Home | History | Annotate | Line # | Download | only in kern
      1  1.112  riastrad /*	$NetBSD: kern_mutex.c,v 1.112 2023/10/15 10:28:23 riastradh Exp $	*/
      2    1.2        ad 
      3    1.2        ad /*-
      4  1.110        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2019, 2023
      5  1.110        ad  *     The NetBSD Foundation, Inc.
      6    1.2        ad  * All rights reserved.
      7    1.2        ad  *
      8    1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      9    1.2        ad  * by Jason R. Thorpe and Andrew Doran.
     10    1.2        ad  *
     11    1.2        ad  * Redistribution and use in source and binary forms, with or without
     12    1.2        ad  * modification, are permitted provided that the following conditions
     13    1.2        ad  * are met:
     14    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     15    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     16    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     17    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     18    1.2        ad  *    documentation and/or other materials provided with the distribution.
     19    1.2        ad  *
     20    1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21    1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22    1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23    1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24    1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25    1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26    1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27    1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28    1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29    1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30    1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     31    1.2        ad  */
     32    1.2        ad 
     33    1.2        ad /*
     34    1.2        ad  * Kernel mutex implementation, modeled after those found in Solaris,
     35    1.2        ad  * a description of which can be found in:
     36    1.2        ad  *
     37    1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     38    1.2        ad  *	    Richard McDougall.
     39    1.2        ad  */
     40    1.2        ad 
     41    1.2        ad #define	__MUTEX_PRIVATE
     42    1.2        ad 
     43    1.2        ad #include <sys/cdefs.h>
     44  1.112  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.112 2023/10/15 10:28:23 riastradh Exp $");
     45    1.2        ad 
     46    1.2        ad #include <sys/param.h>
     47  1.112  riastrad 
     48   1.46     pooka #include <sys/atomic.h>
     49  1.112  riastrad #include <sys/cpu.h>
     50  1.112  riastrad #include <sys/intr.h>
     51  1.112  riastrad #include <sys/kernel.h>
     52  1.112  riastrad #include <sys/lock.h>
     53  1.112  riastrad #include <sys/lockdebug.h>
     54  1.112  riastrad #include <sys/mutex.h>
     55    1.2        ad #include <sys/proc.h>
     56  1.112  riastrad #include <sys/pserialize.h>
     57    1.2        ad #include <sys/sched.h>
     58    1.2        ad #include <sys/sleepq.h>
     59  1.112  riastrad #include <sys/syncobj.h>
     60    1.2        ad #include <sys/systm.h>
     61   1.50     rmind #include <sys/types.h>
     62    1.2        ad 
     63    1.2        ad #include <dev/lockstat.h>
     64    1.2        ad 
     65   1.28        ad #include <machine/lock.h>
     66   1.28        ad 
     67    1.2        ad /*
     68    1.2        ad  * When not running a debug kernel, spin mutexes are not much
     69    1.2        ad  * more than an splraiseipl() and splx() pair.
     70    1.2        ad  */
     71    1.2        ad 
     72    1.2        ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     73    1.2        ad #define	FULL
     74    1.2        ad #endif
     75    1.2        ad 
     76    1.2        ad /*
     77    1.2        ad  * Debugging support.
     78    1.2        ad  */
     79    1.2        ad 
     80    1.2        ad #define	MUTEX_WANTLOCK(mtx)					\
     81   1.23      yamt     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     82   1.54   mlelstv         (uintptr_t)__builtin_return_address(0), 0)
     83   1.65  pgoyette #define	MUTEX_TESTLOCK(mtx)					\
     84   1.65  pgoyette     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     85   1.65  pgoyette         (uintptr_t)__builtin_return_address(0), -1)
     86    1.2        ad #define	MUTEX_LOCKED(mtx)					\
     87   1.42        ad     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     88    1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     89    1.2        ad #define	MUTEX_UNLOCKED(mtx)					\
     90   1.23      yamt     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     91    1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     92    1.2        ad #define	MUTEX_ABORT(mtx, msg)					\
     93   1.64  christos     mutex_abort(__func__, __LINE__, mtx, msg)
     94    1.2        ad 
     95    1.2        ad #if defined(LOCKDEBUG)
     96    1.2        ad 
     97    1.2        ad #define	MUTEX_DASSERT(mtx, cond)				\
     98    1.2        ad do {								\
     99   1.75     ozaki 	if (__predict_false(!(cond)))				\
    100    1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    101   1.76     skrll } while (/* CONSTCOND */ 0)
    102    1.2        ad 
    103    1.2        ad #else	/* LOCKDEBUG */
    104    1.2        ad 
    105    1.2        ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    106    1.2        ad 
    107    1.2        ad #endif /* LOCKDEBUG */
    108    1.2        ad 
    109    1.2        ad #if defined(DIAGNOSTIC)
    110    1.2        ad 
    111    1.2        ad #define	MUTEX_ASSERT(mtx, cond)					\
    112    1.2        ad do {								\
    113   1.75     ozaki 	if (__predict_false(!(cond)))				\
    114    1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    115    1.2        ad } while (/* CONSTCOND */ 0)
    116    1.2        ad 
    117    1.2        ad #else	/* DIAGNOSTIC */
    118    1.2        ad 
    119    1.2        ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    120    1.2        ad 
    121    1.2        ad #endif	/* DIAGNOSTIC */
    122    1.2        ad 
    123    1.2        ad /*
    124   1.60      matt  * Some architectures can't use __cpu_simple_lock as is so allow a way
    125   1.60      matt  * for them to use an alternate definition.
    126   1.60      matt  */
    127   1.60      matt #ifndef MUTEX_SPINBIT_LOCK_INIT
    128   1.60      matt #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    129   1.60      matt #endif
    130   1.60      matt #ifndef MUTEX_SPINBIT_LOCKED_P
    131   1.60      matt #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    132   1.60      matt #endif
    133   1.60      matt #ifndef MUTEX_SPINBIT_LOCK_TRY
    134   1.60      matt #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    135   1.60      matt #endif
    136   1.60      matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    137   1.60      matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    138   1.60      matt #endif
    139   1.60      matt 
    140   1.60      matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
    141   1.60      matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    142   1.60      matt 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    143   1.60      matt #endif
    144   1.60      matt 
    145   1.60      matt /*
    146    1.2        ad  * Spin mutex SPL save / restore.
    147    1.2        ad  */
    148    1.2        ad 
    149    1.2        ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    150    1.2        ad do {									\
    151  1.101     skrll 	const int s = splraiseipl(MUTEX_SPIN_IPL(mtx));			\
    152  1.101     skrll 	struct cpu_info * const x__ci = curcpu();			\
    153  1.101     skrll 	const int x__cnt = x__ci->ci_mtx_count--;			\
    154   1.37        ad 	__insn_barrier();						\
    155   1.51     rmind 	if (x__cnt == 0)						\
    156  1.101     skrll 		x__ci->ci_mtx_oldspl = s;				\
    157    1.2        ad } while (/* CONSTCOND */ 0)
    158    1.2        ad 
    159    1.2        ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    160    1.2        ad do {									\
    161  1.101     skrll 	struct cpu_info * const x__ci = curcpu();			\
    162  1.101     skrll 	const int s = x__ci->ci_mtx_oldspl;				\
    163    1.2        ad 	__insn_barrier();						\
    164   1.96       rin 	if (++(x__ci->ci_mtx_count) == 0)				\
    165    1.2        ad 		splx(s);						\
    166    1.2        ad } while (/* CONSTCOND */ 0)
    167    1.2        ad 
    168    1.2        ad /*
    169   1.80        ad  * Memory barriers.
    170   1.80        ad  */
    171   1.80        ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
    172   1.80        ad #define	MUTEX_MEMBAR_ENTER()
    173   1.80        ad #else
    174   1.80        ad #define	MUTEX_MEMBAR_ENTER()		membar_enter()
    175   1.80        ad #endif
    176   1.80        ad 
    177   1.80        ad /*
    178    1.2        ad  * For architectures that provide 'simple' mutexes: they provide a
    179    1.2        ad  * CAS function that is either MP-safe, or does not need to be MP
    180    1.2        ad  * safe.  Adaptive mutexes on these architectures do not require an
    181    1.2        ad  * additional interlock.
    182    1.2        ad  */
    183    1.2        ad 
    184    1.2        ad #ifdef __HAVE_SIMPLE_MUTEXES
    185    1.2        ad 
    186    1.2        ad #define	MUTEX_OWNER(owner)						\
    187    1.2        ad 	(owner & MUTEX_THREAD)
    188   1.88        ad #define	MUTEX_HAS_WAITERS(mtx)						\
    189   1.88        ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    190    1.2        ad 
    191   1.23      yamt #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    192   1.76     skrll do {									\
    193   1.49     skrll 	if (!dodebug)							\
    194   1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    195   1.76     skrll } while (/* CONSTCOND */ 0)
    196    1.2        ad 
    197   1.23      yamt #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    198    1.2        ad do {									\
    199    1.2        ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    200   1.49     skrll 	if (!dodebug)							\
    201   1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    202   1.60      matt 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    203   1.60      matt 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    204    1.2        ad } while (/* CONSTCOND */ 0)
    205    1.2        ad 
    206    1.2        ad #define	MUTEX_DESTROY(mtx)						\
    207    1.2        ad do {									\
    208    1.2        ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    209   1.76     skrll } while (/* CONSTCOND */ 0)
    210    1.2        ad 
    211   1.87        ad #define	MUTEX_SPIN_P(owner)		\
    212   1.87        ad     (((owner) & MUTEX_BIT_SPIN) != 0)
    213   1.87        ad #define	MUTEX_ADAPTIVE_P(owner)		\
    214   1.87        ad     (((owner) & MUTEX_BIT_SPIN) == 0)
    215    1.2        ad 
    216   1.98   thorpej #ifndef MUTEX_CAS
    217   1.98   thorpej #define	MUTEX_CAS(p, o, n)		\
    218   1.98   thorpej 	(atomic_cas_ulong((volatile unsigned long *)(p), (o), (n)) == (o))
    219   1.98   thorpej #endif /* MUTEX_CAS */
    220   1.98   thorpej 
    221   1.49     skrll #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    222   1.23      yamt #if defined(LOCKDEBUG)
    223   1.49     skrll #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    224   1.59      matt #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    225   1.23      yamt #else /* defined(LOCKDEBUG) */
    226   1.23      yamt #define	MUTEX_OWNED(owner)		((owner) != 0)
    227   1.59      matt #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    228   1.23      yamt #endif /* defined(LOCKDEBUG) */
    229    1.2        ad 
    230    1.2        ad static inline int
    231    1.2        ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    232    1.2        ad {
    233    1.2        ad 	int rv;
    234   1.59      matt 	uintptr_t oldown = 0;
    235   1.59      matt 	uintptr_t newown = curthread;
    236   1.23      yamt 
    237   1.59      matt 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    238   1.59      matt 	MUTEX_INHERITDEBUG(newown, oldown);
    239   1.59      matt 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    240  1.104  riastrad 	membar_acquire();
    241    1.2        ad 	return rv;
    242    1.2        ad }
    243    1.2        ad 
    244    1.2        ad static inline int
    245    1.2        ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    246    1.2        ad {
    247    1.2        ad 	int rv;
    248  1.107  riastrad 
    249    1.2        ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    250   1.80        ad 	MUTEX_MEMBAR_ENTER();
    251    1.2        ad 	return rv;
    252    1.2        ad }
    253    1.2        ad 
    254    1.2        ad static inline void
    255    1.2        ad MUTEX_RELEASE(kmutex_t *mtx)
    256    1.2        ad {
    257   1.59      matt 	uintptr_t newown;
    258   1.23      yamt 
    259   1.59      matt 	newown = 0;
    260   1.59      matt 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    261  1.104  riastrad 	atomic_store_release(&mtx->mtx_owner, newown);
    262    1.2        ad }
    263    1.2        ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    264    1.2        ad 
    265    1.2        ad /*
    266    1.2        ad  * Patch in stubs via strong alias where they are not available.
    267    1.2        ad  */
    268    1.2        ad 
    269    1.2        ad #if defined(LOCKDEBUG)
    270    1.2        ad #undef	__HAVE_MUTEX_STUBS
    271    1.2        ad #undef	__HAVE_SPIN_MUTEX_STUBS
    272    1.2        ad #endif
    273    1.2        ad 
    274    1.2        ad #ifndef __HAVE_MUTEX_STUBS
    275    1.8     itohy __strong_alias(mutex_enter,mutex_vector_enter);
    276    1.8     itohy __strong_alias(mutex_exit,mutex_vector_exit);
    277    1.2        ad #endif
    278    1.2        ad 
    279    1.2        ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    280    1.8     itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    281    1.8     itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    282    1.2        ad #endif
    283    1.2        ad 
    284  1.105  riastrad static void	mutex_abort(const char *, size_t, volatile const kmutex_t *,
    285  1.105  riastrad 		    const char *);
    286   1.79     ozaki static void	mutex_dump(const volatile void *, lockop_printer_t);
    287  1.105  riastrad static lwp_t	*mutex_owner(wchan_t);
    288    1.2        ad 
    289    1.2        ad lockops_t mutex_spin_lockops = {
    290   1.68     ozaki 	.lo_name = "Mutex",
    291   1.68     ozaki 	.lo_type = LOCKOPS_SPIN,
    292   1.68     ozaki 	.lo_dump = mutex_dump,
    293    1.2        ad };
    294    1.2        ad 
    295    1.2        ad lockops_t mutex_adaptive_lockops = {
    296   1.68     ozaki 	.lo_name = "Mutex",
    297   1.68     ozaki 	.lo_type = LOCKOPS_SLEEP,
    298   1.68     ozaki 	.lo_dump = mutex_dump,
    299    1.2        ad };
    300    1.2        ad 
    301    1.5      yamt syncobj_t mutex_syncobj = {
    302  1.108  riastrad 	.sobj_name	= "mutex",
    303   1.70     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    304  1.110        ad 	.sobj_boostpri  = PRI_KERNEL,
    305   1.70     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    306   1.70     ozaki 	.sobj_changepri	= turnstile_changepri,
    307   1.70     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    308  1.105  riastrad 	.sobj_owner	= mutex_owner,
    309    1.5      yamt };
    310    1.5      yamt 
    311    1.2        ad /*
    312    1.2        ad  * mutex_dump:
    313    1.2        ad  *
    314    1.2        ad  *	Dump the contents of a mutex structure.
    315    1.2        ad  */
    316   1.78     ozaki static void
    317   1.79     ozaki mutex_dump(const volatile void *cookie, lockop_printer_t pr)
    318    1.2        ad {
    319   1.67  christos 	const volatile kmutex_t *mtx = cookie;
    320   1.87        ad 	uintptr_t owner = mtx->mtx_owner;
    321    1.2        ad 
    322   1.79     ozaki 	pr("owner field  : %#018lx wait/spin: %16d/%d\n",
    323   1.88        ad 	    (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
    324   1.87        ad 	    MUTEX_SPIN_P(owner));
    325    1.2        ad }
    326    1.2        ad 
    327    1.2        ad /*
    328    1.2        ad  * mutex_abort:
    329    1.2        ad  *
    330    1.3        ad  *	Dump information about an error and panic the system.  This
    331    1.3        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    332    1.3        ad  *	we ask the compiler to not inline it.
    333    1.2        ad  */
    334   1.78     ozaki static void __noinline
    335  1.105  riastrad mutex_abort(const char *func, size_t line, volatile const kmutex_t *mtx,
    336  1.105  riastrad     const char *msg)
    337    1.2        ad {
    338    1.2        ad 
    339   1.87        ad 	LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
    340   1.64  christos 	    &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
    341    1.2        ad }
    342    1.2        ad 
    343    1.2        ad /*
    344    1.2        ad  * mutex_init:
    345    1.2        ad  *
    346    1.2        ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    347    1.2        ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    348    1.2        ad  *	CPU time.  We can't easily provide a type of mutex that always
    349    1.2        ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    350    1.2        ad  *	mutexes unlocked.
    351    1.2        ad  */
    352    1.2        ad void
    353   1.71     ozaki _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
    354   1.71     ozaki     uintptr_t return_address)
    355    1.2        ad {
    356   1.81        ad 	lockops_t *lockops __unused;
    357   1.23      yamt 	bool dodebug;
    358    1.2        ad 
    359    1.2        ad 	memset(mtx, 0, sizeof(*mtx));
    360    1.2        ad 
    361   1.81        ad 	if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    362   1.81        ad 	    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    363   1.81        ad 	    ipl == IPL_SOFTSERIAL) {
    364   1.81        ad 		lockops = (type == MUTEX_NODEBUG ?
    365   1.81        ad 		    NULL : &mutex_adaptive_lockops);
    366   1.81        ad 		dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
    367   1.23      yamt 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    368   1.81        ad 	} else {
    369   1.81        ad 		lockops = (type == MUTEX_NODEBUG ?
    370   1.81        ad 		    NULL : &mutex_spin_lockops);
    371   1.81        ad 		dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
    372   1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    373    1.2        ad 	}
    374    1.2        ad }
    375    1.2        ad 
    376   1.71     ozaki void
    377   1.71     ozaki mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    378   1.71     ozaki {
    379   1.71     ozaki 
    380   1.71     ozaki 	_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
    381   1.71     ozaki }
    382   1.71     ozaki 
    383    1.2        ad /*
    384    1.2        ad  * mutex_destroy:
    385    1.2        ad  *
    386    1.2        ad  *	Tear down a mutex.
    387    1.2        ad  */
    388    1.2        ad void
    389    1.2        ad mutex_destroy(kmutex_t *mtx)
    390    1.2        ad {
    391   1.87        ad 	uintptr_t owner = mtx->mtx_owner;
    392    1.2        ad 
    393   1.87        ad 	if (MUTEX_ADAPTIVE_P(owner)) {
    394   1.90       chs 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
    395   1.90       chs 		MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
    396    1.2        ad 	} else {
    397   1.60      matt 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    398    1.2        ad 	}
    399    1.2        ad 
    400   1.23      yamt 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    401    1.2        ad 	MUTEX_DESTROY(mtx);
    402    1.2        ad }
    403    1.2        ad 
    404   1.50     rmind #ifdef MULTIPROCESSOR
    405    1.2        ad /*
    406   1.50     rmind  * mutex_oncpu:
    407    1.2        ad  *
    408    1.2        ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    409    1.2        ad  *	system.  If the target is waiting on the kernel big lock, then we
    410   1.15        ad  *	must release it.  This is necessary to avoid deadlock.
    411    1.2        ad  */
    412   1.50     rmind static bool
    413   1.50     rmind mutex_oncpu(uintptr_t owner)
    414    1.2        ad {
    415    1.2        ad 	struct cpu_info *ci;
    416   1.50     rmind 	lwp_t *l;
    417    1.2        ad 
    418   1.50     rmind 	KASSERT(kpreempt_disabled());
    419   1.50     rmind 
    420   1.50     rmind 	if (!MUTEX_OWNED(owner)) {
    421   1.50     rmind 		return false;
    422   1.50     rmind 	}
    423    1.2        ad 
    424   1.50     rmind 	/*
    425   1.50     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    426   1.50     rmind 	 * We must have kernel preemption disabled for that.
    427   1.50     rmind 	 */
    428   1.50     rmind 	l = (lwp_t *)MUTEX_OWNER(owner);
    429   1.50     rmind 	ci = l->l_cpu;
    430    1.2        ad 
    431   1.50     rmind 	if (ci && ci->ci_curlwp == l) {
    432   1.50     rmind 		/* Target is running; do we need to block? */
    433  1.103  riastrad 		return (atomic_load_relaxed(&ci->ci_biglock_wanted) != l);
    434   1.50     rmind 	}
    435   1.15        ad 
    436   1.50     rmind 	/* Not running.  It may be safe to block now. */
    437   1.50     rmind 	return false;
    438    1.2        ad }
    439   1.15        ad #endif	/* MULTIPROCESSOR */
    440    1.2        ad 
    441    1.2        ad /*
    442    1.2        ad  * mutex_vector_enter:
    443    1.2        ad  *
    444   1.45     rmind  *	Support routine for mutex_enter() that must handle all cases.  In
    445    1.2        ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    446   1.62     prlw1  *	fast-path stubs are available.  If a mutex_spin_enter() stub is
    447    1.2        ad  *	not available, then it is also aliased directly here.
    448    1.2        ad  */
    449    1.2        ad void
    450    1.2        ad mutex_vector_enter(kmutex_t *mtx)
    451    1.2        ad {
    452    1.2        ad 	uintptr_t owner, curthread;
    453    1.2        ad 	turnstile_t *ts;
    454    1.2        ad #ifdef MULTIPROCESSOR
    455    1.2        ad 	u_int count;
    456    1.2        ad #endif
    457    1.2        ad 	LOCKSTAT_COUNTER(spincnt);
    458    1.2        ad 	LOCKSTAT_COUNTER(slpcnt);
    459    1.2        ad 	LOCKSTAT_TIMER(spintime);
    460    1.2        ad 	LOCKSTAT_TIMER(slptime);
    461    1.2        ad 	LOCKSTAT_FLAG(lsflag);
    462    1.2        ad 
    463    1.2        ad 	/*
    464    1.2        ad 	 * Handle spin mutexes.
    465    1.2        ad 	 */
    466   1.92        ad 	KPREEMPT_DISABLE(curlwp);
    467   1.87        ad 	owner = mtx->mtx_owner;
    468   1.87        ad 	if (MUTEX_SPIN_P(owner)) {
    469    1.2        ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    470    1.2        ad 		u_int spins = 0;
    471    1.2        ad #endif
    472   1.92        ad 		KPREEMPT_ENABLE(curlwp);
    473    1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    474    1.2        ad 		MUTEX_WANTLOCK(mtx);
    475    1.2        ad #ifdef FULL
    476   1.60      matt 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    477    1.2        ad 			MUTEX_LOCKED(mtx);
    478    1.2        ad 			return;
    479    1.2        ad 		}
    480    1.2        ad #if !defined(MULTIPROCESSOR)
    481    1.2        ad 		MUTEX_ABORT(mtx, "locking against myself");
    482    1.2        ad #else /* !MULTIPROCESSOR */
    483    1.2        ad 
    484    1.2        ad 		LOCKSTAT_ENTER(lsflag);
    485    1.2        ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    486    1.2        ad 		count = SPINLOCK_BACKOFF_MIN;
    487    1.2        ad 
    488    1.2        ad 		/*
    489    1.2        ad 		 * Spin testing the lock word and do exponential backoff
    490    1.2        ad 		 * to reduce cache line ping-ponging between CPUs.
    491    1.2        ad 		 */
    492    1.2        ad 		do {
    493   1.60      matt 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    494   1.97   thorpej 				SPINLOCK_SPIN_HOOK;
    495   1.63   msaitoh 				SPINLOCK_BACKOFF(count);
    496    1.2        ad #ifdef LOCKDEBUG
    497    1.2        ad 				if (SPINLOCK_SPINOUT(spins))
    498    1.2        ad 					MUTEX_ABORT(mtx, "spinout");
    499    1.2        ad #endif	/* LOCKDEBUG */
    500    1.2        ad 			}
    501   1.60      matt 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    502    1.2        ad 
    503    1.2        ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    504    1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    505    1.2        ad 			LOCKSTAT_EVENT(lsflag, mtx,
    506    1.2        ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    507    1.2        ad 		}
    508    1.2        ad 		LOCKSTAT_EXIT(lsflag);
    509    1.2        ad #endif	/* !MULTIPROCESSOR */
    510    1.2        ad #endif	/* FULL */
    511    1.2        ad 		MUTEX_LOCKED(mtx);
    512    1.2        ad 		return;
    513    1.2        ad 	}
    514    1.2        ad 
    515    1.2        ad 	curthread = (uintptr_t)curlwp;
    516    1.2        ad 
    517   1.87        ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
    518    1.2        ad 	MUTEX_ASSERT(mtx, curthread != 0);
    519   1.72     ozaki 	MUTEX_ASSERT(mtx, !cpu_intr_p());
    520    1.2        ad 	MUTEX_WANTLOCK(mtx);
    521    1.2        ad 
    522  1.102     ozaki 	if (__predict_true(panicstr == NULL)) {
    523   1.77     ozaki 		KDASSERT(pserialize_not_in_read_section());
    524    1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    525    1.2        ad 	}
    526    1.2        ad 
    527    1.2        ad 	LOCKSTAT_ENTER(lsflag);
    528    1.2        ad 
    529    1.2        ad 	/*
    530    1.2        ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    531    1.2        ad 	 * determine that the owner is not running on a processor,
    532    1.2        ad 	 * then we stop spinning, and sleep instead.
    533    1.2        ad 	 */
    534   1.87        ad 	for (;;) {
    535    1.2        ad 		if (!MUTEX_OWNED(owner)) {
    536    1.2        ad 			/*
    537    1.2        ad 			 * Mutex owner clear could mean two things:
    538    1.2        ad 			 *
    539    1.2        ad 			 *	* The mutex has been released.
    540    1.2        ad 			 *	* The owner field hasn't been set yet.
    541    1.2        ad 			 *
    542    1.2        ad 			 * Try to acquire it again.  If that fails,
    543    1.2        ad 			 * we'll just loop again.
    544    1.2        ad 			 */
    545    1.2        ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    546    1.2        ad 				break;
    547   1.34        ad 			owner = mtx->mtx_owner;
    548    1.2        ad 			continue;
    549    1.2        ad 		}
    550   1.50     rmind 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    551    1.2        ad 			MUTEX_ABORT(mtx, "locking against myself");
    552   1.50     rmind 		}
    553    1.2        ad #ifdef MULTIPROCESSOR
    554    1.2        ad 		/*
    555    1.2        ad 		 * Check to see if the owner is running on a processor.
    556    1.2        ad 		 * If so, then we should just spin, as the owner will
    557   1.92        ad 		 * likely release the lock very soon.
    558    1.2        ad 		 */
    559   1.50     rmind 		if (mutex_oncpu(owner)) {
    560    1.2        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    561    1.2        ad 			count = SPINLOCK_BACKOFF_MIN;
    562   1.50     rmind 			do {
    563   1.53     rmind 				KPREEMPT_ENABLE(curlwp);
    564   1.34        ad 				SPINLOCK_BACKOFF(count);
    565   1.53     rmind 				KPREEMPT_DISABLE(curlwp);
    566    1.2        ad 				owner = mtx->mtx_owner;
    567   1.50     rmind 			} while (mutex_oncpu(owner));
    568    1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    569    1.2        ad 			LOCKSTAT_COUNT(spincnt, 1);
    570    1.2        ad 			if (!MUTEX_OWNED(owner))
    571    1.2        ad 				continue;
    572    1.2        ad 		}
    573    1.2        ad #endif
    574    1.2        ad 
    575    1.2        ad 		ts = turnstile_lookup(mtx);
    576    1.2        ad 
    577    1.2        ad 		/*
    578    1.2        ad 		 * Once we have the turnstile chain interlock, mark the
    579   1.69     skrll 		 * mutex as having waiters.  If that fails, spin again:
    580    1.2        ad 		 * chances are that the mutex has been released.
    581    1.2        ad 		 */
    582    1.2        ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    583    1.2        ad 			turnstile_exit(mtx);
    584   1.34        ad 			owner = mtx->mtx_owner;
    585    1.2        ad 			continue;
    586    1.2        ad 		}
    587    1.2        ad 
    588    1.2        ad #ifdef MULTIPROCESSOR
    589    1.2        ad 		/*
    590    1.2        ad 		 * mutex_exit() is permitted to release the mutex without
    591    1.2        ad 		 * any interlocking instructions, and the following can
    592    1.2        ad 		 * occur as a result:
    593    1.2        ad 		 *
    594    1.2        ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    595    1.2        ad 		 * ---------------------------- ----------------------------
    596  1.107  riastrad 		 *		..		load mtx->mtx_owner
    597  1.107  riastrad 		 *		..		see has-waiters bit clear
    598  1.107  riastrad 		 *	set has-waiters bit  	           ..
    599  1.107  riastrad 		 *		..		store mtx->mtx_owner := 0
    600    1.2        ad 		 *	  return success
    601    1.2        ad 		 *
    602   1.50     rmind 		 * There is another race that can occur: a third CPU could
    603    1.2        ad 		 * acquire the mutex as soon as it is released.  Since
    604    1.2        ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    605    1.2        ad 		 * something that we need to worry about too much.  What we
    606    1.2        ad 		 * do need to ensure is that the waiters bit gets set.
    607    1.2        ad 		 *
    608    1.2        ad 		 * To allow the unlocked release, we need to make some
    609    1.2        ad 		 * assumptions here:
    610    1.2        ad 		 *
    611    1.2        ad 		 * o Release is the only non-atomic/unlocked operation
    612    1.2        ad 		 *   that can be performed on the mutex.  (It must still
    613    1.2        ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    614    1.2        ad 		 *   or preempted).
    615    1.2        ad 		 *
    616  1.107  riastrad 		 * o At any given time on each mutex, MUTEX_SET_WAITERS()
    617  1.107  riastrad 		 *   can only ever be in progress on one CPU in the
    618  1.107  riastrad 		 *   system - guaranteed by the turnstile chain lock.
    619    1.2        ad 		 *
    620    1.2        ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    621    1.2        ad 		 *   and release can modify a mutex with a non-zero
    622    1.2        ad 		 *   owner field.
    623    1.2        ad 		 *
    624    1.2        ad 		 * o If the holding LWP switches away, it posts a store
    625    1.2        ad 		 *   fence before changing curlwp, ensuring that any
    626    1.2        ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    627    1.2        ad 		 *   completes before the modification of curlwp becomes
    628    1.2        ad 		 *   visible to this CPU.
    629    1.2        ad 		 *
    630   1.95     skrll 		 * o cpu_switchto() posts a store fence after setting curlwp
    631    1.2        ad 		 *   and before resuming execution of an LWP.
    632   1.93     skrll 		 *
    633    1.2        ad 		 * o _kernel_lock() posts a store fence before setting
    634   1.93     skrll 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    635    1.2        ad 		 *   This ensures that any overwrite of the mutex waiters
    636    1.2        ad 		 *   flag by mutex_exit() completes before the modification
    637    1.2        ad 		 *   of ci_biglock_wanted becomes visible.
    638    1.2        ad 		 *
    639  1.107  riastrad 		 * After MUTEX_SET_WAITERS() succeeds, simultaneously
    640  1.107  riastrad 		 * confirming that the same LWP still holds the mutex
    641  1.107  riastrad 		 * since we took the turnstile lock and notifying it that
    642  1.107  riastrad 		 * we're waiting, we check the lock holder's status again.
    643  1.107  riastrad 		 * Some of the possible outcomes (not an exhaustive list;
    644  1.107  riastrad 		 * XXX this should be made exhaustive):
    645    1.2        ad 		 *
    646   1.50     rmind 		 * 1. The on-CPU check returns true: the holding LWP is
    647    1.2        ad 		 *    running again.  The lock may be released soon and
    648    1.2        ad 		 *    we should spin.  Importantly, we can't trust the
    649    1.2        ad 		 *    value of the waiters flag.
    650    1.2        ad 		 *
    651   1.50     rmind 		 * 2. The on-CPU check returns false: the holding LWP is
    652   1.39      yamt 		 *    not running.  We now have the opportunity to check
    653    1.2        ad 		 *    if mutex_exit() has blatted the modifications made
    654    1.2        ad 		 *    by MUTEX_SET_WAITERS().
    655    1.2        ad 		 *
    656   1.50     rmind 		 * 3. The on-CPU check returns false: the holding LWP may
    657    1.2        ad 		 *    or may not be running.  It has context switched at
    658    1.2        ad 		 *    some point during our check.  Again, we have the
    659    1.2        ad 		 *    chance to see if the waiters bit is still set or
    660    1.2        ad 		 *    has been overwritten.
    661    1.2        ad 		 *
    662   1.50     rmind 		 * 4. The on-CPU check returns false: the holding LWP is
    663    1.2        ad 		 *    running on a CPU, but wants the big lock.  It's OK
    664    1.2        ad 		 *    to check the waiters field in this case.
    665    1.2        ad 		 *
    666    1.2        ad 		 * 5. The has-waiters check fails: the mutex has been
    667    1.2        ad 		 *    released, the waiters flag cleared and another LWP
    668    1.2        ad 		 *    now owns the mutex.
    669    1.2        ad 		 *
    670    1.2        ad 		 * 6. The has-waiters check fails: the mutex has been
    671    1.2        ad 		 *    released.
    672    1.2        ad 		 *
    673    1.2        ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    674    1.2        ad 		 * as we might never be awoken.
    675    1.2        ad 		 */
    676   1.87        ad 		if (mutex_oncpu(owner)) {
    677    1.2        ad 			turnstile_exit(mtx);
    678   1.34        ad 			owner = mtx->mtx_owner;
    679    1.2        ad 			continue;
    680    1.2        ad 		}
    681   1.87        ad 		membar_consumer();
    682   1.88        ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    683   1.87        ad 			turnstile_exit(mtx);
    684   1.88        ad 			owner = mtx->mtx_owner;
    685   1.87        ad 			continue;
    686   1.87        ad 		}
    687    1.2        ad #endif	/* MULTIPROCESSOR */
    688    1.2        ad 
    689    1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    690    1.2        ad 
    691    1.5      yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    692    1.2        ad 
    693    1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    694    1.2        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    695   1.34        ad 
    696   1.34        ad 		owner = mtx->mtx_owner;
    697    1.2        ad 	}
    698   1.50     rmind 	KPREEMPT_ENABLE(curlwp);
    699    1.2        ad 
    700    1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    701    1.2        ad 	    slpcnt, slptime);
    702    1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    703    1.2        ad 	    spincnt, spintime);
    704    1.2        ad 	LOCKSTAT_EXIT(lsflag);
    705    1.2        ad 
    706    1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    707    1.2        ad 	MUTEX_LOCKED(mtx);
    708    1.2        ad }
    709    1.2        ad 
    710    1.2        ad /*
    711    1.2        ad  * mutex_vector_exit:
    712    1.2        ad  *
    713    1.2        ad  *	Support routine for mutex_exit() that handles all cases.
    714    1.2        ad  */
    715    1.2        ad void
    716    1.2        ad mutex_vector_exit(kmutex_t *mtx)
    717    1.2        ad {
    718    1.2        ad 	turnstile_t *ts;
    719    1.2        ad 	uintptr_t curthread;
    720    1.2        ad 
    721   1.87        ad 	if (MUTEX_SPIN_P(mtx->mtx_owner)) {
    722    1.2        ad #ifdef FULL
    723   1.60      matt 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    724    1.2        ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    725   1.33        ad 		}
    726    1.2        ad 		MUTEX_UNLOCKED(mtx);
    727   1.60      matt 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    728    1.2        ad #endif
    729    1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    730    1.2        ad 		return;
    731    1.2        ad 	}
    732    1.2        ad 
    733   1.85        ad #ifndef __HAVE_MUTEX_STUBS
    734   1.86        ad 	/*
    735   1.86        ad 	 * On some architectures without mutex stubs, we can enter here to
    736   1.93     skrll 	 * release mutexes before interrupts and whatnot are up and running.
    737   1.86        ad 	 * We need this hack to keep them sweet.
    738   1.86        ad 	 */
    739   1.85        ad 	if (__predict_false(cold)) {
    740   1.85        ad 		MUTEX_UNLOCKED(mtx);
    741   1.85        ad 		MUTEX_RELEASE(mtx);
    742   1.85        ad 		return;
    743   1.85        ad 	}
    744   1.85        ad #endif
    745   1.85        ad 
    746    1.2        ad 	curthread = (uintptr_t)curlwp;
    747    1.2        ad 	MUTEX_DASSERT(mtx, curthread != 0);
    748    1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    749    1.2        ad 	MUTEX_UNLOCKED(mtx);
    750   1.58       mrg #if !defined(LOCKDEBUG)
    751   1.58       mrg 	__USE(curthread);
    752   1.58       mrg #endif
    753    1.2        ad 
    754   1.15        ad #ifdef LOCKDEBUG
    755   1.15        ad 	/*
    756   1.15        ad 	 * Avoid having to take the turnstile chain lock every time
    757   1.15        ad 	 * around.  Raise the priority level to splhigh() in order
    758   1.15        ad 	 * to disable preemption and so make the following atomic.
    759  1.109        ad 	 * This also blocks out soft interrupts that could set the
    760  1.109        ad 	 * waiters bit.
    761   1.15        ad 	 */
    762   1.15        ad 	{
    763   1.15        ad 		int s = splhigh();
    764   1.88        ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    765   1.15        ad 			MUTEX_RELEASE(mtx);
    766   1.15        ad 			splx(s);
    767   1.15        ad 			return;
    768   1.15        ad 		}
    769   1.15        ad 		splx(s);
    770   1.15        ad 	}
    771   1.15        ad #endif
    772   1.15        ad 
    773    1.2        ad 	/*
    774    1.2        ad 	 * Get this lock's turnstile.  This gets the interlock on
    775    1.2        ad 	 * the sleep queue.  Once we have that, we can clear the
    776    1.2        ad 	 * lock.  If there was no turnstile for the lock, there
    777    1.2        ad 	 * were no waiters remaining.
    778    1.2        ad 	 */
    779    1.2        ad 	ts = turnstile_lookup(mtx);
    780    1.2        ad 
    781    1.2        ad 	if (ts == NULL) {
    782    1.2        ad 		MUTEX_RELEASE(mtx);
    783    1.2        ad 		turnstile_exit(mtx);
    784    1.2        ad 	} else {
    785    1.2        ad 		MUTEX_RELEASE(mtx);
    786    1.2        ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    787    1.2        ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    788    1.2        ad 	}
    789    1.2        ad }
    790    1.2        ad 
    791    1.4        ad #ifndef __HAVE_SIMPLE_MUTEXES
    792    1.4        ad /*
    793    1.4        ad  * mutex_wakeup:
    794    1.4        ad  *
    795    1.4        ad  *	Support routine for mutex_exit() that wakes up all waiters.
    796    1.4        ad  *	We assume that the mutex has been released, but it need not
    797    1.4        ad  *	be.
    798    1.4        ad  */
    799    1.4        ad void
    800    1.4        ad mutex_wakeup(kmutex_t *mtx)
    801    1.4        ad {
    802    1.4        ad 	turnstile_t *ts;
    803    1.4        ad 
    804    1.4        ad 	ts = turnstile_lookup(mtx);
    805    1.4        ad 	if (ts == NULL) {
    806    1.4        ad 		turnstile_exit(mtx);
    807    1.4        ad 		return;
    808    1.4        ad 	}
    809    1.4        ad 	MUTEX_CLEAR_WAITERS(mtx);
    810    1.4        ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    811    1.4        ad }
    812    1.4        ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    813    1.4        ad 
    814    1.2        ad /*
    815    1.2        ad  * mutex_owned:
    816    1.2        ad  *
    817    1.3        ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    818    1.3        ad  *	holds the mutex.
    819    1.2        ad  */
    820    1.2        ad int
    821   1.66  christos mutex_owned(const kmutex_t *mtx)
    822    1.2        ad {
    823    1.2        ad 
    824   1.35        ad 	if (mtx == NULL)
    825   1.35        ad 		return 0;
    826   1.87        ad 	if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
    827    1.2        ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    828    1.2        ad #ifdef FULL
    829   1.60      matt 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    830    1.2        ad #else
    831    1.2        ad 	return 1;
    832    1.2        ad #endif
    833    1.2        ad }
    834    1.2        ad 
    835    1.2        ad /*
    836    1.2        ad  * mutex_owner:
    837    1.2        ad  *
    838    1.6        ad  *	Return the current owner of an adaptive mutex.  Used for
    839    1.6        ad  *	priority inheritance.
    840    1.2        ad  */
    841  1.105  riastrad static lwp_t *
    842  1.105  riastrad mutex_owner(wchan_t wchan)
    843    1.2        ad {
    844  1.105  riastrad 	volatile const kmutex_t *mtx = wchan;
    845    1.2        ad 
    846   1.87        ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
    847    1.2        ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    848    1.2        ad }
    849    1.2        ad 
    850    1.2        ad /*
    851   1.65  pgoyette  * mutex_ownable:
    852   1.65  pgoyette  *
    853   1.65  pgoyette  *	When compiled with DEBUG and LOCKDEBUG defined, ensure that
    854   1.65  pgoyette  *	the mutex is available.  We cannot use !mutex_owned() since
    855   1.65  pgoyette  *	that won't work correctly for spin mutexes.
    856   1.65  pgoyette  */
    857   1.65  pgoyette int
    858   1.66  christos mutex_ownable(const kmutex_t *mtx)
    859   1.65  pgoyette {
    860   1.65  pgoyette 
    861   1.65  pgoyette #ifdef LOCKDEBUG
    862   1.65  pgoyette 	MUTEX_TESTLOCK(mtx);
    863   1.65  pgoyette #endif
    864   1.65  pgoyette 	return 1;
    865   1.65  pgoyette }
    866   1.65  pgoyette 
    867   1.65  pgoyette /*
    868    1.2        ad  * mutex_tryenter:
    869    1.2        ad  *
    870    1.2        ad  *	Try to acquire the mutex; return non-zero if we did.
    871    1.2        ad  */
    872    1.2        ad int
    873    1.2        ad mutex_tryenter(kmutex_t *mtx)
    874    1.2        ad {
    875    1.2        ad 	uintptr_t curthread;
    876    1.2        ad 
    877    1.2        ad 	/*
    878    1.2        ad 	 * Handle spin mutexes.
    879    1.2        ad 	 */
    880   1.87        ad 	if (MUTEX_SPIN_P(mtx->mtx_owner)) {
    881    1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    882    1.2        ad #ifdef FULL
    883   1.60      matt 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    884    1.4        ad 			MUTEX_WANTLOCK(mtx);
    885    1.2        ad 			MUTEX_LOCKED(mtx);
    886    1.2        ad 			return 1;
    887    1.2        ad 		}
    888    1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    889    1.2        ad #else
    890    1.4        ad 		MUTEX_WANTLOCK(mtx);
    891    1.2        ad 		MUTEX_LOCKED(mtx);
    892    1.2        ad 		return 1;
    893    1.2        ad #endif
    894    1.2        ad 	} else {
    895    1.2        ad 		curthread = (uintptr_t)curlwp;
    896    1.2        ad 		MUTEX_ASSERT(mtx, curthread != 0);
    897    1.2        ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    898    1.4        ad 			MUTEX_WANTLOCK(mtx);
    899    1.2        ad 			MUTEX_LOCKED(mtx);
    900    1.2        ad 			MUTEX_DASSERT(mtx,
    901    1.2        ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    902    1.2        ad 			return 1;
    903    1.2        ad 		}
    904    1.2        ad 	}
    905    1.2        ad 
    906    1.2        ad 	return 0;
    907    1.2        ad }
    908    1.2        ad 
    909    1.2        ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    910    1.2        ad /*
    911    1.2        ad  * mutex_spin_retry:
    912    1.2        ad  *
    913    1.2        ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    914    1.2        ad  *	has already raised the SPL, and adjusted counters.
    915    1.2        ad  */
    916    1.2        ad void
    917    1.2        ad mutex_spin_retry(kmutex_t *mtx)
    918    1.2        ad {
    919    1.2        ad #ifdef MULTIPROCESSOR
    920    1.2        ad 	u_int count;
    921    1.2        ad 	LOCKSTAT_TIMER(spintime);
    922    1.2        ad 	LOCKSTAT_FLAG(lsflag);
    923    1.2        ad #ifdef LOCKDEBUG
    924    1.2        ad 	u_int spins = 0;
    925    1.2        ad #endif	/* LOCKDEBUG */
    926    1.2        ad 
    927    1.2        ad 	MUTEX_WANTLOCK(mtx);
    928    1.2        ad 
    929    1.2        ad 	LOCKSTAT_ENTER(lsflag);
    930    1.2        ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    931    1.2        ad 	count = SPINLOCK_BACKOFF_MIN;
    932    1.2        ad 
    933    1.2        ad 	/*
    934    1.2        ad 	 * Spin testing the lock word and do exponential backoff
    935    1.2        ad 	 * to reduce cache line ping-ponging between CPUs.
    936    1.2        ad 	 */
    937    1.2        ad 	do {
    938   1.60      matt 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    939   1.63   msaitoh 			SPINLOCK_BACKOFF(count);
    940    1.2        ad #ifdef LOCKDEBUG
    941    1.2        ad 			if (SPINLOCK_SPINOUT(spins))
    942    1.2        ad 				MUTEX_ABORT(mtx, "spinout");
    943    1.2        ad #endif	/* LOCKDEBUG */
    944    1.2        ad 		}
    945   1.60      matt 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    946    1.2        ad 
    947    1.2        ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    948    1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    949    1.2        ad 	LOCKSTAT_EXIT(lsflag);
    950    1.2        ad 
    951    1.2        ad 	MUTEX_LOCKED(mtx);
    952    1.2        ad #else	/* MULTIPROCESSOR */
    953    1.2        ad 	MUTEX_ABORT(mtx, "locking against myself");
    954    1.2        ad #endif	/* MULTIPROCESSOR */
    955    1.2        ad }
    956    1.2        ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    957