1 1.112 riastrad /* $NetBSD: kern_mutex.c,v 1.112 2023/10/15 10:28:23 riastradh Exp $ */ 2 1.2 ad 3 1.2 ad /*- 4 1.110 ad * Copyright (c) 2002, 2006, 2007, 2008, 2019, 2023 5 1.110 ad * The NetBSD Foundation, Inc. 6 1.2 ad * All rights reserved. 7 1.2 ad * 8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation 9 1.2 ad * by Jason R. Thorpe and Andrew Doran. 10 1.2 ad * 11 1.2 ad * Redistribution and use in source and binary forms, with or without 12 1.2 ad * modification, are permitted provided that the following conditions 13 1.2 ad * are met: 14 1.2 ad * 1. Redistributions of source code must retain the above copyright 15 1.2 ad * notice, this list of conditions and the following disclaimer. 16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright 17 1.2 ad * notice, this list of conditions and the following disclaimer in the 18 1.2 ad * documentation and/or other materials provided with the distribution. 19 1.2 ad * 20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 1.2 ad * POSSIBILITY OF SUCH DAMAGE. 31 1.2 ad */ 32 1.2 ad 33 1.2 ad /* 34 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris, 35 1.2 ad * a description of which can be found in: 36 1.2 ad * 37 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and 38 1.2 ad * Richard McDougall. 39 1.2 ad */ 40 1.2 ad 41 1.2 ad #define __MUTEX_PRIVATE 42 1.2 ad 43 1.2 ad #include <sys/cdefs.h> 44 1.112 riastrad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.112 2023/10/15 10:28:23 riastradh Exp $"); 45 1.2 ad 46 1.2 ad #include <sys/param.h> 47 1.112 riastrad 48 1.46 pooka #include <sys/atomic.h> 49 1.112 riastrad #include <sys/cpu.h> 50 1.112 riastrad #include <sys/intr.h> 51 1.112 riastrad #include <sys/kernel.h> 52 1.112 riastrad #include <sys/lock.h> 53 1.112 riastrad #include <sys/lockdebug.h> 54 1.112 riastrad #include <sys/mutex.h> 55 1.2 ad #include <sys/proc.h> 56 1.112 riastrad #include <sys/pserialize.h> 57 1.2 ad #include <sys/sched.h> 58 1.2 ad #include <sys/sleepq.h> 59 1.112 riastrad #include <sys/syncobj.h> 60 1.2 ad #include <sys/systm.h> 61 1.50 rmind #include <sys/types.h> 62 1.2 ad 63 1.2 ad #include <dev/lockstat.h> 64 1.2 ad 65 1.28 ad #include <machine/lock.h> 66 1.28 ad 67 1.2 ad /* 68 1.2 ad * When not running a debug kernel, spin mutexes are not much 69 1.2 ad * more than an splraiseipl() and splx() pair. 70 1.2 ad */ 71 1.2 ad 72 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG) 73 1.2 ad #define FULL 74 1.2 ad #endif 75 1.2 ad 76 1.2 ad /* 77 1.2 ad * Debugging support. 78 1.2 ad */ 79 1.2 ad 80 1.2 ad #define MUTEX_WANTLOCK(mtx) \ 81 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \ 82 1.54 mlelstv (uintptr_t)__builtin_return_address(0), 0) 83 1.65 pgoyette #define MUTEX_TESTLOCK(mtx) \ 84 1.65 pgoyette LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \ 85 1.65 pgoyette (uintptr_t)__builtin_return_address(0), -1) 86 1.2 ad #define MUTEX_LOCKED(mtx) \ 87 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \ 88 1.2 ad (uintptr_t)__builtin_return_address(0), 0) 89 1.2 ad #define MUTEX_UNLOCKED(mtx) \ 90 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \ 91 1.2 ad (uintptr_t)__builtin_return_address(0), 0) 92 1.2 ad #define MUTEX_ABORT(mtx, msg) \ 93 1.64 christos mutex_abort(__func__, __LINE__, mtx, msg) 94 1.2 ad 95 1.2 ad #if defined(LOCKDEBUG) 96 1.2 ad 97 1.2 ad #define MUTEX_DASSERT(mtx, cond) \ 98 1.2 ad do { \ 99 1.75 ozaki if (__predict_false(!(cond))) \ 100 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \ 101 1.76 skrll } while (/* CONSTCOND */ 0) 102 1.2 ad 103 1.2 ad #else /* LOCKDEBUG */ 104 1.2 ad 105 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */ 106 1.2 ad 107 1.2 ad #endif /* LOCKDEBUG */ 108 1.2 ad 109 1.2 ad #if defined(DIAGNOSTIC) 110 1.2 ad 111 1.2 ad #define MUTEX_ASSERT(mtx, cond) \ 112 1.2 ad do { \ 113 1.75 ozaki if (__predict_false(!(cond))) \ 114 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \ 115 1.2 ad } while (/* CONSTCOND */ 0) 116 1.2 ad 117 1.2 ad #else /* DIAGNOSTIC */ 118 1.2 ad 119 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */ 120 1.2 ad 121 1.2 ad #endif /* DIAGNOSTIC */ 122 1.2 ad 123 1.2 ad /* 124 1.60 matt * Some architectures can't use __cpu_simple_lock as is so allow a way 125 1.60 matt * for them to use an alternate definition. 126 1.60 matt */ 127 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_INIT 128 1.60 matt #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock) 129 1.60 matt #endif 130 1.60 matt #ifndef MUTEX_SPINBIT_LOCKED_P 131 1.60 matt #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock) 132 1.60 matt #endif 133 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_TRY 134 1.60 matt #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock) 135 1.60 matt #endif 136 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK 137 1.60 matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock) 138 1.60 matt #endif 139 1.60 matt 140 1.60 matt #ifndef MUTEX_INITIALIZE_SPIN_IPL 141 1.60 matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \ 142 1.60 matt ((mtx)->mtx_ipl = makeiplcookie((ipl))) 143 1.60 matt #endif 144 1.60 matt 145 1.60 matt /* 146 1.2 ad * Spin mutex SPL save / restore. 147 1.2 ad */ 148 1.2 ad 149 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \ 150 1.2 ad do { \ 151 1.101 skrll const int s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \ 152 1.101 skrll struct cpu_info * const x__ci = curcpu(); \ 153 1.101 skrll const int x__cnt = x__ci->ci_mtx_count--; \ 154 1.37 ad __insn_barrier(); \ 155 1.51 rmind if (x__cnt == 0) \ 156 1.101 skrll x__ci->ci_mtx_oldspl = s; \ 157 1.2 ad } while (/* CONSTCOND */ 0) 158 1.2 ad 159 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \ 160 1.2 ad do { \ 161 1.101 skrll struct cpu_info * const x__ci = curcpu(); \ 162 1.101 skrll const int s = x__ci->ci_mtx_oldspl; \ 163 1.2 ad __insn_barrier(); \ 164 1.96 rin if (++(x__ci->ci_mtx_count) == 0) \ 165 1.2 ad splx(s); \ 166 1.2 ad } while (/* CONSTCOND */ 0) 167 1.2 ad 168 1.2 ad /* 169 1.80 ad * Memory barriers. 170 1.80 ad */ 171 1.80 ad #ifdef __HAVE_ATOMIC_AS_MEMBAR 172 1.80 ad #define MUTEX_MEMBAR_ENTER() 173 1.80 ad #else 174 1.80 ad #define MUTEX_MEMBAR_ENTER() membar_enter() 175 1.80 ad #endif 176 1.80 ad 177 1.80 ad /* 178 1.2 ad * For architectures that provide 'simple' mutexes: they provide a 179 1.2 ad * CAS function that is either MP-safe, or does not need to be MP 180 1.2 ad * safe. Adaptive mutexes on these architectures do not require an 181 1.2 ad * additional interlock. 182 1.2 ad */ 183 1.2 ad 184 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES 185 1.2 ad 186 1.2 ad #define MUTEX_OWNER(owner) \ 187 1.2 ad (owner & MUTEX_THREAD) 188 1.88 ad #define MUTEX_HAS_WAITERS(mtx) \ 189 1.88 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0) 190 1.2 ad 191 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \ 192 1.76 skrll do { \ 193 1.49 skrll if (!dodebug) \ 194 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \ 195 1.76 skrll } while (/* CONSTCOND */ 0) 196 1.2 ad 197 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \ 198 1.2 ad do { \ 199 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \ 200 1.49 skrll if (!dodebug) \ 201 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \ 202 1.60 matt MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \ 203 1.60 matt MUTEX_SPINBIT_LOCK_INIT((mtx)); \ 204 1.2 ad } while (/* CONSTCOND */ 0) 205 1.2 ad 206 1.2 ad #define MUTEX_DESTROY(mtx) \ 207 1.2 ad do { \ 208 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \ 209 1.76 skrll } while (/* CONSTCOND */ 0) 210 1.2 ad 211 1.87 ad #define MUTEX_SPIN_P(owner) \ 212 1.87 ad (((owner) & MUTEX_BIT_SPIN) != 0) 213 1.87 ad #define MUTEX_ADAPTIVE_P(owner) \ 214 1.87 ad (((owner) & MUTEX_BIT_SPIN) == 0) 215 1.2 ad 216 1.98 thorpej #ifndef MUTEX_CAS 217 1.98 thorpej #define MUTEX_CAS(p, o, n) \ 218 1.98 thorpej (atomic_cas_ulong((volatile unsigned long *)(p), (o), (n)) == (o)) 219 1.98 thorpej #endif /* MUTEX_CAS */ 220 1.98 thorpej 221 1.49 skrll #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0) 222 1.23 yamt #if defined(LOCKDEBUG) 223 1.49 skrll #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0) 224 1.59 matt #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG 225 1.23 yamt #else /* defined(LOCKDEBUG) */ 226 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0) 227 1.59 matt #define MUTEX_INHERITDEBUG(n, o) /* nothing */ 228 1.23 yamt #endif /* defined(LOCKDEBUG) */ 229 1.2 ad 230 1.2 ad static inline int 231 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread) 232 1.2 ad { 233 1.2 ad int rv; 234 1.59 matt uintptr_t oldown = 0; 235 1.59 matt uintptr_t newown = curthread; 236 1.23 yamt 237 1.59 matt MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner); 238 1.59 matt MUTEX_INHERITDEBUG(newown, oldown); 239 1.59 matt rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown); 240 1.104 riastrad membar_acquire(); 241 1.2 ad return rv; 242 1.2 ad } 243 1.2 ad 244 1.2 ad static inline int 245 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner) 246 1.2 ad { 247 1.2 ad int rv; 248 1.107 riastrad 249 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS); 250 1.80 ad MUTEX_MEMBAR_ENTER(); 251 1.2 ad return rv; 252 1.2 ad } 253 1.2 ad 254 1.2 ad static inline void 255 1.2 ad MUTEX_RELEASE(kmutex_t *mtx) 256 1.2 ad { 257 1.59 matt uintptr_t newown; 258 1.23 yamt 259 1.59 matt newown = 0; 260 1.59 matt MUTEX_INHERITDEBUG(newown, mtx->mtx_owner); 261 1.104 riastrad atomic_store_release(&mtx->mtx_owner, newown); 262 1.2 ad } 263 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */ 264 1.2 ad 265 1.2 ad /* 266 1.2 ad * Patch in stubs via strong alias where they are not available. 267 1.2 ad */ 268 1.2 ad 269 1.2 ad #if defined(LOCKDEBUG) 270 1.2 ad #undef __HAVE_MUTEX_STUBS 271 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS 272 1.2 ad #endif 273 1.2 ad 274 1.2 ad #ifndef __HAVE_MUTEX_STUBS 275 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter); 276 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit); 277 1.2 ad #endif 278 1.2 ad 279 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS 280 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter); 281 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit); 282 1.2 ad #endif 283 1.2 ad 284 1.105 riastrad static void mutex_abort(const char *, size_t, volatile const kmutex_t *, 285 1.105 riastrad const char *); 286 1.79 ozaki static void mutex_dump(const volatile void *, lockop_printer_t); 287 1.105 riastrad static lwp_t *mutex_owner(wchan_t); 288 1.2 ad 289 1.2 ad lockops_t mutex_spin_lockops = { 290 1.68 ozaki .lo_name = "Mutex", 291 1.68 ozaki .lo_type = LOCKOPS_SPIN, 292 1.68 ozaki .lo_dump = mutex_dump, 293 1.2 ad }; 294 1.2 ad 295 1.2 ad lockops_t mutex_adaptive_lockops = { 296 1.68 ozaki .lo_name = "Mutex", 297 1.68 ozaki .lo_type = LOCKOPS_SLEEP, 298 1.68 ozaki .lo_dump = mutex_dump, 299 1.2 ad }; 300 1.2 ad 301 1.5 yamt syncobj_t mutex_syncobj = { 302 1.108 riastrad .sobj_name = "mutex", 303 1.70 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED, 304 1.110 ad .sobj_boostpri = PRI_KERNEL, 305 1.70 ozaki .sobj_unsleep = turnstile_unsleep, 306 1.70 ozaki .sobj_changepri = turnstile_changepri, 307 1.70 ozaki .sobj_lendpri = sleepq_lendpri, 308 1.105 riastrad .sobj_owner = mutex_owner, 309 1.5 yamt }; 310 1.5 yamt 311 1.2 ad /* 312 1.2 ad * mutex_dump: 313 1.2 ad * 314 1.2 ad * Dump the contents of a mutex structure. 315 1.2 ad */ 316 1.78 ozaki static void 317 1.79 ozaki mutex_dump(const volatile void *cookie, lockop_printer_t pr) 318 1.2 ad { 319 1.67 christos const volatile kmutex_t *mtx = cookie; 320 1.87 ad uintptr_t owner = mtx->mtx_owner; 321 1.2 ad 322 1.79 ozaki pr("owner field : %#018lx wait/spin: %16d/%d\n", 323 1.88 ad (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx), 324 1.87 ad MUTEX_SPIN_P(owner)); 325 1.2 ad } 326 1.2 ad 327 1.2 ad /* 328 1.2 ad * mutex_abort: 329 1.2 ad * 330 1.3 ad * Dump information about an error and panic the system. This 331 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so 332 1.3 ad * we ask the compiler to not inline it. 333 1.2 ad */ 334 1.78 ozaki static void __noinline 335 1.105 riastrad mutex_abort(const char *func, size_t line, volatile const kmutex_t *mtx, 336 1.105 riastrad const char *msg) 337 1.2 ad { 338 1.2 ad 339 1.87 ad LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ? 340 1.64 christos &mutex_spin_lockops : &mutex_adaptive_lockops), msg); 341 1.2 ad } 342 1.2 ad 343 1.2 ad /* 344 1.2 ad * mutex_init: 345 1.2 ad * 346 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in 347 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting 348 1.2 ad * CPU time. We can't easily provide a type of mutex that always 349 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing 350 1.2 ad * mutexes unlocked. 351 1.2 ad */ 352 1.2 ad void 353 1.71 ozaki _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl, 354 1.71 ozaki uintptr_t return_address) 355 1.2 ad { 356 1.81 ad lockops_t *lockops __unused; 357 1.23 yamt bool dodebug; 358 1.2 ad 359 1.2 ad memset(mtx, 0, sizeof(*mtx)); 360 1.2 ad 361 1.81 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK || 362 1.81 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET || 363 1.81 ad ipl == IPL_SOFTSERIAL) { 364 1.81 ad lockops = (type == MUTEX_NODEBUG ? 365 1.81 ad NULL : &mutex_adaptive_lockops); 366 1.81 ad dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address); 367 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug); 368 1.81 ad } else { 369 1.81 ad lockops = (type == MUTEX_NODEBUG ? 370 1.81 ad NULL : &mutex_spin_lockops); 371 1.81 ad dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address); 372 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl); 373 1.2 ad } 374 1.2 ad } 375 1.2 ad 376 1.71 ozaki void 377 1.71 ozaki mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl) 378 1.71 ozaki { 379 1.71 ozaki 380 1.71 ozaki _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0)); 381 1.71 ozaki } 382 1.71 ozaki 383 1.2 ad /* 384 1.2 ad * mutex_destroy: 385 1.2 ad * 386 1.2 ad * Tear down a mutex. 387 1.2 ad */ 388 1.2 ad void 389 1.2 ad mutex_destroy(kmutex_t *mtx) 390 1.2 ad { 391 1.87 ad uintptr_t owner = mtx->mtx_owner; 392 1.2 ad 393 1.87 ad if (MUTEX_ADAPTIVE_P(owner)) { 394 1.90 chs MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner)); 395 1.90 chs MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx)); 396 1.2 ad } else { 397 1.60 matt MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx)); 398 1.2 ad } 399 1.2 ad 400 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx); 401 1.2 ad MUTEX_DESTROY(mtx); 402 1.2 ad } 403 1.2 ad 404 1.50 rmind #ifdef MULTIPROCESSOR 405 1.2 ad /* 406 1.50 rmind * mutex_oncpu: 407 1.2 ad * 408 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the 409 1.2 ad * system. If the target is waiting on the kernel big lock, then we 410 1.15 ad * must release it. This is necessary to avoid deadlock. 411 1.2 ad */ 412 1.50 rmind static bool 413 1.50 rmind mutex_oncpu(uintptr_t owner) 414 1.2 ad { 415 1.2 ad struct cpu_info *ci; 416 1.50 rmind lwp_t *l; 417 1.2 ad 418 1.50 rmind KASSERT(kpreempt_disabled()); 419 1.50 rmind 420 1.50 rmind if (!MUTEX_OWNED(owner)) { 421 1.50 rmind return false; 422 1.50 rmind } 423 1.2 ad 424 1.50 rmind /* 425 1.50 rmind * See lwp_dtor() why dereference of the LWP pointer is safe. 426 1.50 rmind * We must have kernel preemption disabled for that. 427 1.50 rmind */ 428 1.50 rmind l = (lwp_t *)MUTEX_OWNER(owner); 429 1.50 rmind ci = l->l_cpu; 430 1.2 ad 431 1.50 rmind if (ci && ci->ci_curlwp == l) { 432 1.50 rmind /* Target is running; do we need to block? */ 433 1.103 riastrad return (atomic_load_relaxed(&ci->ci_biglock_wanted) != l); 434 1.50 rmind } 435 1.15 ad 436 1.50 rmind /* Not running. It may be safe to block now. */ 437 1.50 rmind return false; 438 1.2 ad } 439 1.15 ad #endif /* MULTIPROCESSOR */ 440 1.2 ad 441 1.2 ad /* 442 1.2 ad * mutex_vector_enter: 443 1.2 ad * 444 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In 445 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if 446 1.62 prlw1 * fast-path stubs are available. If a mutex_spin_enter() stub is 447 1.2 ad * not available, then it is also aliased directly here. 448 1.2 ad */ 449 1.2 ad void 450 1.2 ad mutex_vector_enter(kmutex_t *mtx) 451 1.2 ad { 452 1.2 ad uintptr_t owner, curthread; 453 1.2 ad turnstile_t *ts; 454 1.2 ad #ifdef MULTIPROCESSOR 455 1.2 ad u_int count; 456 1.2 ad #endif 457 1.2 ad LOCKSTAT_COUNTER(spincnt); 458 1.2 ad LOCKSTAT_COUNTER(slpcnt); 459 1.2 ad LOCKSTAT_TIMER(spintime); 460 1.2 ad LOCKSTAT_TIMER(slptime); 461 1.2 ad LOCKSTAT_FLAG(lsflag); 462 1.2 ad 463 1.2 ad /* 464 1.2 ad * Handle spin mutexes. 465 1.2 ad */ 466 1.92 ad KPREEMPT_DISABLE(curlwp); 467 1.87 ad owner = mtx->mtx_owner; 468 1.87 ad if (MUTEX_SPIN_P(owner)) { 469 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR) 470 1.2 ad u_int spins = 0; 471 1.2 ad #endif 472 1.92 ad KPREEMPT_ENABLE(curlwp); 473 1.2 ad MUTEX_SPIN_SPLRAISE(mtx); 474 1.2 ad MUTEX_WANTLOCK(mtx); 475 1.2 ad #ifdef FULL 476 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) { 477 1.2 ad MUTEX_LOCKED(mtx); 478 1.2 ad return; 479 1.2 ad } 480 1.2 ad #if !defined(MULTIPROCESSOR) 481 1.2 ad MUTEX_ABORT(mtx, "locking against myself"); 482 1.2 ad #else /* !MULTIPROCESSOR */ 483 1.2 ad 484 1.2 ad LOCKSTAT_ENTER(lsflag); 485 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime); 486 1.2 ad count = SPINLOCK_BACKOFF_MIN; 487 1.2 ad 488 1.2 ad /* 489 1.2 ad * Spin testing the lock word and do exponential backoff 490 1.2 ad * to reduce cache line ping-ponging between CPUs. 491 1.2 ad */ 492 1.2 ad do { 493 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) { 494 1.97 thorpej SPINLOCK_SPIN_HOOK; 495 1.63 msaitoh SPINLOCK_BACKOFF(count); 496 1.2 ad #ifdef LOCKDEBUG 497 1.2 ad if (SPINLOCK_SPINOUT(spins)) 498 1.2 ad MUTEX_ABORT(mtx, "spinout"); 499 1.2 ad #endif /* LOCKDEBUG */ 500 1.2 ad } 501 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx)); 502 1.2 ad 503 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) { 504 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime); 505 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, 506 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime); 507 1.2 ad } 508 1.2 ad LOCKSTAT_EXIT(lsflag); 509 1.2 ad #endif /* !MULTIPROCESSOR */ 510 1.2 ad #endif /* FULL */ 511 1.2 ad MUTEX_LOCKED(mtx); 512 1.2 ad return; 513 1.2 ad } 514 1.2 ad 515 1.2 ad curthread = (uintptr_t)curlwp; 516 1.2 ad 517 1.87 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner)); 518 1.2 ad MUTEX_ASSERT(mtx, curthread != 0); 519 1.72 ozaki MUTEX_ASSERT(mtx, !cpu_intr_p()); 520 1.2 ad MUTEX_WANTLOCK(mtx); 521 1.2 ad 522 1.102 ozaki if (__predict_true(panicstr == NULL)) { 523 1.77 ozaki KDASSERT(pserialize_not_in_read_section()); 524 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1); 525 1.2 ad } 526 1.2 ad 527 1.2 ad LOCKSTAT_ENTER(lsflag); 528 1.2 ad 529 1.2 ad /* 530 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we 531 1.2 ad * determine that the owner is not running on a processor, 532 1.2 ad * then we stop spinning, and sleep instead. 533 1.2 ad */ 534 1.87 ad for (;;) { 535 1.2 ad if (!MUTEX_OWNED(owner)) { 536 1.2 ad /* 537 1.2 ad * Mutex owner clear could mean two things: 538 1.2 ad * 539 1.2 ad * * The mutex has been released. 540 1.2 ad * * The owner field hasn't been set yet. 541 1.2 ad * 542 1.2 ad * Try to acquire it again. If that fails, 543 1.2 ad * we'll just loop again. 544 1.2 ad */ 545 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) 546 1.2 ad break; 547 1.34 ad owner = mtx->mtx_owner; 548 1.2 ad continue; 549 1.2 ad } 550 1.50 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread)) { 551 1.2 ad MUTEX_ABORT(mtx, "locking against myself"); 552 1.50 rmind } 553 1.2 ad #ifdef MULTIPROCESSOR 554 1.2 ad /* 555 1.2 ad * Check to see if the owner is running on a processor. 556 1.2 ad * If so, then we should just spin, as the owner will 557 1.92 ad * likely release the lock very soon. 558 1.2 ad */ 559 1.50 rmind if (mutex_oncpu(owner)) { 560 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime); 561 1.2 ad count = SPINLOCK_BACKOFF_MIN; 562 1.50 rmind do { 563 1.53 rmind KPREEMPT_ENABLE(curlwp); 564 1.34 ad SPINLOCK_BACKOFF(count); 565 1.53 rmind KPREEMPT_DISABLE(curlwp); 566 1.2 ad owner = mtx->mtx_owner; 567 1.50 rmind } while (mutex_oncpu(owner)); 568 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime); 569 1.2 ad LOCKSTAT_COUNT(spincnt, 1); 570 1.2 ad if (!MUTEX_OWNED(owner)) 571 1.2 ad continue; 572 1.2 ad } 573 1.2 ad #endif 574 1.2 ad 575 1.2 ad ts = turnstile_lookup(mtx); 576 1.2 ad 577 1.2 ad /* 578 1.2 ad * Once we have the turnstile chain interlock, mark the 579 1.69 skrll * mutex as having waiters. If that fails, spin again: 580 1.2 ad * chances are that the mutex has been released. 581 1.2 ad */ 582 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) { 583 1.2 ad turnstile_exit(mtx); 584 1.34 ad owner = mtx->mtx_owner; 585 1.2 ad continue; 586 1.2 ad } 587 1.2 ad 588 1.2 ad #ifdef MULTIPROCESSOR 589 1.2 ad /* 590 1.2 ad * mutex_exit() is permitted to release the mutex without 591 1.2 ad * any interlocking instructions, and the following can 592 1.2 ad * occur as a result: 593 1.2 ad * 594 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit() 595 1.2 ad * ---------------------------- ---------------------------- 596 1.107 riastrad * .. load mtx->mtx_owner 597 1.107 riastrad * .. see has-waiters bit clear 598 1.107 riastrad * set has-waiters bit .. 599 1.107 riastrad * .. store mtx->mtx_owner := 0 600 1.2 ad * return success 601 1.2 ad * 602 1.50 rmind * There is another race that can occur: a third CPU could 603 1.2 ad * acquire the mutex as soon as it is released. Since 604 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not 605 1.2 ad * something that we need to worry about too much. What we 606 1.2 ad * do need to ensure is that the waiters bit gets set. 607 1.2 ad * 608 1.2 ad * To allow the unlocked release, we need to make some 609 1.2 ad * assumptions here: 610 1.2 ad * 611 1.2 ad * o Release is the only non-atomic/unlocked operation 612 1.2 ad * that can be performed on the mutex. (It must still 613 1.2 ad * be atomic on the local CPU, e.g. in case interrupted 614 1.2 ad * or preempted). 615 1.2 ad * 616 1.107 riastrad * o At any given time on each mutex, MUTEX_SET_WAITERS() 617 1.107 riastrad * can only ever be in progress on one CPU in the 618 1.107 riastrad * system - guaranteed by the turnstile chain lock. 619 1.2 ad * 620 1.2 ad * o No other operations other than MUTEX_SET_WAITERS() 621 1.2 ad * and release can modify a mutex with a non-zero 622 1.2 ad * owner field. 623 1.2 ad * 624 1.2 ad * o If the holding LWP switches away, it posts a store 625 1.2 ad * fence before changing curlwp, ensuring that any 626 1.2 ad * overwrite of the mutex waiters flag by mutex_exit() 627 1.2 ad * completes before the modification of curlwp becomes 628 1.2 ad * visible to this CPU. 629 1.2 ad * 630 1.95 skrll * o cpu_switchto() posts a store fence after setting curlwp 631 1.2 ad * and before resuming execution of an LWP. 632 1.93 skrll * 633 1.2 ad * o _kernel_lock() posts a store fence before setting 634 1.93 skrll * curcpu()->ci_biglock_wanted, and after clearing it. 635 1.2 ad * This ensures that any overwrite of the mutex waiters 636 1.2 ad * flag by mutex_exit() completes before the modification 637 1.2 ad * of ci_biglock_wanted becomes visible. 638 1.2 ad * 639 1.107 riastrad * After MUTEX_SET_WAITERS() succeeds, simultaneously 640 1.107 riastrad * confirming that the same LWP still holds the mutex 641 1.107 riastrad * since we took the turnstile lock and notifying it that 642 1.107 riastrad * we're waiting, we check the lock holder's status again. 643 1.107 riastrad * Some of the possible outcomes (not an exhaustive list; 644 1.107 riastrad * XXX this should be made exhaustive): 645 1.2 ad * 646 1.50 rmind * 1. The on-CPU check returns true: the holding LWP is 647 1.2 ad * running again. The lock may be released soon and 648 1.2 ad * we should spin. Importantly, we can't trust the 649 1.2 ad * value of the waiters flag. 650 1.2 ad * 651 1.50 rmind * 2. The on-CPU check returns false: the holding LWP is 652 1.39 yamt * not running. We now have the opportunity to check 653 1.2 ad * if mutex_exit() has blatted the modifications made 654 1.2 ad * by MUTEX_SET_WAITERS(). 655 1.2 ad * 656 1.50 rmind * 3. The on-CPU check returns false: the holding LWP may 657 1.2 ad * or may not be running. It has context switched at 658 1.2 ad * some point during our check. Again, we have the 659 1.2 ad * chance to see if the waiters bit is still set or 660 1.2 ad * has been overwritten. 661 1.2 ad * 662 1.50 rmind * 4. The on-CPU check returns false: the holding LWP is 663 1.2 ad * running on a CPU, but wants the big lock. It's OK 664 1.2 ad * to check the waiters field in this case. 665 1.2 ad * 666 1.2 ad * 5. The has-waiters check fails: the mutex has been 667 1.2 ad * released, the waiters flag cleared and another LWP 668 1.2 ad * now owns the mutex. 669 1.2 ad * 670 1.2 ad * 6. The has-waiters check fails: the mutex has been 671 1.2 ad * released. 672 1.2 ad * 673 1.2 ad * If the waiters bit is not set it's unsafe to go asleep, 674 1.2 ad * as we might never be awoken. 675 1.2 ad */ 676 1.87 ad if (mutex_oncpu(owner)) { 677 1.2 ad turnstile_exit(mtx); 678 1.34 ad owner = mtx->mtx_owner; 679 1.2 ad continue; 680 1.2 ad } 681 1.87 ad membar_consumer(); 682 1.88 ad if (!MUTEX_HAS_WAITERS(mtx)) { 683 1.87 ad turnstile_exit(mtx); 684 1.88 ad owner = mtx->mtx_owner; 685 1.87 ad continue; 686 1.87 ad } 687 1.2 ad #endif /* MULTIPROCESSOR */ 688 1.2 ad 689 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime); 690 1.2 ad 691 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj); 692 1.2 ad 693 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime); 694 1.2 ad LOCKSTAT_COUNT(slpcnt, 1); 695 1.34 ad 696 1.34 ad owner = mtx->mtx_owner; 697 1.2 ad } 698 1.50 rmind KPREEMPT_ENABLE(curlwp); 699 1.2 ad 700 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1, 701 1.2 ad slpcnt, slptime); 702 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN, 703 1.2 ad spincnt, spintime); 704 1.2 ad LOCKSTAT_EXIT(lsflag); 705 1.2 ad 706 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread); 707 1.2 ad MUTEX_LOCKED(mtx); 708 1.2 ad } 709 1.2 ad 710 1.2 ad /* 711 1.2 ad * mutex_vector_exit: 712 1.2 ad * 713 1.2 ad * Support routine for mutex_exit() that handles all cases. 714 1.2 ad */ 715 1.2 ad void 716 1.2 ad mutex_vector_exit(kmutex_t *mtx) 717 1.2 ad { 718 1.2 ad turnstile_t *ts; 719 1.2 ad uintptr_t curthread; 720 1.2 ad 721 1.87 ad if (MUTEX_SPIN_P(mtx->mtx_owner)) { 722 1.2 ad #ifdef FULL 723 1.60 matt if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) { 724 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex"); 725 1.33 ad } 726 1.2 ad MUTEX_UNLOCKED(mtx); 727 1.60 matt MUTEX_SPINBIT_LOCK_UNLOCK(mtx); 728 1.2 ad #endif 729 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx); 730 1.2 ad return; 731 1.2 ad } 732 1.2 ad 733 1.85 ad #ifndef __HAVE_MUTEX_STUBS 734 1.86 ad /* 735 1.86 ad * On some architectures without mutex stubs, we can enter here to 736 1.93 skrll * release mutexes before interrupts and whatnot are up and running. 737 1.86 ad * We need this hack to keep them sweet. 738 1.86 ad */ 739 1.85 ad if (__predict_false(cold)) { 740 1.85 ad MUTEX_UNLOCKED(mtx); 741 1.85 ad MUTEX_RELEASE(mtx); 742 1.85 ad return; 743 1.85 ad } 744 1.85 ad #endif 745 1.85 ad 746 1.2 ad curthread = (uintptr_t)curlwp; 747 1.2 ad MUTEX_DASSERT(mtx, curthread != 0); 748 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread); 749 1.2 ad MUTEX_UNLOCKED(mtx); 750 1.58 mrg #if !defined(LOCKDEBUG) 751 1.58 mrg __USE(curthread); 752 1.58 mrg #endif 753 1.2 ad 754 1.15 ad #ifdef LOCKDEBUG 755 1.15 ad /* 756 1.15 ad * Avoid having to take the turnstile chain lock every time 757 1.15 ad * around. Raise the priority level to splhigh() in order 758 1.15 ad * to disable preemption and so make the following atomic. 759 1.109 ad * This also blocks out soft interrupts that could set the 760 1.109 ad * waiters bit. 761 1.15 ad */ 762 1.15 ad { 763 1.15 ad int s = splhigh(); 764 1.88 ad if (!MUTEX_HAS_WAITERS(mtx)) { 765 1.15 ad MUTEX_RELEASE(mtx); 766 1.15 ad splx(s); 767 1.15 ad return; 768 1.15 ad } 769 1.15 ad splx(s); 770 1.15 ad } 771 1.15 ad #endif 772 1.15 ad 773 1.2 ad /* 774 1.2 ad * Get this lock's turnstile. This gets the interlock on 775 1.2 ad * the sleep queue. Once we have that, we can clear the 776 1.2 ad * lock. If there was no turnstile for the lock, there 777 1.2 ad * were no waiters remaining. 778 1.2 ad */ 779 1.2 ad ts = turnstile_lookup(mtx); 780 1.2 ad 781 1.2 ad if (ts == NULL) { 782 1.2 ad MUTEX_RELEASE(mtx); 783 1.2 ad turnstile_exit(mtx); 784 1.2 ad } else { 785 1.2 ad MUTEX_RELEASE(mtx); 786 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q, 787 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL); 788 1.2 ad } 789 1.2 ad } 790 1.2 ad 791 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES 792 1.4 ad /* 793 1.4 ad * mutex_wakeup: 794 1.4 ad * 795 1.4 ad * Support routine for mutex_exit() that wakes up all waiters. 796 1.4 ad * We assume that the mutex has been released, but it need not 797 1.4 ad * be. 798 1.4 ad */ 799 1.4 ad void 800 1.4 ad mutex_wakeup(kmutex_t *mtx) 801 1.4 ad { 802 1.4 ad turnstile_t *ts; 803 1.4 ad 804 1.4 ad ts = turnstile_lookup(mtx); 805 1.4 ad if (ts == NULL) { 806 1.4 ad turnstile_exit(mtx); 807 1.4 ad return; 808 1.4 ad } 809 1.4 ad MUTEX_CLEAR_WAITERS(mtx); 810 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL); 811 1.4 ad } 812 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */ 813 1.4 ad 814 1.2 ad /* 815 1.2 ad * mutex_owned: 816 1.2 ad * 817 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin) 818 1.3 ad * holds the mutex. 819 1.2 ad */ 820 1.2 ad int 821 1.66 christos mutex_owned(const kmutex_t *mtx) 822 1.2 ad { 823 1.2 ad 824 1.35 ad if (mtx == NULL) 825 1.35 ad return 0; 826 1.87 ad if (MUTEX_ADAPTIVE_P(mtx->mtx_owner)) 827 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp; 828 1.2 ad #ifdef FULL 829 1.60 matt return MUTEX_SPINBIT_LOCKED_P(mtx); 830 1.2 ad #else 831 1.2 ad return 1; 832 1.2 ad #endif 833 1.2 ad } 834 1.2 ad 835 1.2 ad /* 836 1.2 ad * mutex_owner: 837 1.2 ad * 838 1.6 ad * Return the current owner of an adaptive mutex. Used for 839 1.6 ad * priority inheritance. 840 1.2 ad */ 841 1.105 riastrad static lwp_t * 842 1.105 riastrad mutex_owner(wchan_t wchan) 843 1.2 ad { 844 1.105 riastrad volatile const kmutex_t *mtx = wchan; 845 1.2 ad 846 1.87 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner)); 847 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner); 848 1.2 ad } 849 1.2 ad 850 1.2 ad /* 851 1.65 pgoyette * mutex_ownable: 852 1.65 pgoyette * 853 1.65 pgoyette * When compiled with DEBUG and LOCKDEBUG defined, ensure that 854 1.65 pgoyette * the mutex is available. We cannot use !mutex_owned() since 855 1.65 pgoyette * that won't work correctly for spin mutexes. 856 1.65 pgoyette */ 857 1.65 pgoyette int 858 1.66 christos mutex_ownable(const kmutex_t *mtx) 859 1.65 pgoyette { 860 1.65 pgoyette 861 1.65 pgoyette #ifdef LOCKDEBUG 862 1.65 pgoyette MUTEX_TESTLOCK(mtx); 863 1.65 pgoyette #endif 864 1.65 pgoyette return 1; 865 1.65 pgoyette } 866 1.65 pgoyette 867 1.65 pgoyette /* 868 1.2 ad * mutex_tryenter: 869 1.2 ad * 870 1.2 ad * Try to acquire the mutex; return non-zero if we did. 871 1.2 ad */ 872 1.2 ad int 873 1.2 ad mutex_tryenter(kmutex_t *mtx) 874 1.2 ad { 875 1.2 ad uintptr_t curthread; 876 1.2 ad 877 1.2 ad /* 878 1.2 ad * Handle spin mutexes. 879 1.2 ad */ 880 1.87 ad if (MUTEX_SPIN_P(mtx->mtx_owner)) { 881 1.2 ad MUTEX_SPIN_SPLRAISE(mtx); 882 1.2 ad #ifdef FULL 883 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) { 884 1.4 ad MUTEX_WANTLOCK(mtx); 885 1.2 ad MUTEX_LOCKED(mtx); 886 1.2 ad return 1; 887 1.2 ad } 888 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx); 889 1.2 ad #else 890 1.4 ad MUTEX_WANTLOCK(mtx); 891 1.2 ad MUTEX_LOCKED(mtx); 892 1.2 ad return 1; 893 1.2 ad #endif 894 1.2 ad } else { 895 1.2 ad curthread = (uintptr_t)curlwp; 896 1.2 ad MUTEX_ASSERT(mtx, curthread != 0); 897 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) { 898 1.4 ad MUTEX_WANTLOCK(mtx); 899 1.2 ad MUTEX_LOCKED(mtx); 900 1.2 ad MUTEX_DASSERT(mtx, 901 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread); 902 1.2 ad return 1; 903 1.2 ad } 904 1.2 ad } 905 1.2 ad 906 1.2 ad return 0; 907 1.2 ad } 908 1.2 ad 909 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) 910 1.2 ad /* 911 1.2 ad * mutex_spin_retry: 912 1.2 ad * 913 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller 914 1.2 ad * has already raised the SPL, and adjusted counters. 915 1.2 ad */ 916 1.2 ad void 917 1.2 ad mutex_spin_retry(kmutex_t *mtx) 918 1.2 ad { 919 1.2 ad #ifdef MULTIPROCESSOR 920 1.2 ad u_int count; 921 1.2 ad LOCKSTAT_TIMER(spintime); 922 1.2 ad LOCKSTAT_FLAG(lsflag); 923 1.2 ad #ifdef LOCKDEBUG 924 1.2 ad u_int spins = 0; 925 1.2 ad #endif /* LOCKDEBUG */ 926 1.2 ad 927 1.2 ad MUTEX_WANTLOCK(mtx); 928 1.2 ad 929 1.2 ad LOCKSTAT_ENTER(lsflag); 930 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime); 931 1.2 ad count = SPINLOCK_BACKOFF_MIN; 932 1.2 ad 933 1.2 ad /* 934 1.2 ad * Spin testing the lock word and do exponential backoff 935 1.2 ad * to reduce cache line ping-ponging between CPUs. 936 1.2 ad */ 937 1.2 ad do { 938 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) { 939 1.63 msaitoh SPINLOCK_BACKOFF(count); 940 1.2 ad #ifdef LOCKDEBUG 941 1.2 ad if (SPINLOCK_SPINOUT(spins)) 942 1.2 ad MUTEX_ABORT(mtx, "spinout"); 943 1.2 ad #endif /* LOCKDEBUG */ 944 1.2 ad } 945 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx)); 946 1.2 ad 947 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime); 948 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime); 949 1.2 ad LOCKSTAT_EXIT(lsflag); 950 1.2 ad 951 1.2 ad MUTEX_LOCKED(mtx); 952 1.2 ad #else /* MULTIPROCESSOR */ 953 1.2 ad MUTEX_ABORT(mtx, "locking against myself"); 954 1.2 ad #endif /* MULTIPROCESSOR */ 955 1.2 ad } 956 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */ 957