kern_mutex.c revision 1.102 1 1.102 ozaki /* $NetBSD: kern_mutex.c,v 1.102 2023/01/27 09:28:41 ozaki-r Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.92 ad * Copyright (c) 2002, 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
34 1.2 ad * a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.2 ad #define __MUTEX_PRIVATE
41 1.2 ad
42 1.2 ad #include <sys/cdefs.h>
43 1.102 ozaki __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.102 2023/01/27 09:28:41 ozaki-r Exp $");
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.46 pooka #include <sys/atomic.h>
47 1.2 ad #include <sys/proc.h>
48 1.2 ad #include <sys/mutex.h>
49 1.2 ad #include <sys/sched.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/systm.h>
52 1.2 ad #include <sys/lockdebug.h>
53 1.2 ad #include <sys/kernel.h>
54 1.24 ad #include <sys/intr.h>
55 1.29 xtraeme #include <sys/lock.h>
56 1.50 rmind #include <sys/types.h>
57 1.72 ozaki #include <sys/cpu.h>
58 1.74 ozaki #include <sys/pserialize.h>
59 1.2 ad
60 1.2 ad #include <dev/lockstat.h>
61 1.2 ad
62 1.28 ad #include <machine/lock.h>
63 1.28 ad
64 1.2 ad /*
65 1.2 ad * When not running a debug kernel, spin mutexes are not much
66 1.2 ad * more than an splraiseipl() and splx() pair.
67 1.2 ad */
68 1.2 ad
69 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
70 1.2 ad #define FULL
71 1.2 ad #endif
72 1.2 ad
73 1.2 ad /*
74 1.2 ad * Debugging support.
75 1.2 ad */
76 1.2 ad
77 1.2 ad #define MUTEX_WANTLOCK(mtx) \
78 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
79 1.54 mlelstv (uintptr_t)__builtin_return_address(0), 0)
80 1.65 pgoyette #define MUTEX_TESTLOCK(mtx) \
81 1.65 pgoyette LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
82 1.65 pgoyette (uintptr_t)__builtin_return_address(0), -1)
83 1.2 ad #define MUTEX_LOCKED(mtx) \
84 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
85 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
86 1.2 ad #define MUTEX_UNLOCKED(mtx) \
87 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
88 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
89 1.2 ad #define MUTEX_ABORT(mtx, msg) \
90 1.64 christos mutex_abort(__func__, __LINE__, mtx, msg)
91 1.2 ad
92 1.2 ad #if defined(LOCKDEBUG)
93 1.2 ad
94 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
95 1.2 ad do { \
96 1.75 ozaki if (__predict_false(!(cond))) \
97 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
98 1.76 skrll } while (/* CONSTCOND */ 0)
99 1.2 ad
100 1.2 ad #else /* LOCKDEBUG */
101 1.2 ad
102 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
103 1.2 ad
104 1.2 ad #endif /* LOCKDEBUG */
105 1.2 ad
106 1.2 ad #if defined(DIAGNOSTIC)
107 1.2 ad
108 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
109 1.2 ad do { \
110 1.75 ozaki if (__predict_false(!(cond))) \
111 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
112 1.2 ad } while (/* CONSTCOND */ 0)
113 1.2 ad
114 1.2 ad #else /* DIAGNOSTIC */
115 1.2 ad
116 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
117 1.2 ad
118 1.2 ad #endif /* DIAGNOSTIC */
119 1.2 ad
120 1.2 ad /*
121 1.60 matt * Some architectures can't use __cpu_simple_lock as is so allow a way
122 1.60 matt * for them to use an alternate definition.
123 1.60 matt */
124 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_INIT
125 1.60 matt #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
126 1.60 matt #endif
127 1.60 matt #ifndef MUTEX_SPINBIT_LOCKED_P
128 1.60 matt #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
129 1.60 matt #endif
130 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_TRY
131 1.60 matt #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
132 1.60 matt #endif
133 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
134 1.60 matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
135 1.60 matt #endif
136 1.60 matt
137 1.60 matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
138 1.60 matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
139 1.60 matt ((mtx)->mtx_ipl = makeiplcookie((ipl)))
140 1.60 matt #endif
141 1.60 matt
142 1.60 matt /*
143 1.2 ad * Spin mutex SPL save / restore.
144 1.2 ad */
145 1.2 ad
146 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
147 1.2 ad do { \
148 1.101 skrll const int s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
149 1.101 skrll struct cpu_info * const x__ci = curcpu(); \
150 1.101 skrll const int x__cnt = x__ci->ci_mtx_count--; \
151 1.37 ad __insn_barrier(); \
152 1.51 rmind if (x__cnt == 0) \
153 1.101 skrll x__ci->ci_mtx_oldspl = s; \
154 1.2 ad } while (/* CONSTCOND */ 0)
155 1.2 ad
156 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
157 1.2 ad do { \
158 1.101 skrll struct cpu_info * const x__ci = curcpu(); \
159 1.101 skrll const int s = x__ci->ci_mtx_oldspl; \
160 1.2 ad __insn_barrier(); \
161 1.96 rin if (++(x__ci->ci_mtx_count) == 0) \
162 1.2 ad splx(s); \
163 1.2 ad } while (/* CONSTCOND */ 0)
164 1.2 ad
165 1.2 ad /*
166 1.80 ad * Memory barriers.
167 1.80 ad */
168 1.80 ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
169 1.80 ad #define MUTEX_MEMBAR_ENTER()
170 1.99 riastrad #define MUTEX_MEMBAR_ACQUIRE()
171 1.99 riastrad #define MUTEX_MEMBAR_RELEASE()
172 1.80 ad #else
173 1.80 ad #define MUTEX_MEMBAR_ENTER() membar_enter()
174 1.99 riastrad #define MUTEX_MEMBAR_ACQUIRE() membar_acquire()
175 1.99 riastrad #define MUTEX_MEMBAR_RELEASE() membar_release()
176 1.80 ad #endif
177 1.80 ad
178 1.80 ad /*
179 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
180 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
181 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
182 1.2 ad * additional interlock.
183 1.2 ad */
184 1.2 ad
185 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
186 1.2 ad
187 1.2 ad #define MUTEX_OWNER(owner) \
188 1.2 ad (owner & MUTEX_THREAD)
189 1.88 ad #define MUTEX_HAS_WAITERS(mtx) \
190 1.88 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
191 1.2 ad
192 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
193 1.76 skrll do { \
194 1.49 skrll if (!dodebug) \
195 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
196 1.76 skrll } while (/* CONSTCOND */ 0)
197 1.2 ad
198 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
199 1.2 ad do { \
200 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
201 1.49 skrll if (!dodebug) \
202 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
203 1.60 matt MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
204 1.60 matt MUTEX_SPINBIT_LOCK_INIT((mtx)); \
205 1.2 ad } while (/* CONSTCOND */ 0)
206 1.2 ad
207 1.2 ad #define MUTEX_DESTROY(mtx) \
208 1.2 ad do { \
209 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
210 1.76 skrll } while (/* CONSTCOND */ 0)
211 1.2 ad
212 1.87 ad #define MUTEX_SPIN_P(owner) \
213 1.87 ad (((owner) & MUTEX_BIT_SPIN) != 0)
214 1.87 ad #define MUTEX_ADAPTIVE_P(owner) \
215 1.87 ad (((owner) & MUTEX_BIT_SPIN) == 0)
216 1.2 ad
217 1.98 thorpej #ifndef MUTEX_CAS
218 1.98 thorpej #define MUTEX_CAS(p, o, n) \
219 1.98 thorpej (atomic_cas_ulong((volatile unsigned long *)(p), (o), (n)) == (o))
220 1.98 thorpej #endif /* MUTEX_CAS */
221 1.98 thorpej
222 1.49 skrll #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
223 1.23 yamt #if defined(LOCKDEBUG)
224 1.49 skrll #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
225 1.59 matt #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
226 1.23 yamt #else /* defined(LOCKDEBUG) */
227 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
228 1.59 matt #define MUTEX_INHERITDEBUG(n, o) /* nothing */
229 1.23 yamt #endif /* defined(LOCKDEBUG) */
230 1.2 ad
231 1.2 ad static inline int
232 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
233 1.2 ad {
234 1.2 ad int rv;
235 1.59 matt uintptr_t oldown = 0;
236 1.59 matt uintptr_t newown = curthread;
237 1.23 yamt
238 1.59 matt MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
239 1.59 matt MUTEX_INHERITDEBUG(newown, oldown);
240 1.59 matt rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
241 1.99 riastrad MUTEX_MEMBAR_ACQUIRE();
242 1.2 ad return rv;
243 1.2 ad }
244 1.2 ad
245 1.2 ad static inline int
246 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
247 1.2 ad {
248 1.2 ad int rv;
249 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
250 1.80 ad MUTEX_MEMBAR_ENTER();
251 1.2 ad return rv;
252 1.2 ad }
253 1.2 ad
254 1.2 ad static inline void
255 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
256 1.2 ad {
257 1.59 matt uintptr_t newown;
258 1.23 yamt
259 1.99 riastrad MUTEX_MEMBAR_RELEASE();
260 1.59 matt newown = 0;
261 1.59 matt MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
262 1.59 matt mtx->mtx_owner = newown;
263 1.2 ad }
264 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
265 1.2 ad
266 1.2 ad /*
267 1.2 ad * Patch in stubs via strong alias where they are not available.
268 1.2 ad */
269 1.2 ad
270 1.2 ad #if defined(LOCKDEBUG)
271 1.2 ad #undef __HAVE_MUTEX_STUBS
272 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
273 1.2 ad #endif
274 1.2 ad
275 1.2 ad #ifndef __HAVE_MUTEX_STUBS
276 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
277 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
278 1.2 ad #endif
279 1.2 ad
280 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
281 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
282 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
283 1.2 ad #endif
284 1.2 ad
285 1.67 christos static void mutex_abort(const char *, size_t, const kmutex_t *,
286 1.67 christos const char *);
287 1.79 ozaki static void mutex_dump(const volatile void *, lockop_printer_t);
288 1.2 ad
289 1.2 ad lockops_t mutex_spin_lockops = {
290 1.68 ozaki .lo_name = "Mutex",
291 1.68 ozaki .lo_type = LOCKOPS_SPIN,
292 1.68 ozaki .lo_dump = mutex_dump,
293 1.2 ad };
294 1.2 ad
295 1.2 ad lockops_t mutex_adaptive_lockops = {
296 1.68 ozaki .lo_name = "Mutex",
297 1.68 ozaki .lo_type = LOCKOPS_SLEEP,
298 1.68 ozaki .lo_dump = mutex_dump,
299 1.2 ad };
300 1.2 ad
301 1.5 yamt syncobj_t mutex_syncobj = {
302 1.70 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
303 1.70 ozaki .sobj_unsleep = turnstile_unsleep,
304 1.70 ozaki .sobj_changepri = turnstile_changepri,
305 1.70 ozaki .sobj_lendpri = sleepq_lendpri,
306 1.70 ozaki .sobj_owner = (void *)mutex_owner,
307 1.5 yamt };
308 1.5 yamt
309 1.2 ad /*
310 1.2 ad * mutex_dump:
311 1.2 ad *
312 1.2 ad * Dump the contents of a mutex structure.
313 1.2 ad */
314 1.78 ozaki static void
315 1.79 ozaki mutex_dump(const volatile void *cookie, lockop_printer_t pr)
316 1.2 ad {
317 1.67 christos const volatile kmutex_t *mtx = cookie;
318 1.87 ad uintptr_t owner = mtx->mtx_owner;
319 1.2 ad
320 1.79 ozaki pr("owner field : %#018lx wait/spin: %16d/%d\n",
321 1.88 ad (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
322 1.87 ad MUTEX_SPIN_P(owner));
323 1.2 ad }
324 1.2 ad
325 1.2 ad /*
326 1.2 ad * mutex_abort:
327 1.2 ad *
328 1.3 ad * Dump information about an error and panic the system. This
329 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
330 1.3 ad * we ask the compiler to not inline it.
331 1.2 ad */
332 1.78 ozaki static void __noinline
333 1.67 christos mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
334 1.2 ad {
335 1.2 ad
336 1.87 ad LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
337 1.64 christos &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
338 1.2 ad }
339 1.2 ad
340 1.2 ad /*
341 1.2 ad * mutex_init:
342 1.2 ad *
343 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
344 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
345 1.2 ad * CPU time. We can't easily provide a type of mutex that always
346 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
347 1.2 ad * mutexes unlocked.
348 1.2 ad */
349 1.2 ad void
350 1.71 ozaki _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
351 1.71 ozaki uintptr_t return_address)
352 1.2 ad {
353 1.81 ad lockops_t *lockops __unused;
354 1.23 yamt bool dodebug;
355 1.2 ad
356 1.2 ad memset(mtx, 0, sizeof(*mtx));
357 1.2 ad
358 1.81 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
359 1.81 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
360 1.81 ad ipl == IPL_SOFTSERIAL) {
361 1.81 ad lockops = (type == MUTEX_NODEBUG ?
362 1.81 ad NULL : &mutex_adaptive_lockops);
363 1.81 ad dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
364 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
365 1.81 ad } else {
366 1.81 ad lockops = (type == MUTEX_NODEBUG ?
367 1.81 ad NULL : &mutex_spin_lockops);
368 1.81 ad dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
369 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
370 1.2 ad }
371 1.2 ad }
372 1.2 ad
373 1.71 ozaki void
374 1.71 ozaki mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
375 1.71 ozaki {
376 1.71 ozaki
377 1.71 ozaki _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
378 1.71 ozaki }
379 1.71 ozaki
380 1.2 ad /*
381 1.2 ad * mutex_destroy:
382 1.2 ad *
383 1.2 ad * Tear down a mutex.
384 1.2 ad */
385 1.2 ad void
386 1.2 ad mutex_destroy(kmutex_t *mtx)
387 1.2 ad {
388 1.87 ad uintptr_t owner = mtx->mtx_owner;
389 1.2 ad
390 1.87 ad if (MUTEX_ADAPTIVE_P(owner)) {
391 1.90 chs MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
392 1.90 chs MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
393 1.2 ad } else {
394 1.60 matt MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
395 1.2 ad }
396 1.2 ad
397 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
398 1.2 ad MUTEX_DESTROY(mtx);
399 1.2 ad }
400 1.2 ad
401 1.50 rmind #ifdef MULTIPROCESSOR
402 1.2 ad /*
403 1.50 rmind * mutex_oncpu:
404 1.2 ad *
405 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
406 1.2 ad * system. If the target is waiting on the kernel big lock, then we
407 1.15 ad * must release it. This is necessary to avoid deadlock.
408 1.2 ad */
409 1.50 rmind static bool
410 1.50 rmind mutex_oncpu(uintptr_t owner)
411 1.2 ad {
412 1.2 ad struct cpu_info *ci;
413 1.50 rmind lwp_t *l;
414 1.2 ad
415 1.50 rmind KASSERT(kpreempt_disabled());
416 1.50 rmind
417 1.50 rmind if (!MUTEX_OWNED(owner)) {
418 1.50 rmind return false;
419 1.50 rmind }
420 1.2 ad
421 1.50 rmind /*
422 1.50 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
423 1.50 rmind * We must have kernel preemption disabled for that.
424 1.50 rmind */
425 1.50 rmind l = (lwp_t *)MUTEX_OWNER(owner);
426 1.50 rmind ci = l->l_cpu;
427 1.2 ad
428 1.50 rmind if (ci && ci->ci_curlwp == l) {
429 1.50 rmind /* Target is running; do we need to block? */
430 1.50 rmind return (ci->ci_biglock_wanted != l);
431 1.50 rmind }
432 1.15 ad
433 1.50 rmind /* Not running. It may be safe to block now. */
434 1.50 rmind return false;
435 1.2 ad }
436 1.15 ad #endif /* MULTIPROCESSOR */
437 1.2 ad
438 1.2 ad /*
439 1.2 ad * mutex_vector_enter:
440 1.2 ad *
441 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In
442 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
443 1.62 prlw1 * fast-path stubs are available. If a mutex_spin_enter() stub is
444 1.2 ad * not available, then it is also aliased directly here.
445 1.2 ad */
446 1.2 ad void
447 1.2 ad mutex_vector_enter(kmutex_t *mtx)
448 1.2 ad {
449 1.2 ad uintptr_t owner, curthread;
450 1.2 ad turnstile_t *ts;
451 1.2 ad #ifdef MULTIPROCESSOR
452 1.2 ad u_int count;
453 1.2 ad #endif
454 1.2 ad LOCKSTAT_COUNTER(spincnt);
455 1.2 ad LOCKSTAT_COUNTER(slpcnt);
456 1.2 ad LOCKSTAT_TIMER(spintime);
457 1.2 ad LOCKSTAT_TIMER(slptime);
458 1.2 ad LOCKSTAT_FLAG(lsflag);
459 1.2 ad
460 1.2 ad /*
461 1.2 ad * Handle spin mutexes.
462 1.2 ad */
463 1.92 ad KPREEMPT_DISABLE(curlwp);
464 1.87 ad owner = mtx->mtx_owner;
465 1.87 ad if (MUTEX_SPIN_P(owner)) {
466 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
467 1.2 ad u_int spins = 0;
468 1.2 ad #endif
469 1.92 ad KPREEMPT_ENABLE(curlwp);
470 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
471 1.2 ad MUTEX_WANTLOCK(mtx);
472 1.2 ad #ifdef FULL
473 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
474 1.2 ad MUTEX_LOCKED(mtx);
475 1.2 ad return;
476 1.2 ad }
477 1.2 ad #if !defined(MULTIPROCESSOR)
478 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
479 1.2 ad #else /* !MULTIPROCESSOR */
480 1.2 ad
481 1.2 ad LOCKSTAT_ENTER(lsflag);
482 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
483 1.2 ad count = SPINLOCK_BACKOFF_MIN;
484 1.2 ad
485 1.2 ad /*
486 1.2 ad * Spin testing the lock word and do exponential backoff
487 1.2 ad * to reduce cache line ping-ponging between CPUs.
488 1.2 ad */
489 1.2 ad do {
490 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
491 1.97 thorpej SPINLOCK_SPIN_HOOK;
492 1.63 msaitoh SPINLOCK_BACKOFF(count);
493 1.2 ad #ifdef LOCKDEBUG
494 1.2 ad if (SPINLOCK_SPINOUT(spins))
495 1.2 ad MUTEX_ABORT(mtx, "spinout");
496 1.2 ad #endif /* LOCKDEBUG */
497 1.2 ad }
498 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
499 1.2 ad
500 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
501 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
502 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
503 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
504 1.2 ad }
505 1.2 ad LOCKSTAT_EXIT(lsflag);
506 1.2 ad #endif /* !MULTIPROCESSOR */
507 1.2 ad #endif /* FULL */
508 1.2 ad MUTEX_LOCKED(mtx);
509 1.2 ad return;
510 1.2 ad }
511 1.2 ad
512 1.2 ad curthread = (uintptr_t)curlwp;
513 1.2 ad
514 1.87 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
515 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
516 1.72 ozaki MUTEX_ASSERT(mtx, !cpu_intr_p());
517 1.2 ad MUTEX_WANTLOCK(mtx);
518 1.2 ad
519 1.102 ozaki if (__predict_true(panicstr == NULL)) {
520 1.77 ozaki KDASSERT(pserialize_not_in_read_section());
521 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
522 1.2 ad }
523 1.2 ad
524 1.2 ad LOCKSTAT_ENTER(lsflag);
525 1.2 ad
526 1.2 ad /*
527 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
528 1.2 ad * determine that the owner is not running on a processor,
529 1.2 ad * then we stop spinning, and sleep instead.
530 1.2 ad */
531 1.87 ad for (;;) {
532 1.2 ad if (!MUTEX_OWNED(owner)) {
533 1.2 ad /*
534 1.2 ad * Mutex owner clear could mean two things:
535 1.2 ad *
536 1.2 ad * * The mutex has been released.
537 1.2 ad * * The owner field hasn't been set yet.
538 1.2 ad *
539 1.2 ad * Try to acquire it again. If that fails,
540 1.2 ad * we'll just loop again.
541 1.2 ad */
542 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
543 1.2 ad break;
544 1.34 ad owner = mtx->mtx_owner;
545 1.2 ad continue;
546 1.2 ad }
547 1.50 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
548 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
549 1.50 rmind }
550 1.2 ad #ifdef MULTIPROCESSOR
551 1.2 ad /*
552 1.2 ad * Check to see if the owner is running on a processor.
553 1.2 ad * If so, then we should just spin, as the owner will
554 1.92 ad * likely release the lock very soon.
555 1.2 ad */
556 1.50 rmind if (mutex_oncpu(owner)) {
557 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
558 1.2 ad count = SPINLOCK_BACKOFF_MIN;
559 1.50 rmind do {
560 1.53 rmind KPREEMPT_ENABLE(curlwp);
561 1.34 ad SPINLOCK_BACKOFF(count);
562 1.53 rmind KPREEMPT_DISABLE(curlwp);
563 1.2 ad owner = mtx->mtx_owner;
564 1.50 rmind } while (mutex_oncpu(owner));
565 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
566 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
567 1.2 ad if (!MUTEX_OWNED(owner))
568 1.2 ad continue;
569 1.2 ad }
570 1.2 ad #endif
571 1.2 ad
572 1.2 ad ts = turnstile_lookup(mtx);
573 1.2 ad
574 1.2 ad /*
575 1.2 ad * Once we have the turnstile chain interlock, mark the
576 1.69 skrll * mutex as having waiters. If that fails, spin again:
577 1.2 ad * chances are that the mutex has been released.
578 1.2 ad */
579 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
580 1.2 ad turnstile_exit(mtx);
581 1.34 ad owner = mtx->mtx_owner;
582 1.2 ad continue;
583 1.2 ad }
584 1.2 ad
585 1.2 ad #ifdef MULTIPROCESSOR
586 1.2 ad /*
587 1.2 ad * mutex_exit() is permitted to release the mutex without
588 1.2 ad * any interlocking instructions, and the following can
589 1.2 ad * occur as a result:
590 1.2 ad *
591 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
592 1.2 ad * ---------------------------- ----------------------------
593 1.2 ad * .. acquire cache line
594 1.2 ad * .. test for waiters
595 1.2 ad * acquire cache line <- lose cache line
596 1.2 ad * lock cache line ..
597 1.2 ad * verify mutex is held ..
598 1.2 ad * set waiters ..
599 1.2 ad * unlock cache line ..
600 1.2 ad * lose cache line -> acquire cache line
601 1.93 skrll * .. clear lock word, waiters
602 1.2 ad * return success
603 1.2 ad *
604 1.50 rmind * There is another race that can occur: a third CPU could
605 1.2 ad * acquire the mutex as soon as it is released. Since
606 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
607 1.2 ad * something that we need to worry about too much. What we
608 1.2 ad * do need to ensure is that the waiters bit gets set.
609 1.2 ad *
610 1.2 ad * To allow the unlocked release, we need to make some
611 1.2 ad * assumptions here:
612 1.2 ad *
613 1.2 ad * o Release is the only non-atomic/unlocked operation
614 1.2 ad * that can be performed on the mutex. (It must still
615 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
616 1.2 ad * or preempted).
617 1.2 ad *
618 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
619 1.21 pooka * be in progress on one CPU in the system - guaranteed
620 1.2 ad * by the turnstile chain lock.
621 1.2 ad *
622 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
623 1.2 ad * and release can modify a mutex with a non-zero
624 1.2 ad * owner field.
625 1.2 ad *
626 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
627 1.2 ad * is an unbuffered write that is immediately visible
628 1.2 ad * to all other processors in the system.
629 1.2 ad *
630 1.2 ad * o If the holding LWP switches away, it posts a store
631 1.2 ad * fence before changing curlwp, ensuring that any
632 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
633 1.2 ad * completes before the modification of curlwp becomes
634 1.2 ad * visible to this CPU.
635 1.2 ad *
636 1.95 skrll * o cpu_switchto() posts a store fence after setting curlwp
637 1.2 ad * and before resuming execution of an LWP.
638 1.93 skrll *
639 1.2 ad * o _kernel_lock() posts a store fence before setting
640 1.93 skrll * curcpu()->ci_biglock_wanted, and after clearing it.
641 1.2 ad * This ensures that any overwrite of the mutex waiters
642 1.2 ad * flag by mutex_exit() completes before the modification
643 1.2 ad * of ci_biglock_wanted becomes visible.
644 1.2 ad *
645 1.2 ad * We now post a read memory barrier (after setting the
646 1.2 ad * waiters field) and check the lock holder's status again.
647 1.2 ad * Some of the possible outcomes (not an exhaustive list):
648 1.2 ad *
649 1.50 rmind * 1. The on-CPU check returns true: the holding LWP is
650 1.2 ad * running again. The lock may be released soon and
651 1.2 ad * we should spin. Importantly, we can't trust the
652 1.2 ad * value of the waiters flag.
653 1.2 ad *
654 1.50 rmind * 2. The on-CPU check returns false: the holding LWP is
655 1.39 yamt * not running. We now have the opportunity to check
656 1.2 ad * if mutex_exit() has blatted the modifications made
657 1.2 ad * by MUTEX_SET_WAITERS().
658 1.2 ad *
659 1.50 rmind * 3. The on-CPU check returns false: the holding LWP may
660 1.2 ad * or may not be running. It has context switched at
661 1.2 ad * some point during our check. Again, we have the
662 1.2 ad * chance to see if the waiters bit is still set or
663 1.2 ad * has been overwritten.
664 1.2 ad *
665 1.50 rmind * 4. The on-CPU check returns false: the holding LWP is
666 1.2 ad * running on a CPU, but wants the big lock. It's OK
667 1.2 ad * to check the waiters field in this case.
668 1.2 ad *
669 1.2 ad * 5. The has-waiters check fails: the mutex has been
670 1.2 ad * released, the waiters flag cleared and another LWP
671 1.2 ad * now owns the mutex.
672 1.2 ad *
673 1.2 ad * 6. The has-waiters check fails: the mutex has been
674 1.2 ad * released.
675 1.2 ad *
676 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
677 1.2 ad * as we might never be awoken.
678 1.2 ad */
679 1.87 ad membar_consumer();
680 1.87 ad if (mutex_oncpu(owner)) {
681 1.2 ad turnstile_exit(mtx);
682 1.34 ad owner = mtx->mtx_owner;
683 1.2 ad continue;
684 1.2 ad }
685 1.87 ad membar_consumer();
686 1.88 ad if (!MUTEX_HAS_WAITERS(mtx)) {
687 1.87 ad turnstile_exit(mtx);
688 1.88 ad owner = mtx->mtx_owner;
689 1.87 ad continue;
690 1.87 ad }
691 1.2 ad #endif /* MULTIPROCESSOR */
692 1.2 ad
693 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
694 1.2 ad
695 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
696 1.2 ad
697 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
698 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
699 1.34 ad
700 1.34 ad owner = mtx->mtx_owner;
701 1.2 ad }
702 1.50 rmind KPREEMPT_ENABLE(curlwp);
703 1.2 ad
704 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
705 1.2 ad slpcnt, slptime);
706 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
707 1.2 ad spincnt, spintime);
708 1.2 ad LOCKSTAT_EXIT(lsflag);
709 1.2 ad
710 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
711 1.2 ad MUTEX_LOCKED(mtx);
712 1.2 ad }
713 1.2 ad
714 1.2 ad /*
715 1.2 ad * mutex_vector_exit:
716 1.2 ad *
717 1.2 ad * Support routine for mutex_exit() that handles all cases.
718 1.2 ad */
719 1.2 ad void
720 1.2 ad mutex_vector_exit(kmutex_t *mtx)
721 1.2 ad {
722 1.2 ad turnstile_t *ts;
723 1.2 ad uintptr_t curthread;
724 1.2 ad
725 1.87 ad if (MUTEX_SPIN_P(mtx->mtx_owner)) {
726 1.2 ad #ifdef FULL
727 1.60 matt if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
728 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
729 1.33 ad }
730 1.2 ad MUTEX_UNLOCKED(mtx);
731 1.60 matt MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
732 1.2 ad #endif
733 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
734 1.2 ad return;
735 1.2 ad }
736 1.2 ad
737 1.85 ad #ifndef __HAVE_MUTEX_STUBS
738 1.86 ad /*
739 1.86 ad * On some architectures without mutex stubs, we can enter here to
740 1.93 skrll * release mutexes before interrupts and whatnot are up and running.
741 1.86 ad * We need this hack to keep them sweet.
742 1.86 ad */
743 1.85 ad if (__predict_false(cold)) {
744 1.85 ad MUTEX_UNLOCKED(mtx);
745 1.85 ad MUTEX_RELEASE(mtx);
746 1.85 ad return;
747 1.85 ad }
748 1.85 ad #endif
749 1.85 ad
750 1.2 ad curthread = (uintptr_t)curlwp;
751 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
752 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
753 1.2 ad MUTEX_UNLOCKED(mtx);
754 1.58 mrg #if !defined(LOCKDEBUG)
755 1.58 mrg __USE(curthread);
756 1.58 mrg #endif
757 1.2 ad
758 1.15 ad #ifdef LOCKDEBUG
759 1.15 ad /*
760 1.15 ad * Avoid having to take the turnstile chain lock every time
761 1.15 ad * around. Raise the priority level to splhigh() in order
762 1.15 ad * to disable preemption and so make the following atomic.
763 1.15 ad */
764 1.15 ad {
765 1.15 ad int s = splhigh();
766 1.88 ad if (!MUTEX_HAS_WAITERS(mtx)) {
767 1.15 ad MUTEX_RELEASE(mtx);
768 1.15 ad splx(s);
769 1.15 ad return;
770 1.15 ad }
771 1.15 ad splx(s);
772 1.15 ad }
773 1.15 ad #endif
774 1.15 ad
775 1.2 ad /*
776 1.2 ad * Get this lock's turnstile. This gets the interlock on
777 1.2 ad * the sleep queue. Once we have that, we can clear the
778 1.2 ad * lock. If there was no turnstile for the lock, there
779 1.2 ad * were no waiters remaining.
780 1.2 ad */
781 1.2 ad ts = turnstile_lookup(mtx);
782 1.2 ad
783 1.2 ad if (ts == NULL) {
784 1.2 ad MUTEX_RELEASE(mtx);
785 1.2 ad turnstile_exit(mtx);
786 1.2 ad } else {
787 1.2 ad MUTEX_RELEASE(mtx);
788 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
789 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
790 1.2 ad }
791 1.2 ad }
792 1.2 ad
793 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
794 1.4 ad /*
795 1.4 ad * mutex_wakeup:
796 1.4 ad *
797 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
798 1.4 ad * We assume that the mutex has been released, but it need not
799 1.4 ad * be.
800 1.4 ad */
801 1.4 ad void
802 1.4 ad mutex_wakeup(kmutex_t *mtx)
803 1.4 ad {
804 1.4 ad turnstile_t *ts;
805 1.4 ad
806 1.4 ad ts = turnstile_lookup(mtx);
807 1.4 ad if (ts == NULL) {
808 1.4 ad turnstile_exit(mtx);
809 1.4 ad return;
810 1.4 ad }
811 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
812 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
813 1.4 ad }
814 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
815 1.4 ad
816 1.2 ad /*
817 1.2 ad * mutex_owned:
818 1.2 ad *
819 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
820 1.3 ad * holds the mutex.
821 1.2 ad */
822 1.2 ad int
823 1.66 christos mutex_owned(const kmutex_t *mtx)
824 1.2 ad {
825 1.2 ad
826 1.35 ad if (mtx == NULL)
827 1.35 ad return 0;
828 1.87 ad if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
829 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
830 1.2 ad #ifdef FULL
831 1.60 matt return MUTEX_SPINBIT_LOCKED_P(mtx);
832 1.2 ad #else
833 1.2 ad return 1;
834 1.2 ad #endif
835 1.2 ad }
836 1.2 ad
837 1.2 ad /*
838 1.2 ad * mutex_owner:
839 1.2 ad *
840 1.6 ad * Return the current owner of an adaptive mutex. Used for
841 1.6 ad * priority inheritance.
842 1.2 ad */
843 1.27 ad lwp_t *
844 1.66 christos mutex_owner(const kmutex_t *mtx)
845 1.2 ad {
846 1.2 ad
847 1.87 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
848 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
849 1.2 ad }
850 1.2 ad
851 1.2 ad /*
852 1.81 ad * mutex_owner_running:
853 1.81 ad *
854 1.82 ad * Return true if an adaptive mutex is unheld, or held and the owner is
855 1.89 ad * running on a CPU. For the pagedaemon only - do not document or use
856 1.89 ad * in other code.
857 1.81 ad */
858 1.81 ad bool
859 1.81 ad mutex_owner_running(const kmutex_t *mtx)
860 1.81 ad {
861 1.82 ad #ifdef MULTIPROCESSOR
862 1.82 ad uintptr_t owner;
863 1.81 ad bool rv;
864 1.81 ad
865 1.87 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
866 1.81 ad kpreempt_disable();
867 1.82 ad owner = mtx->mtx_owner;
868 1.84 kre rv = !MUTEX_OWNED(owner) || mutex_oncpu(MUTEX_OWNER(owner));
869 1.81 ad kpreempt_enable();
870 1.81 ad return rv;
871 1.82 ad #else
872 1.82 ad return mutex_owner(mtx) == curlwp;
873 1.82 ad #endif
874 1.81 ad }
875 1.81 ad
876 1.81 ad /*
877 1.65 pgoyette * mutex_ownable:
878 1.65 pgoyette *
879 1.65 pgoyette * When compiled with DEBUG and LOCKDEBUG defined, ensure that
880 1.65 pgoyette * the mutex is available. We cannot use !mutex_owned() since
881 1.65 pgoyette * that won't work correctly for spin mutexes.
882 1.65 pgoyette */
883 1.65 pgoyette int
884 1.66 christos mutex_ownable(const kmutex_t *mtx)
885 1.65 pgoyette {
886 1.65 pgoyette
887 1.65 pgoyette #ifdef LOCKDEBUG
888 1.65 pgoyette MUTEX_TESTLOCK(mtx);
889 1.65 pgoyette #endif
890 1.65 pgoyette return 1;
891 1.65 pgoyette }
892 1.65 pgoyette
893 1.65 pgoyette /*
894 1.2 ad * mutex_tryenter:
895 1.2 ad *
896 1.2 ad * Try to acquire the mutex; return non-zero if we did.
897 1.2 ad */
898 1.2 ad int
899 1.2 ad mutex_tryenter(kmutex_t *mtx)
900 1.2 ad {
901 1.2 ad uintptr_t curthread;
902 1.2 ad
903 1.2 ad /*
904 1.2 ad * Handle spin mutexes.
905 1.2 ad */
906 1.87 ad if (MUTEX_SPIN_P(mtx->mtx_owner)) {
907 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
908 1.2 ad #ifdef FULL
909 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
910 1.4 ad MUTEX_WANTLOCK(mtx);
911 1.2 ad MUTEX_LOCKED(mtx);
912 1.2 ad return 1;
913 1.2 ad }
914 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
915 1.2 ad #else
916 1.4 ad MUTEX_WANTLOCK(mtx);
917 1.2 ad MUTEX_LOCKED(mtx);
918 1.2 ad return 1;
919 1.2 ad #endif
920 1.2 ad } else {
921 1.2 ad curthread = (uintptr_t)curlwp;
922 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
923 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
924 1.4 ad MUTEX_WANTLOCK(mtx);
925 1.2 ad MUTEX_LOCKED(mtx);
926 1.2 ad MUTEX_DASSERT(mtx,
927 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
928 1.2 ad return 1;
929 1.2 ad }
930 1.2 ad }
931 1.2 ad
932 1.2 ad return 0;
933 1.2 ad }
934 1.2 ad
935 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
936 1.2 ad /*
937 1.2 ad * mutex_spin_retry:
938 1.2 ad *
939 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
940 1.2 ad * has already raised the SPL, and adjusted counters.
941 1.2 ad */
942 1.2 ad void
943 1.2 ad mutex_spin_retry(kmutex_t *mtx)
944 1.2 ad {
945 1.2 ad #ifdef MULTIPROCESSOR
946 1.2 ad u_int count;
947 1.2 ad LOCKSTAT_TIMER(spintime);
948 1.2 ad LOCKSTAT_FLAG(lsflag);
949 1.2 ad #ifdef LOCKDEBUG
950 1.2 ad u_int spins = 0;
951 1.2 ad #endif /* LOCKDEBUG */
952 1.2 ad
953 1.2 ad MUTEX_WANTLOCK(mtx);
954 1.2 ad
955 1.2 ad LOCKSTAT_ENTER(lsflag);
956 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
957 1.2 ad count = SPINLOCK_BACKOFF_MIN;
958 1.2 ad
959 1.2 ad /*
960 1.2 ad * Spin testing the lock word and do exponential backoff
961 1.2 ad * to reduce cache line ping-ponging between CPUs.
962 1.2 ad */
963 1.2 ad do {
964 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
965 1.63 msaitoh SPINLOCK_BACKOFF(count);
966 1.2 ad #ifdef LOCKDEBUG
967 1.2 ad if (SPINLOCK_SPINOUT(spins))
968 1.2 ad MUTEX_ABORT(mtx, "spinout");
969 1.2 ad #endif /* LOCKDEBUG */
970 1.2 ad }
971 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
972 1.2 ad
973 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
974 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
975 1.2 ad LOCKSTAT_EXIT(lsflag);
976 1.2 ad
977 1.2 ad MUTEX_LOCKED(mtx);
978 1.2 ad #else /* MULTIPROCESSOR */
979 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
980 1.2 ad #endif /* MULTIPROCESSOR */
981 1.2 ad }
982 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
983