next = NULL;
571 kbp->kb_last = addr;
572 simple_unlock(&malloc_slock);
573 splx(s);
574 }
575
576 /*
577 * Change the size of a block of memory.
578 */
579 void *
580 realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
581 int flags)
582 {
583 struct kmemusage *kup;
584 unsigned long cursize;
585 void *newaddr;
586 #ifdef DIAGNOSTIC
587 long alloc;
588 #endif
589
590 /*
591 * realloc() with a NULL pointer is the same as malloc().
592 */
593 if (curaddr == NULL)
594 return (malloc(newsize, ksp, flags));
595
596 /*
597 * realloc() with zero size is the same as free().
598 */
599 if (newsize == 0) {
600 free(curaddr, ksp);
601 return (NULL);
602 }
603
604 #ifdef LOCKDEBUG
605 if ((flags & M_NOWAIT) == 0)
606 simple_lock_only_held(NULL, "realloc");
607 #endif
608
609 /*
610 * Find out how large the old allocation was (and do some
611 * sanity checking).
612 */
613 kup = btokup(curaddr);
614 cursize = 1 << kup->ku_indx;
615
616 #ifdef DIAGNOSTIC
617 /*
618 * Check for returns of data that do not point to the
619 * beginning of the allocation.
620 */
621 if (cursize > PAGE_SIZE)
622 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
623 else
624 alloc = addrmask[kup->ku_indx];
625 if (((u_long)curaddr & alloc) != 0)
626 panic("realloc: "
627 "unaligned addr %p, size %ld, type %s, mask %ld\n",
628 curaddr, cursize, ksp->ks_shortdesc, alloc);
629 #endif /* DIAGNOSTIC */
630
631 if (cursize > MAXALLOCSAVE)
632 cursize = ctob(kup->ku_pagecnt);
633
634 /*
635 * If we already actually have as much as they want, we're done.
636 */
637 if (newsize <= cursize)
638 return (curaddr);
639
640 /*
641 * Can't satisfy the allocation with the existing block.
642 * Allocate a new one and copy the data.
643 */
644 newaddr = malloc(newsize, ksp, flags);
645 if (__predict_false(newaddr == NULL)) {
646 /*
647 * malloc() failed, because flags included M_NOWAIT.
648 * Return NULL to indicate that failure. The old
649 * pointer is still valid.
650 */
651 return (NULL);
652 }
653 memcpy(newaddr, curaddr, cursize);
654
655 /*
656 * We were successful: free the old allocation and return
657 * the new one.
658 */
659 free(curaddr, ksp);
660 return (newaddr);
661 }
662
663 /*
664 * Roundup size to the actual allocation size.
665 */
666 unsigned long
667 malloc_roundup(unsigned long size)
668 {
669
670 if (size > MAXALLOCSAVE)
671 return (roundup(size, PAGE_SIZE));
672 else
673 return (1 << BUCKETINDX(size));
674 }
675
676 /*
677 * Add a malloc type to the system.
678 */
679 void
680 malloc_type_attach(struct malloc_type *type)
681 {
682
683 if (nkmempages == 0)
684 panic("malloc_type_attach: nkmempages == 0");
685
686 if (type->ks_magic != M_MAGIC)
687 panic("malloc_type_attach: bad magic");
688
689 #ifdef DIAGNOSTIC
690 {
691 struct malloc_type *ksp;
692 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
693 if (ksp == type)
694 panic("malloc_type_attach: already on list");
695 }
696 }
697 #endif
698
699 #ifdef KMEMSTATS
700 if (type->ks_limit == 0)
701 type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
702 #else
703 type->ks_limit = 0;
704 #endif
705
706 type->ks_next = kmemstatistics;
707 kmemstatistics = type;
708 }
709
710 /*
711 * Remove a malloc type from the system..
712 */
713 void
714 malloc_type_detach(struct malloc_type *type)
715 {
716 struct malloc_type *ksp;
717
718 #ifdef DIAGNOSTIC
719 if (type->ks_magic != M_MAGIC)
720 panic("malloc_type_detach: bad magic");
721 #endif
722
723 if (type == kmemstatistics)
724 kmemstatistics = type->ks_next;
725 else {
726 for (ksp = kmemstatistics; ksp->ks_next != NULL;
727 ksp = ksp->ks_next) {
728 if (ksp->ks_next == type) {
729 ksp->ks_next = type->ks_next;
730 break;
731 }
732 }
733 #ifdef DIAGNOSTIC
734 if (ksp->ks_next == NULL)
735 panic("malloc_type_detach: not on list");
736 #endif
737 }
738 type->ks_next = NULL;
739 }
740
741 /*
742 * Set the limit on a malloc type.
743 */
744 void
745 malloc_type_setlimit(struct malloc_type *type, u_long limit)
746 {
747 #ifdef KMEMSTATS
748 int s;
749
750 s = splvm();
751 type->ks_limit = limit;
752 splx(s);
753 #endif
754 }
755
756 /*
757 * Compute the number of pages that kmem_map will map, that is,
758 * the size of the kernel malloc arena.
759 */
760 void
761 kmeminit_nkmempages(void)
762 {
763 int npages;
764
765 if (nkmempages != 0) {
766 /*
767 * It's already been set (by us being here before, or
768 * by patching or kernel config options), bail out now.
769 */
770 return;
771 }
772
773 /*
774 * We use the following (simple) formula:
775 *
776 * - Starting point is physical memory / 4.
777 *
778 * - Clamp it down to NKMEMPAGES_MAX.
779 *
780 * - Round it up to NKMEMPAGES_MIN.
781 */
782 npages = physmem / 4;
783
784 if (npages > NKMEMPAGES_MAX)
785 npages = NKMEMPAGES_MAX;
786
787 if (npages < NKMEMPAGES_MIN)
788 npages = NKMEMPAGES_MIN;
789
790 nkmempages = npages;
791 }
792
793 /*
794 * Initialize the kernel memory allocator
795 */
796 void
797 kmeminit(void)
798 {
799 __link_set_decl(malloc_types, struct malloc_type);
800 struct malloc_type * const *ksp;
801 #ifdef KMEMSTATS
802 long indx;
803 #endif
804
805 #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
806 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
807 #endif
808 #if (MAXALLOCSAVE > MINALLOCSIZE * 32768)
809 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
810 #endif
811 #if (MAXALLOCSAVE < NBPG)
812 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
813 #endif
814
815 if (sizeof(struct freelist) > (1 << MINBUCKET))
816 panic("minbucket too small/struct freelist too big");
817
818 /*
819 * Compute the number of kmem_map pages, if we have not
820 * done so already.
821 */
822 kmeminit_nkmempages();
823
824 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map,
825 (vsize_t)(nkmempages * sizeof(struct kmemusage)));
826 kmem_map = uvm_km_suballoc(kernel_map, (void *)&kmembase,
827 (void *)&kmemlimit, (vsize_t)(nkmempages << PAGE_SHIFT),
828 VM_MAP_INTRSAFE, FALSE, &kmem_map_store);
829 #ifdef KMEMSTATS
830 for (indx = 0; indx < MINBUCKET + 16; indx++) {
831 if (1 << indx >= PAGE_SIZE)
832 bucket[indx].kb_elmpercl = 1;
833 else
834 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
835 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
836 }
837 #endif
838
839 /* Attach all of the statically-linked malloc types. */
840 __link_set_foreach(ksp, malloc_types)
841 malloc_type_attach(*ksp);
842
843 #ifdef MALLOC_DEBUG
844 debug_malloc_init();
845 #endif
846 }
847
848 #ifdef DDB
849 #include <ddb/db_output.h>
850
851 /*
852 * Dump kmem statistics from ddb.
853 *
854 * usage: call dump_kmemstats
855 */
856 void dump_kmemstats(void);
857
858 void
859 dump_kmemstats(void)
860 {
861 #ifdef KMEMSTATS
862 struct malloc_type *ksp;
863
864 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
865 if (ksp->ks_memuse == 0)
866 continue;
867 db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
868 (int)(20 - strlen(ksp->ks_shortdesc)),
869 " ",
870 ksp->ks_memuse);
871 }
872 #else
873 db_printf("Kmem stats are not being collected.\n");
874 #endif /* KMEMSTATS */
875 }
876 #endif /* DDB */
877