kern_mutex.c revision 1.110 1 1.110 ad /* $NetBSD: kern_mutex.c,v 1.110 2023/09/23 18:48:04 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.110 ad * Copyright (c) 2002, 2006, 2007, 2008, 2019, 2023
5 1.110 ad * The NetBSD Foundation, Inc.
6 1.2 ad * All rights reserved.
7 1.2 ad *
8 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
9 1.2 ad * by Jason R. Thorpe and Andrew Doran.
10 1.2 ad *
11 1.2 ad * Redistribution and use in source and binary forms, with or without
12 1.2 ad * modification, are permitted provided that the following conditions
13 1.2 ad * are met:
14 1.2 ad * 1. Redistributions of source code must retain the above copyright
15 1.2 ad * notice, this list of conditions and the following disclaimer.
16 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
17 1.2 ad * notice, this list of conditions and the following disclaimer in the
18 1.2 ad * documentation and/or other materials provided with the distribution.
19 1.2 ad *
20 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
31 1.2 ad */
32 1.2 ad
33 1.2 ad /*
34 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
35 1.2 ad * a description of which can be found in:
36 1.2 ad *
37 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
38 1.2 ad * Richard McDougall.
39 1.2 ad */
40 1.2 ad
41 1.2 ad #define __MUTEX_PRIVATE
42 1.2 ad
43 1.2 ad #include <sys/cdefs.h>
44 1.110 ad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.110 2023/09/23 18:48:04 ad Exp $");
45 1.2 ad
46 1.2 ad #include <sys/param.h>
47 1.46 pooka #include <sys/atomic.h>
48 1.2 ad #include <sys/proc.h>
49 1.2 ad #include <sys/mutex.h>
50 1.2 ad #include <sys/sched.h>
51 1.2 ad #include <sys/sleepq.h>
52 1.2 ad #include <sys/systm.h>
53 1.2 ad #include <sys/lockdebug.h>
54 1.2 ad #include <sys/kernel.h>
55 1.24 ad #include <sys/intr.h>
56 1.29 xtraeme #include <sys/lock.h>
57 1.50 rmind #include <sys/types.h>
58 1.72 ozaki #include <sys/cpu.h>
59 1.74 ozaki #include <sys/pserialize.h>
60 1.2 ad
61 1.2 ad #include <dev/lockstat.h>
62 1.2 ad
63 1.28 ad #include <machine/lock.h>
64 1.28 ad
65 1.2 ad /*
66 1.2 ad * When not running a debug kernel, spin mutexes are not much
67 1.2 ad * more than an splraiseipl() and splx() pair.
68 1.2 ad */
69 1.2 ad
70 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
71 1.2 ad #define FULL
72 1.2 ad #endif
73 1.2 ad
74 1.2 ad /*
75 1.2 ad * Debugging support.
76 1.2 ad */
77 1.2 ad
78 1.2 ad #define MUTEX_WANTLOCK(mtx) \
79 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
80 1.54 mlelstv (uintptr_t)__builtin_return_address(0), 0)
81 1.65 pgoyette #define MUTEX_TESTLOCK(mtx) \
82 1.65 pgoyette LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
83 1.65 pgoyette (uintptr_t)__builtin_return_address(0), -1)
84 1.2 ad #define MUTEX_LOCKED(mtx) \
85 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
86 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
87 1.2 ad #define MUTEX_UNLOCKED(mtx) \
88 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
89 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
90 1.2 ad #define MUTEX_ABORT(mtx, msg) \
91 1.64 christos mutex_abort(__func__, __LINE__, mtx, msg)
92 1.2 ad
93 1.2 ad #if defined(LOCKDEBUG)
94 1.2 ad
95 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
96 1.2 ad do { \
97 1.75 ozaki if (__predict_false(!(cond))) \
98 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
99 1.76 skrll } while (/* CONSTCOND */ 0)
100 1.2 ad
101 1.2 ad #else /* LOCKDEBUG */
102 1.2 ad
103 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
104 1.2 ad
105 1.2 ad #endif /* LOCKDEBUG */
106 1.2 ad
107 1.2 ad #if defined(DIAGNOSTIC)
108 1.2 ad
109 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
110 1.2 ad do { \
111 1.75 ozaki if (__predict_false(!(cond))) \
112 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
113 1.2 ad } while (/* CONSTCOND */ 0)
114 1.2 ad
115 1.2 ad #else /* DIAGNOSTIC */
116 1.2 ad
117 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
118 1.2 ad
119 1.2 ad #endif /* DIAGNOSTIC */
120 1.2 ad
121 1.2 ad /*
122 1.60 matt * Some architectures can't use __cpu_simple_lock as is so allow a way
123 1.60 matt * for them to use an alternate definition.
124 1.60 matt */
125 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_INIT
126 1.60 matt #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
127 1.60 matt #endif
128 1.60 matt #ifndef MUTEX_SPINBIT_LOCKED_P
129 1.60 matt #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
130 1.60 matt #endif
131 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_TRY
132 1.60 matt #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
133 1.60 matt #endif
134 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
135 1.60 matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
136 1.60 matt #endif
137 1.60 matt
138 1.60 matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
139 1.60 matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
140 1.60 matt ((mtx)->mtx_ipl = makeiplcookie((ipl)))
141 1.60 matt #endif
142 1.60 matt
143 1.60 matt /*
144 1.2 ad * Spin mutex SPL save / restore.
145 1.2 ad */
146 1.2 ad
147 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
148 1.2 ad do { \
149 1.101 skrll const int s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
150 1.101 skrll struct cpu_info * const x__ci = curcpu(); \
151 1.101 skrll const int x__cnt = x__ci->ci_mtx_count--; \
152 1.37 ad __insn_barrier(); \
153 1.51 rmind if (x__cnt == 0) \
154 1.101 skrll x__ci->ci_mtx_oldspl = s; \
155 1.2 ad } while (/* CONSTCOND */ 0)
156 1.2 ad
157 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
158 1.2 ad do { \
159 1.101 skrll struct cpu_info * const x__ci = curcpu(); \
160 1.101 skrll const int s = x__ci->ci_mtx_oldspl; \
161 1.2 ad __insn_barrier(); \
162 1.96 rin if (++(x__ci->ci_mtx_count) == 0) \
163 1.2 ad splx(s); \
164 1.2 ad } while (/* CONSTCOND */ 0)
165 1.2 ad
166 1.2 ad /*
167 1.80 ad * Memory barriers.
168 1.80 ad */
169 1.80 ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
170 1.80 ad #define MUTEX_MEMBAR_ENTER()
171 1.80 ad #else
172 1.80 ad #define MUTEX_MEMBAR_ENTER() membar_enter()
173 1.80 ad #endif
174 1.80 ad
175 1.80 ad /*
176 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
177 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
178 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
179 1.2 ad * additional interlock.
180 1.2 ad */
181 1.2 ad
182 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
183 1.2 ad
184 1.2 ad #define MUTEX_OWNER(owner) \
185 1.2 ad (owner & MUTEX_THREAD)
186 1.88 ad #define MUTEX_HAS_WAITERS(mtx) \
187 1.88 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
188 1.2 ad
189 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
190 1.76 skrll do { \
191 1.49 skrll if (!dodebug) \
192 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
193 1.76 skrll } while (/* CONSTCOND */ 0)
194 1.2 ad
195 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
196 1.2 ad do { \
197 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
198 1.49 skrll if (!dodebug) \
199 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
200 1.60 matt MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
201 1.60 matt MUTEX_SPINBIT_LOCK_INIT((mtx)); \
202 1.2 ad } while (/* CONSTCOND */ 0)
203 1.2 ad
204 1.2 ad #define MUTEX_DESTROY(mtx) \
205 1.2 ad do { \
206 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
207 1.76 skrll } while (/* CONSTCOND */ 0)
208 1.2 ad
209 1.87 ad #define MUTEX_SPIN_P(owner) \
210 1.87 ad (((owner) & MUTEX_BIT_SPIN) != 0)
211 1.87 ad #define MUTEX_ADAPTIVE_P(owner) \
212 1.87 ad (((owner) & MUTEX_BIT_SPIN) == 0)
213 1.2 ad
214 1.98 thorpej #ifndef MUTEX_CAS
215 1.98 thorpej #define MUTEX_CAS(p, o, n) \
216 1.98 thorpej (atomic_cas_ulong((volatile unsigned long *)(p), (o), (n)) == (o))
217 1.98 thorpej #endif /* MUTEX_CAS */
218 1.98 thorpej
219 1.49 skrll #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
220 1.23 yamt #if defined(LOCKDEBUG)
221 1.49 skrll #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
222 1.59 matt #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
223 1.23 yamt #else /* defined(LOCKDEBUG) */
224 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
225 1.59 matt #define MUTEX_INHERITDEBUG(n, o) /* nothing */
226 1.23 yamt #endif /* defined(LOCKDEBUG) */
227 1.2 ad
228 1.2 ad static inline int
229 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
230 1.2 ad {
231 1.2 ad int rv;
232 1.59 matt uintptr_t oldown = 0;
233 1.59 matt uintptr_t newown = curthread;
234 1.23 yamt
235 1.59 matt MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
236 1.59 matt MUTEX_INHERITDEBUG(newown, oldown);
237 1.59 matt rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
238 1.104 riastrad membar_acquire();
239 1.2 ad return rv;
240 1.2 ad }
241 1.2 ad
242 1.2 ad static inline int
243 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
244 1.2 ad {
245 1.2 ad int rv;
246 1.107 riastrad
247 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
248 1.80 ad MUTEX_MEMBAR_ENTER();
249 1.2 ad return rv;
250 1.2 ad }
251 1.2 ad
252 1.2 ad static inline void
253 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
254 1.2 ad {
255 1.59 matt uintptr_t newown;
256 1.23 yamt
257 1.59 matt newown = 0;
258 1.59 matt MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
259 1.104 riastrad atomic_store_release(&mtx->mtx_owner, newown);
260 1.2 ad }
261 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
262 1.2 ad
263 1.2 ad /*
264 1.2 ad * Patch in stubs via strong alias where they are not available.
265 1.2 ad */
266 1.2 ad
267 1.2 ad #if defined(LOCKDEBUG)
268 1.2 ad #undef __HAVE_MUTEX_STUBS
269 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
270 1.2 ad #endif
271 1.2 ad
272 1.2 ad #ifndef __HAVE_MUTEX_STUBS
273 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
274 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
275 1.2 ad #endif
276 1.2 ad
277 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
278 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
279 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
280 1.2 ad #endif
281 1.2 ad
282 1.105 riastrad static void mutex_abort(const char *, size_t, volatile const kmutex_t *,
283 1.105 riastrad const char *);
284 1.79 ozaki static void mutex_dump(const volatile void *, lockop_printer_t);
285 1.105 riastrad static lwp_t *mutex_owner(wchan_t);
286 1.2 ad
287 1.2 ad lockops_t mutex_spin_lockops = {
288 1.68 ozaki .lo_name = "Mutex",
289 1.68 ozaki .lo_type = LOCKOPS_SPIN,
290 1.68 ozaki .lo_dump = mutex_dump,
291 1.2 ad };
292 1.2 ad
293 1.2 ad lockops_t mutex_adaptive_lockops = {
294 1.68 ozaki .lo_name = "Mutex",
295 1.68 ozaki .lo_type = LOCKOPS_SLEEP,
296 1.68 ozaki .lo_dump = mutex_dump,
297 1.2 ad };
298 1.2 ad
299 1.5 yamt syncobj_t mutex_syncobj = {
300 1.108 riastrad .sobj_name = "mutex",
301 1.70 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
302 1.110 ad .sobj_boostpri = PRI_KERNEL,
303 1.70 ozaki .sobj_unsleep = turnstile_unsleep,
304 1.70 ozaki .sobj_changepri = turnstile_changepri,
305 1.70 ozaki .sobj_lendpri = sleepq_lendpri,
306 1.105 riastrad .sobj_owner = mutex_owner,
307 1.5 yamt };
308 1.5 yamt
309 1.2 ad /*
310 1.2 ad * mutex_dump:
311 1.2 ad *
312 1.2 ad * Dump the contents of a mutex structure.
313 1.2 ad */
314 1.78 ozaki static void
315 1.79 ozaki mutex_dump(const volatile void *cookie, lockop_printer_t pr)
316 1.2 ad {
317 1.67 christos const volatile kmutex_t *mtx = cookie;
318 1.87 ad uintptr_t owner = mtx->mtx_owner;
319 1.2 ad
320 1.79 ozaki pr("owner field : %#018lx wait/spin: %16d/%d\n",
321 1.88 ad (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
322 1.87 ad MUTEX_SPIN_P(owner));
323 1.2 ad }
324 1.2 ad
325 1.2 ad /*
326 1.2 ad * mutex_abort:
327 1.2 ad *
328 1.3 ad * Dump information about an error and panic the system. This
329 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
330 1.3 ad * we ask the compiler to not inline it.
331 1.2 ad */
332 1.78 ozaki static void __noinline
333 1.105 riastrad mutex_abort(const char *func, size_t line, volatile const kmutex_t *mtx,
334 1.105 riastrad const char *msg)
335 1.2 ad {
336 1.2 ad
337 1.87 ad LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
338 1.64 christos &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
339 1.2 ad }
340 1.2 ad
341 1.2 ad /*
342 1.2 ad * mutex_init:
343 1.2 ad *
344 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
345 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
346 1.2 ad * CPU time. We can't easily provide a type of mutex that always
347 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
348 1.2 ad * mutexes unlocked.
349 1.2 ad */
350 1.2 ad void
351 1.71 ozaki _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
352 1.71 ozaki uintptr_t return_address)
353 1.2 ad {
354 1.81 ad lockops_t *lockops __unused;
355 1.23 yamt bool dodebug;
356 1.2 ad
357 1.2 ad memset(mtx, 0, sizeof(*mtx));
358 1.2 ad
359 1.81 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
360 1.81 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
361 1.81 ad ipl == IPL_SOFTSERIAL) {
362 1.81 ad lockops = (type == MUTEX_NODEBUG ?
363 1.81 ad NULL : &mutex_adaptive_lockops);
364 1.81 ad dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
365 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
366 1.81 ad } else {
367 1.81 ad lockops = (type == MUTEX_NODEBUG ?
368 1.81 ad NULL : &mutex_spin_lockops);
369 1.81 ad dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
370 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
371 1.2 ad }
372 1.2 ad }
373 1.2 ad
374 1.71 ozaki void
375 1.71 ozaki mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
376 1.71 ozaki {
377 1.71 ozaki
378 1.71 ozaki _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
379 1.71 ozaki }
380 1.71 ozaki
381 1.2 ad /*
382 1.2 ad * mutex_destroy:
383 1.2 ad *
384 1.2 ad * Tear down a mutex.
385 1.2 ad */
386 1.2 ad void
387 1.2 ad mutex_destroy(kmutex_t *mtx)
388 1.2 ad {
389 1.87 ad uintptr_t owner = mtx->mtx_owner;
390 1.2 ad
391 1.87 ad if (MUTEX_ADAPTIVE_P(owner)) {
392 1.90 chs MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
393 1.90 chs MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
394 1.2 ad } else {
395 1.60 matt MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
396 1.2 ad }
397 1.2 ad
398 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
399 1.2 ad MUTEX_DESTROY(mtx);
400 1.2 ad }
401 1.2 ad
402 1.50 rmind #ifdef MULTIPROCESSOR
403 1.2 ad /*
404 1.50 rmind * mutex_oncpu:
405 1.2 ad *
406 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
407 1.2 ad * system. If the target is waiting on the kernel big lock, then we
408 1.15 ad * must release it. This is necessary to avoid deadlock.
409 1.2 ad */
410 1.50 rmind static bool
411 1.50 rmind mutex_oncpu(uintptr_t owner)
412 1.2 ad {
413 1.2 ad struct cpu_info *ci;
414 1.50 rmind lwp_t *l;
415 1.2 ad
416 1.50 rmind KASSERT(kpreempt_disabled());
417 1.50 rmind
418 1.50 rmind if (!MUTEX_OWNED(owner)) {
419 1.50 rmind return false;
420 1.50 rmind }
421 1.2 ad
422 1.50 rmind /*
423 1.50 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
424 1.50 rmind * We must have kernel preemption disabled for that.
425 1.50 rmind */
426 1.50 rmind l = (lwp_t *)MUTEX_OWNER(owner);
427 1.50 rmind ci = l->l_cpu;
428 1.2 ad
429 1.50 rmind if (ci && ci->ci_curlwp == l) {
430 1.50 rmind /* Target is running; do we need to block? */
431 1.103 riastrad return (atomic_load_relaxed(&ci->ci_biglock_wanted) != l);
432 1.50 rmind }
433 1.15 ad
434 1.50 rmind /* Not running. It may be safe to block now. */
435 1.50 rmind return false;
436 1.2 ad }
437 1.15 ad #endif /* MULTIPROCESSOR */
438 1.2 ad
439 1.2 ad /*
440 1.2 ad * mutex_vector_enter:
441 1.2 ad *
442 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In
443 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
444 1.62 prlw1 * fast-path stubs are available. If a mutex_spin_enter() stub is
445 1.2 ad * not available, then it is also aliased directly here.
446 1.2 ad */
447 1.2 ad void
448 1.2 ad mutex_vector_enter(kmutex_t *mtx)
449 1.2 ad {
450 1.2 ad uintptr_t owner, curthread;
451 1.2 ad turnstile_t *ts;
452 1.2 ad #ifdef MULTIPROCESSOR
453 1.2 ad u_int count;
454 1.2 ad #endif
455 1.2 ad LOCKSTAT_COUNTER(spincnt);
456 1.2 ad LOCKSTAT_COUNTER(slpcnt);
457 1.2 ad LOCKSTAT_TIMER(spintime);
458 1.2 ad LOCKSTAT_TIMER(slptime);
459 1.2 ad LOCKSTAT_FLAG(lsflag);
460 1.2 ad
461 1.2 ad /*
462 1.2 ad * Handle spin mutexes.
463 1.2 ad */
464 1.92 ad KPREEMPT_DISABLE(curlwp);
465 1.87 ad owner = mtx->mtx_owner;
466 1.87 ad if (MUTEX_SPIN_P(owner)) {
467 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
468 1.2 ad u_int spins = 0;
469 1.2 ad #endif
470 1.92 ad KPREEMPT_ENABLE(curlwp);
471 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
472 1.2 ad MUTEX_WANTLOCK(mtx);
473 1.2 ad #ifdef FULL
474 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
475 1.2 ad MUTEX_LOCKED(mtx);
476 1.2 ad return;
477 1.2 ad }
478 1.2 ad #if !defined(MULTIPROCESSOR)
479 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
480 1.2 ad #else /* !MULTIPROCESSOR */
481 1.2 ad
482 1.2 ad LOCKSTAT_ENTER(lsflag);
483 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
484 1.2 ad count = SPINLOCK_BACKOFF_MIN;
485 1.2 ad
486 1.2 ad /*
487 1.2 ad * Spin testing the lock word and do exponential backoff
488 1.2 ad * to reduce cache line ping-ponging between CPUs.
489 1.2 ad */
490 1.2 ad do {
491 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
492 1.97 thorpej SPINLOCK_SPIN_HOOK;
493 1.63 msaitoh SPINLOCK_BACKOFF(count);
494 1.2 ad #ifdef LOCKDEBUG
495 1.2 ad if (SPINLOCK_SPINOUT(spins))
496 1.2 ad MUTEX_ABORT(mtx, "spinout");
497 1.2 ad #endif /* LOCKDEBUG */
498 1.2 ad }
499 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
500 1.2 ad
501 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
502 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
503 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
504 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
505 1.2 ad }
506 1.2 ad LOCKSTAT_EXIT(lsflag);
507 1.2 ad #endif /* !MULTIPROCESSOR */
508 1.2 ad #endif /* FULL */
509 1.2 ad MUTEX_LOCKED(mtx);
510 1.2 ad return;
511 1.2 ad }
512 1.2 ad
513 1.2 ad curthread = (uintptr_t)curlwp;
514 1.2 ad
515 1.87 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
516 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
517 1.72 ozaki MUTEX_ASSERT(mtx, !cpu_intr_p());
518 1.2 ad MUTEX_WANTLOCK(mtx);
519 1.2 ad
520 1.102 ozaki if (__predict_true(panicstr == NULL)) {
521 1.77 ozaki KDASSERT(pserialize_not_in_read_section());
522 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
523 1.2 ad }
524 1.2 ad
525 1.2 ad LOCKSTAT_ENTER(lsflag);
526 1.2 ad
527 1.2 ad /*
528 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
529 1.2 ad * determine that the owner is not running on a processor,
530 1.2 ad * then we stop spinning, and sleep instead.
531 1.2 ad */
532 1.87 ad for (;;) {
533 1.2 ad if (!MUTEX_OWNED(owner)) {
534 1.2 ad /*
535 1.2 ad * Mutex owner clear could mean two things:
536 1.2 ad *
537 1.2 ad * * The mutex has been released.
538 1.2 ad * * The owner field hasn't been set yet.
539 1.2 ad *
540 1.2 ad * Try to acquire it again. If that fails,
541 1.2 ad * we'll just loop again.
542 1.2 ad */
543 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
544 1.2 ad break;
545 1.34 ad owner = mtx->mtx_owner;
546 1.2 ad continue;
547 1.2 ad }
548 1.50 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
549 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
550 1.50 rmind }
551 1.2 ad #ifdef MULTIPROCESSOR
552 1.2 ad /*
553 1.2 ad * Check to see if the owner is running on a processor.
554 1.2 ad * If so, then we should just spin, as the owner will
555 1.92 ad * likely release the lock very soon.
556 1.2 ad */
557 1.50 rmind if (mutex_oncpu(owner)) {
558 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
559 1.2 ad count = SPINLOCK_BACKOFF_MIN;
560 1.50 rmind do {
561 1.53 rmind KPREEMPT_ENABLE(curlwp);
562 1.34 ad SPINLOCK_BACKOFF(count);
563 1.53 rmind KPREEMPT_DISABLE(curlwp);
564 1.2 ad owner = mtx->mtx_owner;
565 1.50 rmind } while (mutex_oncpu(owner));
566 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
567 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
568 1.2 ad if (!MUTEX_OWNED(owner))
569 1.2 ad continue;
570 1.2 ad }
571 1.2 ad #endif
572 1.2 ad
573 1.2 ad ts = turnstile_lookup(mtx);
574 1.2 ad
575 1.2 ad /*
576 1.2 ad * Once we have the turnstile chain interlock, mark the
577 1.69 skrll * mutex as having waiters. If that fails, spin again:
578 1.2 ad * chances are that the mutex has been released.
579 1.2 ad */
580 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
581 1.2 ad turnstile_exit(mtx);
582 1.34 ad owner = mtx->mtx_owner;
583 1.2 ad continue;
584 1.2 ad }
585 1.2 ad
586 1.2 ad #ifdef MULTIPROCESSOR
587 1.2 ad /*
588 1.2 ad * mutex_exit() is permitted to release the mutex without
589 1.2 ad * any interlocking instructions, and the following can
590 1.2 ad * occur as a result:
591 1.2 ad *
592 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
593 1.2 ad * ---------------------------- ----------------------------
594 1.107 riastrad * .. load mtx->mtx_owner
595 1.107 riastrad * .. see has-waiters bit clear
596 1.107 riastrad * set has-waiters bit ..
597 1.107 riastrad * .. store mtx->mtx_owner := 0
598 1.2 ad * return success
599 1.2 ad *
600 1.50 rmind * There is another race that can occur: a third CPU could
601 1.2 ad * acquire the mutex as soon as it is released. Since
602 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
603 1.2 ad * something that we need to worry about too much. What we
604 1.2 ad * do need to ensure is that the waiters bit gets set.
605 1.2 ad *
606 1.2 ad * To allow the unlocked release, we need to make some
607 1.2 ad * assumptions here:
608 1.2 ad *
609 1.2 ad * o Release is the only non-atomic/unlocked operation
610 1.2 ad * that can be performed on the mutex. (It must still
611 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
612 1.2 ad * or preempted).
613 1.2 ad *
614 1.107 riastrad * o At any given time on each mutex, MUTEX_SET_WAITERS()
615 1.107 riastrad * can only ever be in progress on one CPU in the
616 1.107 riastrad * system - guaranteed by the turnstile chain lock.
617 1.2 ad *
618 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
619 1.2 ad * and release can modify a mutex with a non-zero
620 1.2 ad * owner field.
621 1.2 ad *
622 1.2 ad * o If the holding LWP switches away, it posts a store
623 1.2 ad * fence before changing curlwp, ensuring that any
624 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
625 1.2 ad * completes before the modification of curlwp becomes
626 1.2 ad * visible to this CPU.
627 1.2 ad *
628 1.95 skrll * o cpu_switchto() posts a store fence after setting curlwp
629 1.2 ad * and before resuming execution of an LWP.
630 1.93 skrll *
631 1.2 ad * o _kernel_lock() posts a store fence before setting
632 1.93 skrll * curcpu()->ci_biglock_wanted, and after clearing it.
633 1.2 ad * This ensures that any overwrite of the mutex waiters
634 1.2 ad * flag by mutex_exit() completes before the modification
635 1.2 ad * of ci_biglock_wanted becomes visible.
636 1.2 ad *
637 1.107 riastrad * After MUTEX_SET_WAITERS() succeeds, simultaneously
638 1.107 riastrad * confirming that the same LWP still holds the mutex
639 1.107 riastrad * since we took the turnstile lock and notifying it that
640 1.107 riastrad * we're waiting, we check the lock holder's status again.
641 1.107 riastrad * Some of the possible outcomes (not an exhaustive list;
642 1.107 riastrad * XXX this should be made exhaustive):
643 1.2 ad *
644 1.50 rmind * 1. The on-CPU check returns true: the holding LWP is
645 1.2 ad * running again. The lock may be released soon and
646 1.2 ad * we should spin. Importantly, we can't trust the
647 1.2 ad * value of the waiters flag.
648 1.2 ad *
649 1.50 rmind * 2. The on-CPU check returns false: the holding LWP is
650 1.39 yamt * not running. We now have the opportunity to check
651 1.2 ad * if mutex_exit() has blatted the modifications made
652 1.2 ad * by MUTEX_SET_WAITERS().
653 1.2 ad *
654 1.50 rmind * 3. The on-CPU check returns false: the holding LWP may
655 1.2 ad * or may not be running. It has context switched at
656 1.2 ad * some point during our check. Again, we have the
657 1.2 ad * chance to see if the waiters bit is still set or
658 1.2 ad * has been overwritten.
659 1.2 ad *
660 1.50 rmind * 4. The on-CPU check returns false: the holding LWP is
661 1.2 ad * running on a CPU, but wants the big lock. It's OK
662 1.2 ad * to check the waiters field in this case.
663 1.2 ad *
664 1.2 ad * 5. The has-waiters check fails: the mutex has been
665 1.2 ad * released, the waiters flag cleared and another LWP
666 1.2 ad * now owns the mutex.
667 1.2 ad *
668 1.2 ad * 6. The has-waiters check fails: the mutex has been
669 1.2 ad * released.
670 1.2 ad *
671 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
672 1.2 ad * as we might never be awoken.
673 1.2 ad */
674 1.87 ad if (mutex_oncpu(owner)) {
675 1.2 ad turnstile_exit(mtx);
676 1.34 ad owner = mtx->mtx_owner;
677 1.2 ad continue;
678 1.2 ad }
679 1.87 ad membar_consumer();
680 1.88 ad if (!MUTEX_HAS_WAITERS(mtx)) {
681 1.87 ad turnstile_exit(mtx);
682 1.88 ad owner = mtx->mtx_owner;
683 1.87 ad continue;
684 1.87 ad }
685 1.2 ad #endif /* MULTIPROCESSOR */
686 1.2 ad
687 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
688 1.2 ad
689 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
690 1.2 ad
691 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
692 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
693 1.34 ad
694 1.34 ad owner = mtx->mtx_owner;
695 1.2 ad }
696 1.50 rmind KPREEMPT_ENABLE(curlwp);
697 1.2 ad
698 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
699 1.2 ad slpcnt, slptime);
700 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
701 1.2 ad spincnt, spintime);
702 1.2 ad LOCKSTAT_EXIT(lsflag);
703 1.2 ad
704 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
705 1.2 ad MUTEX_LOCKED(mtx);
706 1.2 ad }
707 1.2 ad
708 1.2 ad /*
709 1.2 ad * mutex_vector_exit:
710 1.2 ad *
711 1.2 ad * Support routine for mutex_exit() that handles all cases.
712 1.2 ad */
713 1.2 ad void
714 1.2 ad mutex_vector_exit(kmutex_t *mtx)
715 1.2 ad {
716 1.2 ad turnstile_t *ts;
717 1.2 ad uintptr_t curthread;
718 1.2 ad
719 1.87 ad if (MUTEX_SPIN_P(mtx->mtx_owner)) {
720 1.2 ad #ifdef FULL
721 1.60 matt if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
722 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
723 1.33 ad }
724 1.2 ad MUTEX_UNLOCKED(mtx);
725 1.60 matt MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
726 1.2 ad #endif
727 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
728 1.2 ad return;
729 1.2 ad }
730 1.2 ad
731 1.85 ad #ifndef __HAVE_MUTEX_STUBS
732 1.86 ad /*
733 1.86 ad * On some architectures without mutex stubs, we can enter here to
734 1.93 skrll * release mutexes before interrupts and whatnot are up and running.
735 1.86 ad * We need this hack to keep them sweet.
736 1.86 ad */
737 1.85 ad if (__predict_false(cold)) {
738 1.85 ad MUTEX_UNLOCKED(mtx);
739 1.85 ad MUTEX_RELEASE(mtx);
740 1.85 ad return;
741 1.85 ad }
742 1.85 ad #endif
743 1.85 ad
744 1.2 ad curthread = (uintptr_t)curlwp;
745 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
746 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
747 1.2 ad MUTEX_UNLOCKED(mtx);
748 1.58 mrg #if !defined(LOCKDEBUG)
749 1.58 mrg __USE(curthread);
750 1.58 mrg #endif
751 1.2 ad
752 1.15 ad #ifdef LOCKDEBUG
753 1.15 ad /*
754 1.15 ad * Avoid having to take the turnstile chain lock every time
755 1.15 ad * around. Raise the priority level to splhigh() in order
756 1.15 ad * to disable preemption and so make the following atomic.
757 1.109 ad * This also blocks out soft interrupts that could set the
758 1.109 ad * waiters bit.
759 1.15 ad */
760 1.15 ad {
761 1.15 ad int s = splhigh();
762 1.88 ad if (!MUTEX_HAS_WAITERS(mtx)) {
763 1.15 ad MUTEX_RELEASE(mtx);
764 1.15 ad splx(s);
765 1.15 ad return;
766 1.15 ad }
767 1.15 ad splx(s);
768 1.15 ad }
769 1.15 ad #endif
770 1.15 ad
771 1.2 ad /*
772 1.2 ad * Get this lock's turnstile. This gets the interlock on
773 1.2 ad * the sleep queue. Once we have that, we can clear the
774 1.2 ad * lock. If there was no turnstile for the lock, there
775 1.2 ad * were no waiters remaining.
776 1.2 ad */
777 1.2 ad ts = turnstile_lookup(mtx);
778 1.2 ad
779 1.2 ad if (ts == NULL) {
780 1.2 ad MUTEX_RELEASE(mtx);
781 1.2 ad turnstile_exit(mtx);
782 1.2 ad } else {
783 1.2 ad MUTEX_RELEASE(mtx);
784 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
785 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
786 1.2 ad }
787 1.2 ad }
788 1.2 ad
789 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
790 1.4 ad /*
791 1.4 ad * mutex_wakeup:
792 1.4 ad *
793 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
794 1.4 ad * We assume that the mutex has been released, but it need not
795 1.4 ad * be.
796 1.4 ad */
797 1.4 ad void
798 1.4 ad mutex_wakeup(kmutex_t *mtx)
799 1.4 ad {
800 1.4 ad turnstile_t *ts;
801 1.4 ad
802 1.4 ad ts = turnstile_lookup(mtx);
803 1.4 ad if (ts == NULL) {
804 1.4 ad turnstile_exit(mtx);
805 1.4 ad return;
806 1.4 ad }
807 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
808 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
809 1.4 ad }
810 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
811 1.4 ad
812 1.2 ad /*
813 1.2 ad * mutex_owned:
814 1.2 ad *
815 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
816 1.3 ad * holds the mutex.
817 1.2 ad */
818 1.2 ad int
819 1.66 christos mutex_owned(const kmutex_t *mtx)
820 1.2 ad {
821 1.2 ad
822 1.35 ad if (mtx == NULL)
823 1.35 ad return 0;
824 1.87 ad if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
825 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
826 1.2 ad #ifdef FULL
827 1.60 matt return MUTEX_SPINBIT_LOCKED_P(mtx);
828 1.2 ad #else
829 1.2 ad return 1;
830 1.2 ad #endif
831 1.2 ad }
832 1.2 ad
833 1.2 ad /*
834 1.2 ad * mutex_owner:
835 1.2 ad *
836 1.6 ad * Return the current owner of an adaptive mutex. Used for
837 1.6 ad * priority inheritance.
838 1.2 ad */
839 1.105 riastrad static lwp_t *
840 1.105 riastrad mutex_owner(wchan_t wchan)
841 1.2 ad {
842 1.105 riastrad volatile const kmutex_t *mtx = wchan;
843 1.2 ad
844 1.87 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
845 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
846 1.2 ad }
847 1.2 ad
848 1.2 ad /*
849 1.65 pgoyette * mutex_ownable:
850 1.65 pgoyette *
851 1.65 pgoyette * When compiled with DEBUG and LOCKDEBUG defined, ensure that
852 1.65 pgoyette * the mutex is available. We cannot use !mutex_owned() since
853 1.65 pgoyette * that won't work correctly for spin mutexes.
854 1.65 pgoyette */
855 1.65 pgoyette int
856 1.66 christos mutex_ownable(const kmutex_t *mtx)
857 1.65 pgoyette {
858 1.65 pgoyette
859 1.65 pgoyette #ifdef LOCKDEBUG
860 1.65 pgoyette MUTEX_TESTLOCK(mtx);
861 1.65 pgoyette #endif
862 1.65 pgoyette return 1;
863 1.65 pgoyette }
864 1.65 pgoyette
865 1.65 pgoyette /*
866 1.2 ad * mutex_tryenter:
867 1.2 ad *
868 1.2 ad * Try to acquire the mutex; return non-zero if we did.
869 1.2 ad */
870 1.2 ad int
871 1.2 ad mutex_tryenter(kmutex_t *mtx)
872 1.2 ad {
873 1.2 ad uintptr_t curthread;
874 1.2 ad
875 1.2 ad /*
876 1.2 ad * Handle spin mutexes.
877 1.2 ad */
878 1.87 ad if (MUTEX_SPIN_P(mtx->mtx_owner)) {
879 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
880 1.2 ad #ifdef FULL
881 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
882 1.4 ad MUTEX_WANTLOCK(mtx);
883 1.2 ad MUTEX_LOCKED(mtx);
884 1.2 ad return 1;
885 1.2 ad }
886 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
887 1.2 ad #else
888 1.4 ad MUTEX_WANTLOCK(mtx);
889 1.2 ad MUTEX_LOCKED(mtx);
890 1.2 ad return 1;
891 1.2 ad #endif
892 1.2 ad } else {
893 1.2 ad curthread = (uintptr_t)curlwp;
894 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
895 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
896 1.4 ad MUTEX_WANTLOCK(mtx);
897 1.2 ad MUTEX_LOCKED(mtx);
898 1.2 ad MUTEX_DASSERT(mtx,
899 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
900 1.2 ad return 1;
901 1.2 ad }
902 1.2 ad }
903 1.2 ad
904 1.2 ad return 0;
905 1.2 ad }
906 1.2 ad
907 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
908 1.2 ad /*
909 1.2 ad * mutex_spin_retry:
910 1.2 ad *
911 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
912 1.2 ad * has already raised the SPL, and adjusted counters.
913 1.2 ad */
914 1.2 ad void
915 1.2 ad mutex_spin_retry(kmutex_t *mtx)
916 1.2 ad {
917 1.2 ad #ifdef MULTIPROCESSOR
918 1.2 ad u_int count;
919 1.2 ad LOCKSTAT_TIMER(spintime);
920 1.2 ad LOCKSTAT_FLAG(lsflag);
921 1.2 ad #ifdef LOCKDEBUG
922 1.2 ad u_int spins = 0;
923 1.2 ad #endif /* LOCKDEBUG */
924 1.2 ad
925 1.2 ad MUTEX_WANTLOCK(mtx);
926 1.2 ad
927 1.2 ad LOCKSTAT_ENTER(lsflag);
928 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
929 1.2 ad count = SPINLOCK_BACKOFF_MIN;
930 1.2 ad
931 1.2 ad /*
932 1.2 ad * Spin testing the lock word and do exponential backoff
933 1.2 ad * to reduce cache line ping-ponging between CPUs.
934 1.2 ad */
935 1.2 ad do {
936 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
937 1.63 msaitoh SPINLOCK_BACKOFF(count);
938 1.2 ad #ifdef LOCKDEBUG
939 1.2 ad if (SPINLOCK_SPINOUT(spins))
940 1.2 ad MUTEX_ABORT(mtx, "spinout");
941 1.2 ad #endif /* LOCKDEBUG */
942 1.2 ad }
943 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
944 1.2 ad
945 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
946 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
947 1.2 ad LOCKSTAT_EXIT(lsflag);
948 1.2 ad
949 1.2 ad MUTEX_LOCKED(mtx);
950 1.2 ad #else /* MULTIPROCESSOR */
951 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
952 1.2 ad #endif /* MULTIPROCESSOR */
953 1.2 ad }
954 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
955