Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.103
      1  1.103  riastrad /*	$NetBSD: kern_mutex.c,v 1.103 2023/02/23 14:57:29 riastradh Exp $	*/
      2    1.2        ad 
      3    1.2        ad /*-
      4   1.92        ad  * Copyright (c) 2002, 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
      5    1.2        ad  * All rights reserved.
      6    1.2        ad  *
      7    1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8    1.2        ad  * by Jason R. Thorpe and Andrew Doran.
      9    1.2        ad  *
     10    1.2        ad  * Redistribution and use in source and binary forms, with or without
     11    1.2        ad  * modification, are permitted provided that the following conditions
     12    1.2        ad  * are met:
     13    1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14    1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15    1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16    1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17    1.2        ad  *    documentation and/or other materials provided with the distribution.
     18    1.2        ad  *
     19    1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20    1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21    1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22    1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23    1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24    1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25    1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26    1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27    1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28    1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29    1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30    1.2        ad  */
     31    1.2        ad 
     32    1.2        ad /*
     33    1.2        ad  * Kernel mutex implementation, modeled after those found in Solaris,
     34    1.2        ad  * a description of which can be found in:
     35    1.2        ad  *
     36    1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37    1.2        ad  *	    Richard McDougall.
     38    1.2        ad  */
     39    1.2        ad 
     40    1.2        ad #define	__MUTEX_PRIVATE
     41    1.2        ad 
     42    1.2        ad #include <sys/cdefs.h>
     43  1.103  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.103 2023/02/23 14:57:29 riastradh Exp $");
     44    1.2        ad 
     45    1.2        ad #include <sys/param.h>
     46   1.46     pooka #include <sys/atomic.h>
     47    1.2        ad #include <sys/proc.h>
     48    1.2        ad #include <sys/mutex.h>
     49    1.2        ad #include <sys/sched.h>
     50    1.2        ad #include <sys/sleepq.h>
     51    1.2        ad #include <sys/systm.h>
     52    1.2        ad #include <sys/lockdebug.h>
     53    1.2        ad #include <sys/kernel.h>
     54   1.24        ad #include <sys/intr.h>
     55   1.29   xtraeme #include <sys/lock.h>
     56   1.50     rmind #include <sys/types.h>
     57   1.72     ozaki #include <sys/cpu.h>
     58   1.74     ozaki #include <sys/pserialize.h>
     59    1.2        ad 
     60    1.2        ad #include <dev/lockstat.h>
     61    1.2        ad 
     62   1.28        ad #include <machine/lock.h>
     63   1.28        ad 
     64    1.2        ad /*
     65    1.2        ad  * When not running a debug kernel, spin mutexes are not much
     66    1.2        ad  * more than an splraiseipl() and splx() pair.
     67    1.2        ad  */
     68    1.2        ad 
     69    1.2        ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     70    1.2        ad #define	FULL
     71    1.2        ad #endif
     72    1.2        ad 
     73    1.2        ad /*
     74    1.2        ad  * Debugging support.
     75    1.2        ad  */
     76    1.2        ad 
     77    1.2        ad #define	MUTEX_WANTLOCK(mtx)					\
     78   1.23      yamt     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     79   1.54   mlelstv         (uintptr_t)__builtin_return_address(0), 0)
     80   1.65  pgoyette #define	MUTEX_TESTLOCK(mtx)					\
     81   1.65  pgoyette     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     82   1.65  pgoyette         (uintptr_t)__builtin_return_address(0), -1)
     83    1.2        ad #define	MUTEX_LOCKED(mtx)					\
     84   1.42        ad     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     85    1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     86    1.2        ad #define	MUTEX_UNLOCKED(mtx)					\
     87   1.23      yamt     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     88    1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     89    1.2        ad #define	MUTEX_ABORT(mtx, msg)					\
     90   1.64  christos     mutex_abort(__func__, __LINE__, mtx, msg)
     91    1.2        ad 
     92    1.2        ad #if defined(LOCKDEBUG)
     93    1.2        ad 
     94    1.2        ad #define	MUTEX_DASSERT(mtx, cond)				\
     95    1.2        ad do {								\
     96   1.75     ozaki 	if (__predict_false(!(cond)))				\
     97    1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     98   1.76     skrll } while (/* CONSTCOND */ 0)
     99    1.2        ad 
    100    1.2        ad #else	/* LOCKDEBUG */
    101    1.2        ad 
    102    1.2        ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    103    1.2        ad 
    104    1.2        ad #endif /* LOCKDEBUG */
    105    1.2        ad 
    106    1.2        ad #if defined(DIAGNOSTIC)
    107    1.2        ad 
    108    1.2        ad #define	MUTEX_ASSERT(mtx, cond)					\
    109    1.2        ad do {								\
    110   1.75     ozaki 	if (__predict_false(!(cond)))				\
    111    1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    112    1.2        ad } while (/* CONSTCOND */ 0)
    113    1.2        ad 
    114    1.2        ad #else	/* DIAGNOSTIC */
    115    1.2        ad 
    116    1.2        ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    117    1.2        ad 
    118    1.2        ad #endif	/* DIAGNOSTIC */
    119    1.2        ad 
    120    1.2        ad /*
    121   1.60      matt  * Some architectures can't use __cpu_simple_lock as is so allow a way
    122   1.60      matt  * for them to use an alternate definition.
    123   1.60      matt  */
    124   1.60      matt #ifndef MUTEX_SPINBIT_LOCK_INIT
    125   1.60      matt #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    126   1.60      matt #endif
    127   1.60      matt #ifndef MUTEX_SPINBIT_LOCKED_P
    128   1.60      matt #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    129   1.60      matt #endif
    130   1.60      matt #ifndef MUTEX_SPINBIT_LOCK_TRY
    131   1.60      matt #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    132   1.60      matt #endif
    133   1.60      matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    134   1.60      matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    135   1.60      matt #endif
    136   1.60      matt 
    137   1.60      matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
    138   1.60      matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    139   1.60      matt 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    140   1.60      matt #endif
    141   1.60      matt 
    142   1.60      matt /*
    143    1.2        ad  * Spin mutex SPL save / restore.
    144    1.2        ad  */
    145    1.2        ad 
    146    1.2        ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    147    1.2        ad do {									\
    148  1.101     skrll 	const int s = splraiseipl(MUTEX_SPIN_IPL(mtx));			\
    149  1.101     skrll 	struct cpu_info * const x__ci = curcpu();			\
    150  1.101     skrll 	const int x__cnt = x__ci->ci_mtx_count--;			\
    151   1.37        ad 	__insn_barrier();						\
    152   1.51     rmind 	if (x__cnt == 0)						\
    153  1.101     skrll 		x__ci->ci_mtx_oldspl = s;				\
    154    1.2        ad } while (/* CONSTCOND */ 0)
    155    1.2        ad 
    156    1.2        ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    157    1.2        ad do {									\
    158  1.101     skrll 	struct cpu_info * const x__ci = curcpu();			\
    159  1.101     skrll 	const int s = x__ci->ci_mtx_oldspl;				\
    160    1.2        ad 	__insn_barrier();						\
    161   1.96       rin 	if (++(x__ci->ci_mtx_count) == 0)				\
    162    1.2        ad 		splx(s);						\
    163    1.2        ad } while (/* CONSTCOND */ 0)
    164    1.2        ad 
    165    1.2        ad /*
    166   1.80        ad  * Memory barriers.
    167   1.80        ad  */
    168   1.80        ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
    169   1.80        ad #define	MUTEX_MEMBAR_ENTER()
    170   1.99  riastrad #define	MUTEX_MEMBAR_ACQUIRE()
    171   1.99  riastrad #define	MUTEX_MEMBAR_RELEASE()
    172   1.80        ad #else
    173   1.80        ad #define	MUTEX_MEMBAR_ENTER()		membar_enter()
    174   1.99  riastrad #define	MUTEX_MEMBAR_ACQUIRE()		membar_acquire()
    175   1.99  riastrad #define	MUTEX_MEMBAR_RELEASE()		membar_release()
    176   1.80        ad #endif
    177   1.80        ad 
    178   1.80        ad /*
    179    1.2        ad  * For architectures that provide 'simple' mutexes: they provide a
    180    1.2        ad  * CAS function that is either MP-safe, or does not need to be MP
    181    1.2        ad  * safe.  Adaptive mutexes on these architectures do not require an
    182    1.2        ad  * additional interlock.
    183    1.2        ad  */
    184    1.2        ad 
    185    1.2        ad #ifdef __HAVE_SIMPLE_MUTEXES
    186    1.2        ad 
    187    1.2        ad #define	MUTEX_OWNER(owner)						\
    188    1.2        ad 	(owner & MUTEX_THREAD)
    189   1.88        ad #define	MUTEX_HAS_WAITERS(mtx)						\
    190   1.88        ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    191    1.2        ad 
    192   1.23      yamt #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    193   1.76     skrll do {									\
    194   1.49     skrll 	if (!dodebug)							\
    195   1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    196   1.76     skrll } while (/* CONSTCOND */ 0)
    197    1.2        ad 
    198   1.23      yamt #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    199    1.2        ad do {									\
    200    1.2        ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    201   1.49     skrll 	if (!dodebug)							\
    202   1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    203   1.60      matt 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    204   1.60      matt 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    205    1.2        ad } while (/* CONSTCOND */ 0)
    206    1.2        ad 
    207    1.2        ad #define	MUTEX_DESTROY(mtx)						\
    208    1.2        ad do {									\
    209    1.2        ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    210   1.76     skrll } while (/* CONSTCOND */ 0)
    211    1.2        ad 
    212   1.87        ad #define	MUTEX_SPIN_P(owner)		\
    213   1.87        ad     (((owner) & MUTEX_BIT_SPIN) != 0)
    214   1.87        ad #define	MUTEX_ADAPTIVE_P(owner)		\
    215   1.87        ad     (((owner) & MUTEX_BIT_SPIN) == 0)
    216    1.2        ad 
    217   1.98   thorpej #ifndef MUTEX_CAS
    218   1.98   thorpej #define	MUTEX_CAS(p, o, n)		\
    219   1.98   thorpej 	(atomic_cas_ulong((volatile unsigned long *)(p), (o), (n)) == (o))
    220   1.98   thorpej #endif /* MUTEX_CAS */
    221   1.98   thorpej 
    222   1.49     skrll #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    223   1.23      yamt #if defined(LOCKDEBUG)
    224   1.49     skrll #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    225   1.59      matt #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    226   1.23      yamt #else /* defined(LOCKDEBUG) */
    227   1.23      yamt #define	MUTEX_OWNED(owner)		((owner) != 0)
    228   1.59      matt #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    229   1.23      yamt #endif /* defined(LOCKDEBUG) */
    230    1.2        ad 
    231    1.2        ad static inline int
    232    1.2        ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    233    1.2        ad {
    234    1.2        ad 	int rv;
    235   1.59      matt 	uintptr_t oldown = 0;
    236   1.59      matt 	uintptr_t newown = curthread;
    237   1.23      yamt 
    238   1.59      matt 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    239   1.59      matt 	MUTEX_INHERITDEBUG(newown, oldown);
    240   1.59      matt 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    241   1.99  riastrad 	MUTEX_MEMBAR_ACQUIRE();
    242    1.2        ad 	return rv;
    243    1.2        ad }
    244    1.2        ad 
    245    1.2        ad static inline int
    246    1.2        ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    247    1.2        ad {
    248    1.2        ad 	int rv;
    249    1.2        ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    250   1.80        ad 	MUTEX_MEMBAR_ENTER();
    251    1.2        ad 	return rv;
    252    1.2        ad }
    253    1.2        ad 
    254    1.2        ad static inline void
    255    1.2        ad MUTEX_RELEASE(kmutex_t *mtx)
    256    1.2        ad {
    257   1.59      matt 	uintptr_t newown;
    258   1.23      yamt 
    259   1.99  riastrad 	MUTEX_MEMBAR_RELEASE();
    260   1.59      matt 	newown = 0;
    261   1.59      matt 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    262   1.59      matt 	mtx->mtx_owner = newown;
    263    1.2        ad }
    264    1.2        ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    265    1.2        ad 
    266    1.2        ad /*
    267    1.2        ad  * Patch in stubs via strong alias where they are not available.
    268    1.2        ad  */
    269    1.2        ad 
    270    1.2        ad #if defined(LOCKDEBUG)
    271    1.2        ad #undef	__HAVE_MUTEX_STUBS
    272    1.2        ad #undef	__HAVE_SPIN_MUTEX_STUBS
    273    1.2        ad #endif
    274    1.2        ad 
    275    1.2        ad #ifndef __HAVE_MUTEX_STUBS
    276    1.8     itohy __strong_alias(mutex_enter,mutex_vector_enter);
    277    1.8     itohy __strong_alias(mutex_exit,mutex_vector_exit);
    278    1.2        ad #endif
    279    1.2        ad 
    280    1.2        ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    281    1.8     itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    282    1.8     itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    283    1.2        ad #endif
    284    1.2        ad 
    285   1.67  christos static void	mutex_abort(const char *, size_t, const kmutex_t *,
    286   1.67  christos     const char *);
    287   1.79     ozaki static void	mutex_dump(const volatile void *, lockop_printer_t);
    288    1.2        ad 
    289    1.2        ad lockops_t mutex_spin_lockops = {
    290   1.68     ozaki 	.lo_name = "Mutex",
    291   1.68     ozaki 	.lo_type = LOCKOPS_SPIN,
    292   1.68     ozaki 	.lo_dump = mutex_dump,
    293    1.2        ad };
    294    1.2        ad 
    295    1.2        ad lockops_t mutex_adaptive_lockops = {
    296   1.68     ozaki 	.lo_name = "Mutex",
    297   1.68     ozaki 	.lo_type = LOCKOPS_SLEEP,
    298   1.68     ozaki 	.lo_dump = mutex_dump,
    299    1.2        ad };
    300    1.2        ad 
    301    1.5      yamt syncobj_t mutex_syncobj = {
    302   1.70     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    303   1.70     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    304   1.70     ozaki 	.sobj_changepri	= turnstile_changepri,
    305   1.70     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    306   1.70     ozaki 	.sobj_owner	= (void *)mutex_owner,
    307    1.5      yamt };
    308    1.5      yamt 
    309    1.2        ad /*
    310    1.2        ad  * mutex_dump:
    311    1.2        ad  *
    312    1.2        ad  *	Dump the contents of a mutex structure.
    313    1.2        ad  */
    314   1.78     ozaki static void
    315   1.79     ozaki mutex_dump(const volatile void *cookie, lockop_printer_t pr)
    316    1.2        ad {
    317   1.67  christos 	const volatile kmutex_t *mtx = cookie;
    318   1.87        ad 	uintptr_t owner = mtx->mtx_owner;
    319    1.2        ad 
    320   1.79     ozaki 	pr("owner field  : %#018lx wait/spin: %16d/%d\n",
    321   1.88        ad 	    (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
    322   1.87        ad 	    MUTEX_SPIN_P(owner));
    323    1.2        ad }
    324    1.2        ad 
    325    1.2        ad /*
    326    1.2        ad  * mutex_abort:
    327    1.2        ad  *
    328    1.3        ad  *	Dump information about an error and panic the system.  This
    329    1.3        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    330    1.3        ad  *	we ask the compiler to not inline it.
    331    1.2        ad  */
    332   1.78     ozaki static void __noinline
    333   1.67  christos mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
    334    1.2        ad {
    335    1.2        ad 
    336   1.87        ad 	LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
    337   1.64  christos 	    &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
    338    1.2        ad }
    339    1.2        ad 
    340    1.2        ad /*
    341    1.2        ad  * mutex_init:
    342    1.2        ad  *
    343    1.2        ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    344    1.2        ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    345    1.2        ad  *	CPU time.  We can't easily provide a type of mutex that always
    346    1.2        ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    347    1.2        ad  *	mutexes unlocked.
    348    1.2        ad  */
    349    1.2        ad void
    350   1.71     ozaki _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
    351   1.71     ozaki     uintptr_t return_address)
    352    1.2        ad {
    353   1.81        ad 	lockops_t *lockops __unused;
    354   1.23      yamt 	bool dodebug;
    355    1.2        ad 
    356    1.2        ad 	memset(mtx, 0, sizeof(*mtx));
    357    1.2        ad 
    358   1.81        ad 	if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    359   1.81        ad 	    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    360   1.81        ad 	    ipl == IPL_SOFTSERIAL) {
    361   1.81        ad 		lockops = (type == MUTEX_NODEBUG ?
    362   1.81        ad 		    NULL : &mutex_adaptive_lockops);
    363   1.81        ad 		dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
    364   1.23      yamt 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    365   1.81        ad 	} else {
    366   1.81        ad 		lockops = (type == MUTEX_NODEBUG ?
    367   1.81        ad 		    NULL : &mutex_spin_lockops);
    368   1.81        ad 		dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
    369   1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    370    1.2        ad 	}
    371    1.2        ad }
    372    1.2        ad 
    373   1.71     ozaki void
    374   1.71     ozaki mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    375   1.71     ozaki {
    376   1.71     ozaki 
    377   1.71     ozaki 	_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
    378   1.71     ozaki }
    379   1.71     ozaki 
    380    1.2        ad /*
    381    1.2        ad  * mutex_destroy:
    382    1.2        ad  *
    383    1.2        ad  *	Tear down a mutex.
    384    1.2        ad  */
    385    1.2        ad void
    386    1.2        ad mutex_destroy(kmutex_t *mtx)
    387    1.2        ad {
    388   1.87        ad 	uintptr_t owner = mtx->mtx_owner;
    389    1.2        ad 
    390   1.87        ad 	if (MUTEX_ADAPTIVE_P(owner)) {
    391   1.90       chs 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
    392   1.90       chs 		MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
    393    1.2        ad 	} else {
    394   1.60      matt 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    395    1.2        ad 	}
    396    1.2        ad 
    397   1.23      yamt 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    398    1.2        ad 	MUTEX_DESTROY(mtx);
    399    1.2        ad }
    400    1.2        ad 
    401   1.50     rmind #ifdef MULTIPROCESSOR
    402    1.2        ad /*
    403   1.50     rmind  * mutex_oncpu:
    404    1.2        ad  *
    405    1.2        ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    406    1.2        ad  *	system.  If the target is waiting on the kernel big lock, then we
    407   1.15        ad  *	must release it.  This is necessary to avoid deadlock.
    408    1.2        ad  */
    409   1.50     rmind static bool
    410   1.50     rmind mutex_oncpu(uintptr_t owner)
    411    1.2        ad {
    412    1.2        ad 	struct cpu_info *ci;
    413   1.50     rmind 	lwp_t *l;
    414    1.2        ad 
    415   1.50     rmind 	KASSERT(kpreempt_disabled());
    416   1.50     rmind 
    417   1.50     rmind 	if (!MUTEX_OWNED(owner)) {
    418   1.50     rmind 		return false;
    419   1.50     rmind 	}
    420    1.2        ad 
    421   1.50     rmind 	/*
    422   1.50     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    423   1.50     rmind 	 * We must have kernel preemption disabled for that.
    424   1.50     rmind 	 */
    425   1.50     rmind 	l = (lwp_t *)MUTEX_OWNER(owner);
    426   1.50     rmind 	ci = l->l_cpu;
    427    1.2        ad 
    428   1.50     rmind 	if (ci && ci->ci_curlwp == l) {
    429   1.50     rmind 		/* Target is running; do we need to block? */
    430  1.103  riastrad 		return (atomic_load_relaxed(&ci->ci_biglock_wanted) != l);
    431   1.50     rmind 	}
    432   1.15        ad 
    433   1.50     rmind 	/* Not running.  It may be safe to block now. */
    434   1.50     rmind 	return false;
    435    1.2        ad }
    436   1.15        ad #endif	/* MULTIPROCESSOR */
    437    1.2        ad 
    438    1.2        ad /*
    439    1.2        ad  * mutex_vector_enter:
    440    1.2        ad  *
    441   1.45     rmind  *	Support routine for mutex_enter() that must handle all cases.  In
    442    1.2        ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    443   1.62     prlw1  *	fast-path stubs are available.  If a mutex_spin_enter() stub is
    444    1.2        ad  *	not available, then it is also aliased directly here.
    445    1.2        ad  */
    446    1.2        ad void
    447    1.2        ad mutex_vector_enter(kmutex_t *mtx)
    448    1.2        ad {
    449    1.2        ad 	uintptr_t owner, curthread;
    450    1.2        ad 	turnstile_t *ts;
    451    1.2        ad #ifdef MULTIPROCESSOR
    452    1.2        ad 	u_int count;
    453    1.2        ad #endif
    454    1.2        ad 	LOCKSTAT_COUNTER(spincnt);
    455    1.2        ad 	LOCKSTAT_COUNTER(slpcnt);
    456    1.2        ad 	LOCKSTAT_TIMER(spintime);
    457    1.2        ad 	LOCKSTAT_TIMER(slptime);
    458    1.2        ad 	LOCKSTAT_FLAG(lsflag);
    459    1.2        ad 
    460    1.2        ad 	/*
    461    1.2        ad 	 * Handle spin mutexes.
    462    1.2        ad 	 */
    463   1.92        ad 	KPREEMPT_DISABLE(curlwp);
    464   1.87        ad 	owner = mtx->mtx_owner;
    465   1.87        ad 	if (MUTEX_SPIN_P(owner)) {
    466    1.2        ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    467    1.2        ad 		u_int spins = 0;
    468    1.2        ad #endif
    469   1.92        ad 		KPREEMPT_ENABLE(curlwp);
    470    1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    471    1.2        ad 		MUTEX_WANTLOCK(mtx);
    472    1.2        ad #ifdef FULL
    473   1.60      matt 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    474    1.2        ad 			MUTEX_LOCKED(mtx);
    475    1.2        ad 			return;
    476    1.2        ad 		}
    477    1.2        ad #if !defined(MULTIPROCESSOR)
    478    1.2        ad 		MUTEX_ABORT(mtx, "locking against myself");
    479    1.2        ad #else /* !MULTIPROCESSOR */
    480    1.2        ad 
    481    1.2        ad 		LOCKSTAT_ENTER(lsflag);
    482    1.2        ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    483    1.2        ad 		count = SPINLOCK_BACKOFF_MIN;
    484    1.2        ad 
    485    1.2        ad 		/*
    486    1.2        ad 		 * Spin testing the lock word and do exponential backoff
    487    1.2        ad 		 * to reduce cache line ping-ponging between CPUs.
    488    1.2        ad 		 */
    489    1.2        ad 		do {
    490   1.60      matt 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    491   1.97   thorpej 				SPINLOCK_SPIN_HOOK;
    492   1.63   msaitoh 				SPINLOCK_BACKOFF(count);
    493    1.2        ad #ifdef LOCKDEBUG
    494    1.2        ad 				if (SPINLOCK_SPINOUT(spins))
    495    1.2        ad 					MUTEX_ABORT(mtx, "spinout");
    496    1.2        ad #endif	/* LOCKDEBUG */
    497    1.2        ad 			}
    498   1.60      matt 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    499    1.2        ad 
    500    1.2        ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    501    1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    502    1.2        ad 			LOCKSTAT_EVENT(lsflag, mtx,
    503    1.2        ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    504    1.2        ad 		}
    505    1.2        ad 		LOCKSTAT_EXIT(lsflag);
    506    1.2        ad #endif	/* !MULTIPROCESSOR */
    507    1.2        ad #endif	/* FULL */
    508    1.2        ad 		MUTEX_LOCKED(mtx);
    509    1.2        ad 		return;
    510    1.2        ad 	}
    511    1.2        ad 
    512    1.2        ad 	curthread = (uintptr_t)curlwp;
    513    1.2        ad 
    514   1.87        ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
    515    1.2        ad 	MUTEX_ASSERT(mtx, curthread != 0);
    516   1.72     ozaki 	MUTEX_ASSERT(mtx, !cpu_intr_p());
    517    1.2        ad 	MUTEX_WANTLOCK(mtx);
    518    1.2        ad 
    519  1.102     ozaki 	if (__predict_true(panicstr == NULL)) {
    520   1.77     ozaki 		KDASSERT(pserialize_not_in_read_section());
    521    1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    522    1.2        ad 	}
    523    1.2        ad 
    524    1.2        ad 	LOCKSTAT_ENTER(lsflag);
    525    1.2        ad 
    526    1.2        ad 	/*
    527    1.2        ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    528    1.2        ad 	 * determine that the owner is not running on a processor,
    529    1.2        ad 	 * then we stop spinning, and sleep instead.
    530    1.2        ad 	 */
    531   1.87        ad 	for (;;) {
    532    1.2        ad 		if (!MUTEX_OWNED(owner)) {
    533    1.2        ad 			/*
    534    1.2        ad 			 * Mutex owner clear could mean two things:
    535    1.2        ad 			 *
    536    1.2        ad 			 *	* The mutex has been released.
    537    1.2        ad 			 *	* The owner field hasn't been set yet.
    538    1.2        ad 			 *
    539    1.2        ad 			 * Try to acquire it again.  If that fails,
    540    1.2        ad 			 * we'll just loop again.
    541    1.2        ad 			 */
    542    1.2        ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    543    1.2        ad 				break;
    544   1.34        ad 			owner = mtx->mtx_owner;
    545    1.2        ad 			continue;
    546    1.2        ad 		}
    547   1.50     rmind 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    548    1.2        ad 			MUTEX_ABORT(mtx, "locking against myself");
    549   1.50     rmind 		}
    550    1.2        ad #ifdef MULTIPROCESSOR
    551    1.2        ad 		/*
    552    1.2        ad 		 * Check to see if the owner is running on a processor.
    553    1.2        ad 		 * If so, then we should just spin, as the owner will
    554   1.92        ad 		 * likely release the lock very soon.
    555    1.2        ad 		 */
    556   1.50     rmind 		if (mutex_oncpu(owner)) {
    557    1.2        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    558    1.2        ad 			count = SPINLOCK_BACKOFF_MIN;
    559   1.50     rmind 			do {
    560   1.53     rmind 				KPREEMPT_ENABLE(curlwp);
    561   1.34        ad 				SPINLOCK_BACKOFF(count);
    562   1.53     rmind 				KPREEMPT_DISABLE(curlwp);
    563    1.2        ad 				owner = mtx->mtx_owner;
    564   1.50     rmind 			} while (mutex_oncpu(owner));
    565    1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    566    1.2        ad 			LOCKSTAT_COUNT(spincnt, 1);
    567    1.2        ad 			if (!MUTEX_OWNED(owner))
    568    1.2        ad 				continue;
    569    1.2        ad 		}
    570    1.2        ad #endif
    571    1.2        ad 
    572    1.2        ad 		ts = turnstile_lookup(mtx);
    573    1.2        ad 
    574    1.2        ad 		/*
    575    1.2        ad 		 * Once we have the turnstile chain interlock, mark the
    576   1.69     skrll 		 * mutex as having waiters.  If that fails, spin again:
    577    1.2        ad 		 * chances are that the mutex has been released.
    578    1.2        ad 		 */
    579    1.2        ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    580    1.2        ad 			turnstile_exit(mtx);
    581   1.34        ad 			owner = mtx->mtx_owner;
    582    1.2        ad 			continue;
    583    1.2        ad 		}
    584    1.2        ad 
    585    1.2        ad #ifdef MULTIPROCESSOR
    586    1.2        ad 		/*
    587    1.2        ad 		 * mutex_exit() is permitted to release the mutex without
    588    1.2        ad 		 * any interlocking instructions, and the following can
    589    1.2        ad 		 * occur as a result:
    590    1.2        ad 		 *
    591    1.2        ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    592    1.2        ad 		 * ---------------------------- ----------------------------
    593    1.2        ad 		 *		..		    acquire cache line
    594    1.2        ad 		 *		..                   test for waiters
    595    1.2        ad 		 *	acquire cache line    <-      lose cache line
    596    1.2        ad 		 *	 lock cache line	           ..
    597    1.2        ad 		 *     verify mutex is held                ..
    598    1.2        ad 		 *	    set waiters  	           ..
    599    1.2        ad 		 *	 unlock cache line		   ..
    600    1.2        ad 		 *	  lose cache line     ->    acquire cache line
    601   1.93     skrll 		 *		..	          clear lock word, waiters
    602    1.2        ad 		 *	  return success
    603    1.2        ad 		 *
    604   1.50     rmind 		 * There is another race that can occur: a third CPU could
    605    1.2        ad 		 * acquire the mutex as soon as it is released.  Since
    606    1.2        ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    607    1.2        ad 		 * something that we need to worry about too much.  What we
    608    1.2        ad 		 * do need to ensure is that the waiters bit gets set.
    609    1.2        ad 		 *
    610    1.2        ad 		 * To allow the unlocked release, we need to make some
    611    1.2        ad 		 * assumptions here:
    612    1.2        ad 		 *
    613    1.2        ad 		 * o Release is the only non-atomic/unlocked operation
    614    1.2        ad 		 *   that can be performed on the mutex.  (It must still
    615    1.2        ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    616    1.2        ad 		 *   or preempted).
    617    1.2        ad 		 *
    618    1.2        ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    619   1.21     pooka 		 *   be in progress on one CPU in the system - guaranteed
    620    1.2        ad 		 *   by the turnstile chain lock.
    621    1.2        ad 		 *
    622    1.2        ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    623    1.2        ad 		 *   and release can modify a mutex with a non-zero
    624    1.2        ad 		 *   owner field.
    625    1.2        ad 		 *
    626    1.2        ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    627    1.2        ad 		 *   is an unbuffered write that is immediately visible
    628    1.2        ad 		 *   to all other processors in the system.
    629    1.2        ad 		 *
    630    1.2        ad 		 * o If the holding LWP switches away, it posts a store
    631    1.2        ad 		 *   fence before changing curlwp, ensuring that any
    632    1.2        ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    633    1.2        ad 		 *   completes before the modification of curlwp becomes
    634    1.2        ad 		 *   visible to this CPU.
    635    1.2        ad 		 *
    636   1.95     skrll 		 * o cpu_switchto() posts a store fence after setting curlwp
    637    1.2        ad 		 *   and before resuming execution of an LWP.
    638   1.93     skrll 		 *
    639    1.2        ad 		 * o _kernel_lock() posts a store fence before setting
    640   1.93     skrll 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    641    1.2        ad 		 *   This ensures that any overwrite of the mutex waiters
    642    1.2        ad 		 *   flag by mutex_exit() completes before the modification
    643    1.2        ad 		 *   of ci_biglock_wanted becomes visible.
    644    1.2        ad 		 *
    645    1.2        ad 		 * We now post a read memory barrier (after setting the
    646    1.2        ad 		 * waiters field) and check the lock holder's status again.
    647    1.2        ad 		 * Some of the possible outcomes (not an exhaustive list):
    648    1.2        ad 		 *
    649   1.50     rmind 		 * 1. The on-CPU check returns true: the holding LWP is
    650    1.2        ad 		 *    running again.  The lock may be released soon and
    651    1.2        ad 		 *    we should spin.  Importantly, we can't trust the
    652    1.2        ad 		 *    value of the waiters flag.
    653    1.2        ad 		 *
    654   1.50     rmind 		 * 2. The on-CPU check returns false: the holding LWP is
    655   1.39      yamt 		 *    not running.  We now have the opportunity to check
    656    1.2        ad 		 *    if mutex_exit() has blatted the modifications made
    657    1.2        ad 		 *    by MUTEX_SET_WAITERS().
    658    1.2        ad 		 *
    659   1.50     rmind 		 * 3. The on-CPU check returns false: the holding LWP may
    660    1.2        ad 		 *    or may not be running.  It has context switched at
    661    1.2        ad 		 *    some point during our check.  Again, we have the
    662    1.2        ad 		 *    chance to see if the waiters bit is still set or
    663    1.2        ad 		 *    has been overwritten.
    664    1.2        ad 		 *
    665   1.50     rmind 		 * 4. The on-CPU check returns false: the holding LWP is
    666    1.2        ad 		 *    running on a CPU, but wants the big lock.  It's OK
    667    1.2        ad 		 *    to check the waiters field in this case.
    668    1.2        ad 		 *
    669    1.2        ad 		 * 5. The has-waiters check fails: the mutex has been
    670    1.2        ad 		 *    released, the waiters flag cleared and another LWP
    671    1.2        ad 		 *    now owns the mutex.
    672    1.2        ad 		 *
    673    1.2        ad 		 * 6. The has-waiters check fails: the mutex has been
    674    1.2        ad 		 *    released.
    675    1.2        ad 		 *
    676    1.2        ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    677    1.2        ad 		 * as we might never be awoken.
    678    1.2        ad 		 */
    679   1.87        ad 		membar_consumer();
    680   1.87        ad 		if (mutex_oncpu(owner)) {
    681    1.2        ad 			turnstile_exit(mtx);
    682   1.34        ad 			owner = mtx->mtx_owner;
    683    1.2        ad 			continue;
    684    1.2        ad 		}
    685   1.87        ad 		membar_consumer();
    686   1.88        ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    687   1.87        ad 			turnstile_exit(mtx);
    688   1.88        ad 			owner = mtx->mtx_owner;
    689   1.87        ad 			continue;
    690   1.87        ad 		}
    691    1.2        ad #endif	/* MULTIPROCESSOR */
    692    1.2        ad 
    693    1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    694    1.2        ad 
    695    1.5      yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    696    1.2        ad 
    697    1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    698    1.2        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    699   1.34        ad 
    700   1.34        ad 		owner = mtx->mtx_owner;
    701    1.2        ad 	}
    702   1.50     rmind 	KPREEMPT_ENABLE(curlwp);
    703    1.2        ad 
    704    1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    705    1.2        ad 	    slpcnt, slptime);
    706    1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    707    1.2        ad 	    spincnt, spintime);
    708    1.2        ad 	LOCKSTAT_EXIT(lsflag);
    709    1.2        ad 
    710    1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    711    1.2        ad 	MUTEX_LOCKED(mtx);
    712    1.2        ad }
    713    1.2        ad 
    714    1.2        ad /*
    715    1.2        ad  * mutex_vector_exit:
    716    1.2        ad  *
    717    1.2        ad  *	Support routine for mutex_exit() that handles all cases.
    718    1.2        ad  */
    719    1.2        ad void
    720    1.2        ad mutex_vector_exit(kmutex_t *mtx)
    721    1.2        ad {
    722    1.2        ad 	turnstile_t *ts;
    723    1.2        ad 	uintptr_t curthread;
    724    1.2        ad 
    725   1.87        ad 	if (MUTEX_SPIN_P(mtx->mtx_owner)) {
    726    1.2        ad #ifdef FULL
    727   1.60      matt 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    728    1.2        ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    729   1.33        ad 		}
    730    1.2        ad 		MUTEX_UNLOCKED(mtx);
    731   1.60      matt 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    732    1.2        ad #endif
    733    1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    734    1.2        ad 		return;
    735    1.2        ad 	}
    736    1.2        ad 
    737   1.85        ad #ifndef __HAVE_MUTEX_STUBS
    738   1.86        ad 	/*
    739   1.86        ad 	 * On some architectures without mutex stubs, we can enter here to
    740   1.93     skrll 	 * release mutexes before interrupts and whatnot are up and running.
    741   1.86        ad 	 * We need this hack to keep them sweet.
    742   1.86        ad 	 */
    743   1.85        ad 	if (__predict_false(cold)) {
    744   1.85        ad 		MUTEX_UNLOCKED(mtx);
    745   1.85        ad 		MUTEX_RELEASE(mtx);
    746   1.85        ad 		return;
    747   1.85        ad 	}
    748   1.85        ad #endif
    749   1.85        ad 
    750    1.2        ad 	curthread = (uintptr_t)curlwp;
    751    1.2        ad 	MUTEX_DASSERT(mtx, curthread != 0);
    752    1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    753    1.2        ad 	MUTEX_UNLOCKED(mtx);
    754   1.58       mrg #if !defined(LOCKDEBUG)
    755   1.58       mrg 	__USE(curthread);
    756   1.58       mrg #endif
    757    1.2        ad 
    758   1.15        ad #ifdef LOCKDEBUG
    759   1.15        ad 	/*
    760   1.15        ad 	 * Avoid having to take the turnstile chain lock every time
    761   1.15        ad 	 * around.  Raise the priority level to splhigh() in order
    762   1.15        ad 	 * to disable preemption and so make the following atomic.
    763   1.15        ad 	 */
    764   1.15        ad 	{
    765   1.15        ad 		int s = splhigh();
    766   1.88        ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    767   1.15        ad 			MUTEX_RELEASE(mtx);
    768   1.15        ad 			splx(s);
    769   1.15        ad 			return;
    770   1.15        ad 		}
    771   1.15        ad 		splx(s);
    772   1.15        ad 	}
    773   1.15        ad #endif
    774   1.15        ad 
    775    1.2        ad 	/*
    776    1.2        ad 	 * Get this lock's turnstile.  This gets the interlock on
    777    1.2        ad 	 * the sleep queue.  Once we have that, we can clear the
    778    1.2        ad 	 * lock.  If there was no turnstile for the lock, there
    779    1.2        ad 	 * were no waiters remaining.
    780    1.2        ad 	 */
    781    1.2        ad 	ts = turnstile_lookup(mtx);
    782    1.2        ad 
    783    1.2        ad 	if (ts == NULL) {
    784    1.2        ad 		MUTEX_RELEASE(mtx);
    785    1.2        ad 		turnstile_exit(mtx);
    786    1.2        ad 	} else {
    787    1.2        ad 		MUTEX_RELEASE(mtx);
    788    1.2        ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    789    1.2        ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    790    1.2        ad 	}
    791    1.2        ad }
    792    1.2        ad 
    793    1.4        ad #ifndef __HAVE_SIMPLE_MUTEXES
    794    1.4        ad /*
    795    1.4        ad  * mutex_wakeup:
    796    1.4        ad  *
    797    1.4        ad  *	Support routine for mutex_exit() that wakes up all waiters.
    798    1.4        ad  *	We assume that the mutex has been released, but it need not
    799    1.4        ad  *	be.
    800    1.4        ad  */
    801    1.4        ad void
    802    1.4        ad mutex_wakeup(kmutex_t *mtx)
    803    1.4        ad {
    804    1.4        ad 	turnstile_t *ts;
    805    1.4        ad 
    806    1.4        ad 	ts = turnstile_lookup(mtx);
    807    1.4        ad 	if (ts == NULL) {
    808    1.4        ad 		turnstile_exit(mtx);
    809    1.4        ad 		return;
    810    1.4        ad 	}
    811    1.4        ad 	MUTEX_CLEAR_WAITERS(mtx);
    812    1.4        ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    813    1.4        ad }
    814    1.4        ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    815    1.4        ad 
    816    1.2        ad /*
    817    1.2        ad  * mutex_owned:
    818    1.2        ad  *
    819    1.3        ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    820    1.3        ad  *	holds the mutex.
    821    1.2        ad  */
    822    1.2        ad int
    823   1.66  christos mutex_owned(const kmutex_t *mtx)
    824    1.2        ad {
    825    1.2        ad 
    826   1.35        ad 	if (mtx == NULL)
    827   1.35        ad 		return 0;
    828   1.87        ad 	if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
    829    1.2        ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    830    1.2        ad #ifdef FULL
    831   1.60      matt 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    832    1.2        ad #else
    833    1.2        ad 	return 1;
    834    1.2        ad #endif
    835    1.2        ad }
    836    1.2        ad 
    837    1.2        ad /*
    838    1.2        ad  * mutex_owner:
    839    1.2        ad  *
    840    1.6        ad  *	Return the current owner of an adaptive mutex.  Used for
    841    1.6        ad  *	priority inheritance.
    842    1.2        ad  */
    843   1.27        ad lwp_t *
    844   1.66  christos mutex_owner(const kmutex_t *mtx)
    845    1.2        ad {
    846    1.2        ad 
    847   1.87        ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
    848    1.2        ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    849    1.2        ad }
    850    1.2        ad 
    851    1.2        ad /*
    852   1.81        ad  * mutex_owner_running:
    853   1.81        ad  *
    854   1.82        ad  *	Return true if an adaptive mutex is unheld, or held and the owner is
    855   1.89        ad  *	running on a CPU.  For the pagedaemon only - do not document or use
    856   1.89        ad  *	in other code.
    857   1.81        ad  */
    858   1.81        ad bool
    859   1.81        ad mutex_owner_running(const kmutex_t *mtx)
    860   1.81        ad {
    861   1.82        ad #ifdef MULTIPROCESSOR
    862   1.82        ad 	uintptr_t owner;
    863   1.81        ad 	bool rv;
    864   1.81        ad 
    865   1.87        ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
    866   1.81        ad 	kpreempt_disable();
    867   1.82        ad 	owner = mtx->mtx_owner;
    868   1.84       kre 	rv = !MUTEX_OWNED(owner) || mutex_oncpu(MUTEX_OWNER(owner));
    869   1.81        ad 	kpreempt_enable();
    870   1.81        ad 	return rv;
    871   1.82        ad #else
    872   1.82        ad 	return mutex_owner(mtx) == curlwp;
    873   1.82        ad #endif
    874   1.81        ad }
    875   1.81        ad 
    876   1.81        ad /*
    877   1.65  pgoyette  * mutex_ownable:
    878   1.65  pgoyette  *
    879   1.65  pgoyette  *	When compiled with DEBUG and LOCKDEBUG defined, ensure that
    880   1.65  pgoyette  *	the mutex is available.  We cannot use !mutex_owned() since
    881   1.65  pgoyette  *	that won't work correctly for spin mutexes.
    882   1.65  pgoyette  */
    883   1.65  pgoyette int
    884   1.66  christos mutex_ownable(const kmutex_t *mtx)
    885   1.65  pgoyette {
    886   1.65  pgoyette 
    887   1.65  pgoyette #ifdef LOCKDEBUG
    888   1.65  pgoyette 	MUTEX_TESTLOCK(mtx);
    889   1.65  pgoyette #endif
    890   1.65  pgoyette 	return 1;
    891   1.65  pgoyette }
    892   1.65  pgoyette 
    893   1.65  pgoyette /*
    894    1.2        ad  * mutex_tryenter:
    895    1.2        ad  *
    896    1.2        ad  *	Try to acquire the mutex; return non-zero if we did.
    897    1.2        ad  */
    898    1.2        ad int
    899    1.2        ad mutex_tryenter(kmutex_t *mtx)
    900    1.2        ad {
    901    1.2        ad 	uintptr_t curthread;
    902    1.2        ad 
    903    1.2        ad 	/*
    904    1.2        ad 	 * Handle spin mutexes.
    905    1.2        ad 	 */
    906   1.87        ad 	if (MUTEX_SPIN_P(mtx->mtx_owner)) {
    907    1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    908    1.2        ad #ifdef FULL
    909   1.60      matt 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    910    1.4        ad 			MUTEX_WANTLOCK(mtx);
    911    1.2        ad 			MUTEX_LOCKED(mtx);
    912    1.2        ad 			return 1;
    913    1.2        ad 		}
    914    1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    915    1.2        ad #else
    916    1.4        ad 		MUTEX_WANTLOCK(mtx);
    917    1.2        ad 		MUTEX_LOCKED(mtx);
    918    1.2        ad 		return 1;
    919    1.2        ad #endif
    920    1.2        ad 	} else {
    921    1.2        ad 		curthread = (uintptr_t)curlwp;
    922    1.2        ad 		MUTEX_ASSERT(mtx, curthread != 0);
    923    1.2        ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    924    1.4        ad 			MUTEX_WANTLOCK(mtx);
    925    1.2        ad 			MUTEX_LOCKED(mtx);
    926    1.2        ad 			MUTEX_DASSERT(mtx,
    927    1.2        ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    928    1.2        ad 			return 1;
    929    1.2        ad 		}
    930    1.2        ad 	}
    931    1.2        ad 
    932    1.2        ad 	return 0;
    933    1.2        ad }
    934    1.2        ad 
    935    1.2        ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    936    1.2        ad /*
    937    1.2        ad  * mutex_spin_retry:
    938    1.2        ad  *
    939    1.2        ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    940    1.2        ad  *	has already raised the SPL, and adjusted counters.
    941    1.2        ad  */
    942    1.2        ad void
    943    1.2        ad mutex_spin_retry(kmutex_t *mtx)
    944    1.2        ad {
    945    1.2        ad #ifdef MULTIPROCESSOR
    946    1.2        ad 	u_int count;
    947    1.2        ad 	LOCKSTAT_TIMER(spintime);
    948    1.2        ad 	LOCKSTAT_FLAG(lsflag);
    949    1.2        ad #ifdef LOCKDEBUG
    950    1.2        ad 	u_int spins = 0;
    951    1.2        ad #endif	/* LOCKDEBUG */
    952    1.2        ad 
    953    1.2        ad 	MUTEX_WANTLOCK(mtx);
    954    1.2        ad 
    955    1.2        ad 	LOCKSTAT_ENTER(lsflag);
    956    1.2        ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    957    1.2        ad 	count = SPINLOCK_BACKOFF_MIN;
    958    1.2        ad 
    959    1.2        ad 	/*
    960    1.2        ad 	 * Spin testing the lock word and do exponential backoff
    961    1.2        ad 	 * to reduce cache line ping-ponging between CPUs.
    962    1.2        ad 	 */
    963    1.2        ad 	do {
    964   1.60      matt 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    965   1.63   msaitoh 			SPINLOCK_BACKOFF(count);
    966    1.2        ad #ifdef LOCKDEBUG
    967    1.2        ad 			if (SPINLOCK_SPINOUT(spins))
    968    1.2        ad 				MUTEX_ABORT(mtx, "spinout");
    969    1.2        ad #endif	/* LOCKDEBUG */
    970    1.2        ad 		}
    971   1.60      matt 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    972    1.2        ad 
    973    1.2        ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    974    1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    975    1.2        ad 	LOCKSTAT_EXIT(lsflag);
    976    1.2        ad 
    977    1.2        ad 	MUTEX_LOCKED(mtx);
    978    1.2        ad #else	/* MULTIPROCESSOR */
    979    1.2        ad 	MUTEX_ABORT(mtx, "locking against myself");
    980    1.2        ad #endif	/* MULTIPROCESSOR */
    981    1.2        ad }
    982    1.2        ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    983