Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.21
      1  1.21  pooka /*	$NetBSD: kern_mutex.c,v 1.21 2007/11/04 17:26:02 pooka Exp $	*/
      2   1.2     ad 
      3   1.2     ad /*-
      4   1.2     ad  * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.2     ad  * All rights reserved.
      6   1.2     ad  *
      7   1.2     ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2     ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2     ad  *
     10   1.2     ad  * Redistribution and use in source and binary forms, with or without
     11   1.2     ad  * modification, are permitted provided that the following conditions
     12   1.2     ad  * are met:
     13   1.2     ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2     ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2     ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2     ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2     ad  *    documentation and/or other materials provided with the distribution.
     18   1.2     ad  * 3. All advertising materials mentioning features or use of this software
     19   1.2     ad  *    must display the following acknowledgement:
     20   1.2     ad  *	This product includes software developed by the NetBSD
     21   1.2     ad  *	Foundation, Inc. and its contributors.
     22   1.2     ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.2     ad  *    contributors may be used to endorse or promote products derived
     24   1.2     ad  *    from this software without specific prior written permission.
     25   1.2     ad  *
     26   1.2     ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.2     ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.2     ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.2     ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.2     ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.2     ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.2     ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.2     ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.2     ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.2     ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.2     ad  * POSSIBILITY OF SUCH DAMAGE.
     37   1.2     ad  */
     38   1.2     ad 
     39   1.2     ad /*
     40   1.2     ad  * Kernel mutex implementation, modeled after those found in Solaris,
     41   1.2     ad  * a description of which can be found in:
     42   1.2     ad  *
     43   1.2     ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44   1.2     ad  *	    Richard McDougall.
     45   1.2     ad  */
     46   1.2     ad 
     47   1.2     ad #define	__MUTEX_PRIVATE
     48   1.2     ad 
     49   1.2     ad #include <sys/cdefs.h>
     50  1.21  pooka __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.21 2007/11/04 17:26:02 pooka Exp $");
     51  1.18    dsl 
     52  1.18    dsl #include "opt_multiprocessor.h"
     53   1.2     ad 
     54   1.2     ad #include <sys/param.h>
     55   1.2     ad #include <sys/proc.h>
     56   1.2     ad #include <sys/mutex.h>
     57   1.2     ad #include <sys/sched.h>
     58   1.2     ad #include <sys/sleepq.h>
     59   1.2     ad #include <sys/systm.h>
     60   1.2     ad #include <sys/lockdebug.h>
     61   1.2     ad #include <sys/kernel.h>
     62   1.2     ad 
     63   1.2     ad #include <dev/lockstat.h>
     64   1.2     ad 
     65  1.20     ad #include <sys/intr.h>
     66   1.2     ad 
     67   1.2     ad /*
     68   1.2     ad  * When not running a debug kernel, spin mutexes are not much
     69   1.2     ad  * more than an splraiseipl() and splx() pair.
     70   1.2     ad  */
     71   1.2     ad 
     72   1.2     ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     73   1.2     ad #define	FULL
     74   1.2     ad #endif
     75   1.2     ad 
     76   1.2     ad /*
     77   1.2     ad  * Debugging support.
     78   1.2     ad  */
     79   1.2     ad 
     80   1.2     ad #define	MUTEX_WANTLOCK(mtx)					\
     81   1.2     ad     LOCKDEBUG_WANTLOCK(MUTEX_GETID(mtx),			\
     82   1.2     ad         (uintptr_t)__builtin_return_address(0), 0)
     83   1.2     ad #define	MUTEX_LOCKED(mtx)					\
     84   1.2     ad     LOCKDEBUG_LOCKED(MUTEX_GETID(mtx),				\
     85   1.2     ad         (uintptr_t)__builtin_return_address(0), 0)
     86   1.2     ad #define	MUTEX_UNLOCKED(mtx)					\
     87   1.2     ad     LOCKDEBUG_UNLOCKED(MUTEX_GETID(mtx),			\
     88   1.2     ad         (uintptr_t)__builtin_return_address(0), 0)
     89   1.2     ad #define	MUTEX_ABORT(mtx, msg)					\
     90  1.17     ad     mutex_abort(mtx, __func__, msg)
     91   1.2     ad 
     92   1.2     ad #if defined(LOCKDEBUG)
     93   1.2     ad 
     94   1.2     ad #define	MUTEX_DASSERT(mtx, cond)				\
     95   1.2     ad do {								\
     96   1.2     ad 	if (!(cond))						\
     97   1.2     ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     98   1.2     ad } while (/* CONSTCOND */ 0);
     99   1.2     ad 
    100   1.2     ad #else	/* LOCKDEBUG */
    101   1.2     ad 
    102   1.2     ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    103   1.2     ad 
    104   1.2     ad #endif /* LOCKDEBUG */
    105   1.2     ad 
    106   1.2     ad #if defined(DIAGNOSTIC)
    107   1.2     ad 
    108   1.2     ad #define	MUTEX_ASSERT(mtx, cond)					\
    109   1.2     ad do {								\
    110   1.2     ad 	if (!(cond))						\
    111   1.2     ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    112   1.2     ad } while (/* CONSTCOND */ 0)
    113   1.2     ad 
    114   1.2     ad #else	/* DIAGNOSTIC */
    115   1.2     ad 
    116   1.2     ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    117   1.2     ad 
    118   1.2     ad #endif	/* DIAGNOSTIC */
    119   1.2     ad 
    120   1.2     ad /*
    121   1.2     ad  * Spin mutex SPL save / restore.
    122   1.2     ad  */
    123  1.12   matt #ifndef MUTEX_COUNT_BIAS
    124  1.12   matt #define	MUTEX_COUNT_BIAS	0
    125  1.12   matt #endif
    126   1.2     ad 
    127   1.2     ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    128   1.2     ad do {									\
    129   1.2     ad 	struct cpu_info *x__ci = curcpu();				\
    130   1.2     ad 	int x__cnt, s;							\
    131   1.2     ad 	x__cnt = x__ci->ci_mtx_count--;					\
    132   1.2     ad 	s = splraiseipl(mtx->mtx_ipl);					\
    133  1.12   matt 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    134   1.2     ad 		x__ci->ci_mtx_oldspl = (s);				\
    135   1.2     ad } while (/* CONSTCOND */ 0)
    136   1.2     ad 
    137   1.2     ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    138   1.2     ad do {									\
    139   1.2     ad 	struct cpu_info *x__ci = curcpu();				\
    140   1.2     ad 	int s = x__ci->ci_mtx_oldspl;					\
    141   1.2     ad 	__insn_barrier();						\
    142  1.12   matt 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    143   1.2     ad 		splx(s);						\
    144   1.2     ad } while (/* CONSTCOND */ 0)
    145   1.2     ad 
    146   1.2     ad /*
    147   1.2     ad  * For architectures that provide 'simple' mutexes: they provide a
    148   1.2     ad  * CAS function that is either MP-safe, or does not need to be MP
    149   1.2     ad  * safe.  Adaptive mutexes on these architectures do not require an
    150   1.2     ad  * additional interlock.
    151   1.2     ad  */
    152   1.2     ad 
    153   1.2     ad #ifdef __HAVE_SIMPLE_MUTEXES
    154   1.2     ad 
    155   1.2     ad #define	MUTEX_OWNER(owner)						\
    156   1.2     ad 	(owner & MUTEX_THREAD)
    157   1.2     ad #define	MUTEX_OWNED(owner)						\
    158   1.2     ad 	(owner != 0)
    159   1.2     ad #define	MUTEX_HAS_WAITERS(mtx)						\
    160   1.2     ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    161   1.2     ad 
    162   1.2     ad #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, id)				\
    163   1.2     ad do {									\
    164   1.2     ad 	(mtx)->mtx_id = (id);						\
    165   1.2     ad } while (/* CONSTCOND */ 0);
    166   1.2     ad 
    167   1.2     ad #define	MUTEX_INITIALIZE_SPIN(mtx, id, ipl)				\
    168   1.2     ad do {									\
    169   1.2     ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    170   1.2     ad 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    171   1.2     ad 	(mtx)->mtx_id = (id);						\
    172   1.2     ad 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    173   1.2     ad } while (/* CONSTCOND */ 0)
    174   1.2     ad 
    175   1.2     ad #define	MUTEX_DESTROY(mtx)						\
    176   1.2     ad do {									\
    177   1.2     ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    178   1.2     ad 	(mtx)->mtx_id = -1;						\
    179   1.2     ad } while (/* CONSTCOND */ 0);
    180   1.2     ad 
    181   1.2     ad #define	MUTEX_SPIN_P(mtx)		\
    182   1.2     ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    183   1.2     ad #define	MUTEX_ADAPTIVE_P(mtx)		\
    184   1.2     ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    185   1.2     ad 
    186   1.2     ad #define	MUTEX_GETID(mtx)		((mtx)->mtx_id)
    187   1.2     ad 
    188   1.2     ad static inline int
    189   1.2     ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    190   1.2     ad {
    191   1.2     ad 	int rv;
    192   1.2     ad 	rv = MUTEX_CAS(&mtx->mtx_owner, 0UL, curthread);
    193   1.7  itohy 	MUTEX_RECEIVE(mtx);
    194   1.2     ad 	return rv;
    195   1.2     ad }
    196   1.2     ad 
    197   1.2     ad static inline int
    198   1.2     ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    199   1.2     ad {
    200   1.2     ad 	int rv;
    201   1.2     ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    202   1.7  itohy 	MUTEX_RECEIVE(mtx);
    203   1.2     ad 	return rv;
    204   1.2     ad }
    205   1.2     ad 
    206   1.2     ad static inline void
    207   1.2     ad MUTEX_RELEASE(kmutex_t *mtx)
    208   1.2     ad {
    209   1.7  itohy 	MUTEX_GIVE(mtx);
    210   1.2     ad 	mtx->mtx_owner = 0;
    211   1.2     ad }
    212   1.4     ad 
    213   1.4     ad static inline void
    214   1.4     ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    215   1.4     ad {
    216   1.4     ad 	/* nothing */
    217   1.4     ad }
    218   1.2     ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    219   1.2     ad 
    220   1.2     ad /*
    221   1.2     ad  * Patch in stubs via strong alias where they are not available.
    222   1.2     ad  */
    223   1.2     ad 
    224   1.2     ad #if defined(LOCKDEBUG)
    225   1.2     ad #undef	__HAVE_MUTEX_STUBS
    226   1.2     ad #undef	__HAVE_SPIN_MUTEX_STUBS
    227   1.2     ad #endif
    228   1.2     ad 
    229   1.2     ad #ifndef __HAVE_MUTEX_STUBS
    230   1.8  itohy __strong_alias(mutex_enter,mutex_vector_enter);
    231   1.8  itohy __strong_alias(mutex_exit,mutex_vector_exit);
    232   1.2     ad #endif
    233   1.2     ad 
    234   1.2     ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    235   1.8  itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    236   1.8  itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    237   1.2     ad #endif
    238   1.2     ad 
    239   1.2     ad void	mutex_abort(kmutex_t *, const char *, const char *);
    240   1.2     ad void	mutex_dump(volatile void *);
    241   1.2     ad int	mutex_onproc(uintptr_t, struct cpu_info **);
    242   1.6     ad static struct lwp *mutex_owner(wchan_t);
    243   1.2     ad 
    244   1.2     ad lockops_t mutex_spin_lockops = {
    245   1.2     ad 	"Mutex",
    246   1.2     ad 	0,
    247   1.2     ad 	mutex_dump
    248   1.2     ad };
    249   1.2     ad 
    250   1.2     ad lockops_t mutex_adaptive_lockops = {
    251   1.2     ad 	"Mutex",
    252   1.2     ad 	1,
    253   1.2     ad 	mutex_dump
    254   1.2     ad };
    255   1.2     ad 
    256   1.5   yamt syncobj_t mutex_syncobj = {
    257   1.5   yamt 	SOBJ_SLEEPQ_SORTED,
    258   1.5   yamt 	turnstile_unsleep,
    259   1.5   yamt 	turnstile_changepri,
    260   1.5   yamt 	sleepq_lendpri,
    261   1.6     ad 	mutex_owner,
    262   1.5   yamt };
    263   1.5   yamt 
    264   1.2     ad /*
    265   1.2     ad  * mutex_dump:
    266   1.2     ad  *
    267   1.2     ad  *	Dump the contents of a mutex structure.
    268   1.2     ad  */
    269   1.2     ad void
    270   1.2     ad mutex_dump(volatile void *cookie)
    271   1.2     ad {
    272   1.2     ad 	volatile kmutex_t *mtx = cookie;
    273   1.2     ad 
    274   1.2     ad 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    275   1.2     ad 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    276   1.2     ad 	    MUTEX_SPIN_P(mtx));
    277   1.2     ad }
    278   1.2     ad 
    279   1.2     ad /*
    280   1.2     ad  * mutex_abort:
    281   1.2     ad  *
    282   1.3     ad  *	Dump information about an error and panic the system.  This
    283   1.3     ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    284   1.3     ad  *	we ask the compiler to not inline it.
    285   1.2     ad  */
    286   1.8  itohy 
    287   1.8  itohy #if __GNUC_PREREQ__(3, 0)
    288   1.8  itohy __attribute ((noinline)) __attribute ((noreturn))
    289   1.8  itohy #endif
    290   1.8  itohy void
    291   1.2     ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    292   1.2     ad {
    293   1.2     ad 
    294   1.2     ad 	LOCKDEBUG_ABORT(MUTEX_GETID(mtx), mtx, (MUTEX_SPIN_P(mtx) ?
    295   1.3     ad 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    296   1.2     ad 	/* NOTREACHED */
    297   1.2     ad }
    298   1.2     ad 
    299   1.2     ad /*
    300   1.2     ad  * mutex_init:
    301   1.2     ad  *
    302   1.2     ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    303   1.2     ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    304   1.2     ad  *	CPU time.  We can't easily provide a type of mutex that always
    305   1.2     ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    306   1.2     ad  *	mutexes unlocked.
    307   1.2     ad  */
    308   1.2     ad void
    309   1.2     ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    310   1.2     ad {
    311   1.2     ad 	u_int id;
    312   1.2     ad 
    313   1.2     ad 	memset(mtx, 0, sizeof(*mtx));
    314   1.2     ad 
    315  1.15     ad 	switch (type) {
    316  1.15     ad 	case MUTEX_ADAPTIVE:
    317  1.15     ad 	case MUTEX_DEFAULT:
    318  1.15     ad 		KASSERT(ipl == IPL_NONE);
    319  1.15     ad 		break;
    320  1.15     ad 	case MUTEX_DRIVER:
    321   1.2     ad 		type = (ipl == IPL_NONE ? MUTEX_ADAPTIVE : MUTEX_SPIN);
    322  1.15     ad 		break;
    323  1.15     ad 	default:
    324  1.15     ad 		break;
    325  1.15     ad 	}
    326   1.2     ad 
    327   1.2     ad 	switch (type) {
    328  1.11     ad 	case MUTEX_NODEBUG:
    329  1.19     ad 		id = LOCKDEBUG_ALLOC(mtx, NULL,
    330  1.19     ad 		    (uintptr_t)__builtin_return_address(0));
    331  1.15     ad 		MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
    332  1.11     ad 		break;
    333   1.2     ad 	case MUTEX_ADAPTIVE:
    334   1.2     ad 	case MUTEX_DEFAULT:
    335  1.19     ad 		id = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    336  1.19     ad 		    (uintptr_t)__builtin_return_address(0));
    337   1.2     ad 		MUTEX_INITIALIZE_ADAPTIVE(mtx, id);
    338   1.2     ad 		break;
    339   1.2     ad 	case MUTEX_SPIN:
    340  1.19     ad 		id = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    341  1.19     ad 		    (uintptr_t)__builtin_return_address(0));
    342   1.2     ad 		MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
    343   1.2     ad 		break;
    344   1.2     ad 	default:
    345   1.2     ad 		panic("mutex_init: impossible type");
    346   1.2     ad 		break;
    347   1.2     ad 	}
    348   1.2     ad }
    349   1.2     ad 
    350   1.2     ad /*
    351   1.2     ad  * mutex_destroy:
    352   1.2     ad  *
    353   1.2     ad  *	Tear down a mutex.
    354   1.2     ad  */
    355   1.2     ad void
    356   1.2     ad mutex_destroy(kmutex_t *mtx)
    357   1.2     ad {
    358   1.2     ad 
    359   1.2     ad 	if (MUTEX_ADAPTIVE_P(mtx)) {
    360   1.2     ad 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    361   1.2     ad 		    !MUTEX_HAS_WAITERS(mtx));
    362   1.2     ad 	} else {
    363  1.16  skrll 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    364   1.2     ad 	}
    365   1.2     ad 
    366   1.2     ad 	LOCKDEBUG_FREE(mtx, MUTEX_GETID(mtx));
    367   1.2     ad 	MUTEX_DESTROY(mtx);
    368   1.2     ad }
    369   1.2     ad 
    370   1.2     ad /*
    371   1.2     ad  * mutex_onproc:
    372   1.2     ad  *
    373   1.2     ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    374   1.2     ad  *	system.  If the target is waiting on the kernel big lock, then we
    375  1.15     ad  *	must release it.  This is necessary to avoid deadlock.
    376   1.2     ad  *
    377   1.2     ad  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    378   1.2     ad  *	don't have full control over the timing of our execution, and so the
    379   1.2     ad  *	pointer could be completely invalid by the time we dereference it.
    380   1.2     ad  */
    381   1.2     ad #ifdef MULTIPROCESSOR
    382   1.2     ad int
    383   1.2     ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    384   1.2     ad {
    385   1.2     ad 	CPU_INFO_ITERATOR cii;
    386   1.2     ad 	struct cpu_info *ci;
    387   1.2     ad 	struct lwp *l;
    388   1.2     ad 
    389   1.2     ad 	if (!MUTEX_OWNED(owner))
    390   1.2     ad 		return 0;
    391   1.2     ad 	l = (struct lwp *)MUTEX_OWNER(owner);
    392   1.2     ad 
    393  1.15     ad 	/* See if the target is running on a CPU somewhere. */
    394  1.10     ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    395  1.15     ad 		goto run;
    396  1.15     ad 	for (CPU_INFO_FOREACH(cii, ci))
    397  1.15     ad 		if (ci->ci_curlwp == l)
    398  1.15     ad 			goto run;
    399   1.2     ad 
    400  1.15     ad 	/* No: it may be safe to block now. */
    401   1.2     ad 	*cip = NULL;
    402   1.2     ad 	return 0;
    403  1.15     ad 
    404  1.15     ad  run:
    405  1.15     ad  	/* Target is running; do we need to block? */
    406  1.15     ad  	*cip = ci;
    407  1.15     ad 	return ci->ci_biglock_wanted != l;
    408   1.2     ad }
    409  1.15     ad #endif	/* MULTIPROCESSOR */
    410   1.2     ad 
    411   1.2     ad /*
    412   1.2     ad  * mutex_vector_enter:
    413   1.2     ad  *
    414   1.2     ad  *	Support routine for mutex_enter() that must handles all cases.  In
    415   1.2     ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    416   1.2     ad  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    417   1.2     ad  *	not available, then it is also aliased directly here.
    418   1.2     ad  */
    419   1.2     ad void
    420   1.2     ad mutex_vector_enter(kmutex_t *mtx)
    421   1.2     ad {
    422   1.2     ad 	uintptr_t owner, curthread;
    423   1.2     ad 	turnstile_t *ts;
    424   1.2     ad #ifdef MULTIPROCESSOR
    425   1.2     ad 	struct cpu_info *ci = NULL;
    426   1.2     ad 	u_int count;
    427   1.2     ad #endif
    428   1.2     ad 	LOCKSTAT_COUNTER(spincnt);
    429   1.2     ad 	LOCKSTAT_COUNTER(slpcnt);
    430   1.2     ad 	LOCKSTAT_TIMER(spintime);
    431   1.2     ad 	LOCKSTAT_TIMER(slptime);
    432   1.2     ad 	LOCKSTAT_FLAG(lsflag);
    433   1.2     ad 
    434   1.2     ad 	/*
    435   1.2     ad 	 * Handle spin mutexes.
    436   1.2     ad 	 */
    437   1.2     ad 	if (MUTEX_SPIN_P(mtx)) {
    438   1.2     ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    439   1.2     ad 		u_int spins = 0;
    440   1.2     ad #endif
    441   1.2     ad 		MUTEX_SPIN_SPLRAISE(mtx);
    442   1.2     ad 		MUTEX_WANTLOCK(mtx);
    443   1.2     ad #ifdef FULL
    444   1.2     ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    445   1.2     ad 			MUTEX_LOCKED(mtx);
    446   1.2     ad 			return;
    447   1.2     ad 		}
    448   1.2     ad #if !defined(MULTIPROCESSOR)
    449   1.2     ad 		MUTEX_ABORT(mtx, "locking against myself");
    450   1.2     ad #else /* !MULTIPROCESSOR */
    451   1.2     ad 
    452   1.2     ad 		LOCKSTAT_ENTER(lsflag);
    453   1.2     ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    454   1.2     ad 		count = SPINLOCK_BACKOFF_MIN;
    455   1.2     ad 
    456   1.2     ad 		/*
    457   1.2     ad 		 * Spin testing the lock word and do exponential backoff
    458   1.2     ad 		 * to reduce cache line ping-ponging between CPUs.
    459   1.2     ad 		 */
    460   1.2     ad 		do {
    461   1.2     ad 			if (panicstr != NULL)
    462   1.2     ad 				break;
    463  1.16  skrll 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    464   1.2     ad 				SPINLOCK_BACKOFF(count);
    465   1.2     ad #ifdef LOCKDEBUG
    466   1.2     ad 				if (SPINLOCK_SPINOUT(spins))
    467   1.2     ad 					MUTEX_ABORT(mtx, "spinout");
    468   1.2     ad #endif	/* LOCKDEBUG */
    469   1.2     ad 			}
    470   1.2     ad 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    471   1.2     ad 
    472   1.2     ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    473   1.2     ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    474   1.2     ad 			LOCKSTAT_EVENT(lsflag, mtx,
    475   1.2     ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    476   1.2     ad 		}
    477   1.2     ad 		LOCKSTAT_EXIT(lsflag);
    478   1.2     ad #endif	/* !MULTIPROCESSOR */
    479   1.2     ad #endif	/* FULL */
    480   1.2     ad 		MUTEX_LOCKED(mtx);
    481   1.2     ad 		return;
    482   1.2     ad 	}
    483   1.2     ad 
    484   1.2     ad 	curthread = (uintptr_t)curlwp;
    485   1.2     ad 
    486   1.2     ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    487   1.2     ad 	MUTEX_ASSERT(mtx, curthread != 0);
    488   1.2     ad 	MUTEX_WANTLOCK(mtx);
    489   1.2     ad 
    490   1.2     ad #ifdef LOCKDEBUG
    491   1.2     ad 	if (panicstr == NULL) {
    492   1.2     ad 		simple_lock_only_held(NULL, "mutex_enter");
    493   1.2     ad #ifdef MULTIPROCESSOR
    494   1.2     ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    495   1.2     ad #else
    496   1.2     ad 		LOCKDEBUG_BARRIER(NULL, 1);
    497   1.2     ad #endif
    498   1.2     ad 	}
    499   1.2     ad #endif
    500   1.2     ad 
    501   1.2     ad 	LOCKSTAT_ENTER(lsflag);
    502   1.2     ad 
    503   1.2     ad 	/*
    504   1.2     ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    505   1.2     ad 	 * determine that the owner is not running on a processor,
    506   1.2     ad 	 * then we stop spinning, and sleep instead.
    507   1.2     ad 	 */
    508   1.2     ad 	for (;;) {
    509   1.2     ad 		owner = mtx->mtx_owner;
    510   1.2     ad 		if (!MUTEX_OWNED(owner)) {
    511   1.2     ad 			/*
    512   1.2     ad 			 * Mutex owner clear could mean two things:
    513   1.2     ad 			 *
    514   1.2     ad 			 *	* The mutex has been released.
    515   1.2     ad 			 *	* The owner field hasn't been set yet.
    516   1.2     ad 			 *
    517   1.2     ad 			 * Try to acquire it again.  If that fails,
    518   1.2     ad 			 * we'll just loop again.
    519   1.2     ad 			 */
    520   1.2     ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    521   1.2     ad 				break;
    522   1.2     ad 			continue;
    523   1.2     ad 		}
    524   1.2     ad 
    525   1.2     ad 		if (panicstr != NULL)
    526   1.2     ad 			return;
    527   1.2     ad 		if (MUTEX_OWNER(owner) == curthread)
    528   1.2     ad 			MUTEX_ABORT(mtx, "locking against myself");
    529   1.2     ad 
    530   1.2     ad #ifdef MULTIPROCESSOR
    531   1.2     ad 		/*
    532   1.2     ad 		 * Check to see if the owner is running on a processor.
    533   1.2     ad 		 * If so, then we should just spin, as the owner will
    534   1.2     ad 		 * likely release the lock very soon.
    535   1.2     ad 		 */
    536   1.2     ad 		if (mutex_onproc(owner, &ci)) {
    537   1.2     ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    538   1.2     ad 			count = SPINLOCK_BACKOFF_MIN;
    539   1.2     ad 			for (;;) {
    540   1.2     ad 				owner = mtx->mtx_owner;
    541   1.2     ad 				if (!mutex_onproc(owner, &ci))
    542   1.2     ad 					break;
    543   1.2     ad 				SPINLOCK_BACKOFF(count);
    544   1.2     ad 			}
    545   1.2     ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    546   1.2     ad 			LOCKSTAT_COUNT(spincnt, 1);
    547   1.2     ad 			if (!MUTEX_OWNED(owner))
    548   1.2     ad 				continue;
    549   1.2     ad 		}
    550   1.2     ad #endif
    551   1.2     ad 
    552   1.2     ad 		ts = turnstile_lookup(mtx);
    553   1.2     ad 
    554   1.2     ad 		/*
    555   1.2     ad 		 * Once we have the turnstile chain interlock, mark the
    556   1.2     ad 		 * mutex has having waiters.  If that fails, spin again:
    557   1.2     ad 		 * chances are that the mutex has been released.
    558   1.2     ad 		 */
    559   1.2     ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    560   1.2     ad 			turnstile_exit(mtx);
    561   1.2     ad 			continue;
    562   1.2     ad 		}
    563   1.2     ad 
    564   1.2     ad #ifdef MULTIPROCESSOR
    565   1.2     ad 		/*
    566   1.2     ad 		 * mutex_exit() is permitted to release the mutex without
    567   1.2     ad 		 * any interlocking instructions, and the following can
    568   1.2     ad 		 * occur as a result:
    569   1.2     ad 		 *
    570   1.2     ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    571   1.2     ad 		 * ---------------------------- ----------------------------
    572   1.2     ad 		 *		..		    acquire cache line
    573   1.2     ad 		 *		..                   test for waiters
    574   1.2     ad 		 *	acquire cache line    <-      lose cache line
    575   1.2     ad 		 *	 lock cache line	           ..
    576   1.2     ad 		 *     verify mutex is held                ..
    577   1.2     ad 		 *	    set waiters  	           ..
    578   1.2     ad 		 *	 unlock cache line		   ..
    579   1.2     ad 		 *	  lose cache line     ->    acquire cache line
    580   1.2     ad 		 *		..	          clear lock word, waiters
    581   1.2     ad 		 *	  return success
    582   1.2     ad 		 *
    583   1.2     ad 		 * There is a another race that can occur: a third CPU could
    584   1.2     ad 		 * acquire the mutex as soon as it is released.  Since
    585   1.2     ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    586   1.2     ad 		 * something that we need to worry about too much.  What we
    587   1.2     ad 		 * do need to ensure is that the waiters bit gets set.
    588   1.2     ad 		 *
    589   1.2     ad 		 * To allow the unlocked release, we need to make some
    590   1.2     ad 		 * assumptions here:
    591   1.2     ad 		 *
    592   1.2     ad 		 * o Release is the only non-atomic/unlocked operation
    593   1.2     ad 		 *   that can be performed on the mutex.  (It must still
    594   1.2     ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    595   1.2     ad 		 *   or preempted).
    596   1.2     ad 		 *
    597   1.2     ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    598  1.21  pooka 		 *   be in progress on one CPU in the system - guaranteed
    599   1.2     ad 		 *   by the turnstile chain lock.
    600   1.2     ad 		 *
    601   1.2     ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    602   1.2     ad 		 *   and release can modify a mutex with a non-zero
    603   1.2     ad 		 *   owner field.
    604   1.2     ad 		 *
    605   1.2     ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    606   1.2     ad 		 *   is an unbuffered write that is immediately visible
    607   1.2     ad 		 *   to all other processors in the system.
    608   1.2     ad 		 *
    609   1.2     ad 		 * o If the holding LWP switches away, it posts a store
    610   1.2     ad 		 *   fence before changing curlwp, ensuring that any
    611   1.2     ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    612   1.2     ad 		 *   completes before the modification of curlwp becomes
    613   1.2     ad 		 *   visible to this CPU.
    614   1.2     ad 		 *
    615  1.14   yamt 		 * o mi_switch() posts a store fence before setting curlwp
    616   1.2     ad 		 *   and before resuming execution of an LWP.
    617   1.2     ad 		 *
    618   1.2     ad 		 * o _kernel_lock() posts a store fence before setting
    619   1.2     ad 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    620   1.2     ad 		 *   This ensures that any overwrite of the mutex waiters
    621   1.2     ad 		 *   flag by mutex_exit() completes before the modification
    622   1.2     ad 		 *   of ci_biglock_wanted becomes visible.
    623   1.2     ad 		 *
    624   1.2     ad 		 * We now post a read memory barrier (after setting the
    625   1.2     ad 		 * waiters field) and check the lock holder's status again.
    626   1.2     ad 		 * Some of the possible outcomes (not an exhaustive list):
    627   1.2     ad 		 *
    628   1.2     ad 		 * 1. The onproc check returns true: the holding LWP is
    629   1.2     ad 		 *    running again.  The lock may be released soon and
    630   1.2     ad 		 *    we should spin.  Importantly, we can't trust the
    631   1.2     ad 		 *    value of the waiters flag.
    632   1.2     ad 		 *
    633   1.2     ad 		 * 2. The onproc check returns false: the holding LWP is
    634   1.2     ad 		 *    not running.  We now have the oppertunity to check
    635   1.2     ad 		 *    if mutex_exit() has blatted the modifications made
    636   1.2     ad 		 *    by MUTEX_SET_WAITERS().
    637   1.2     ad 		 *
    638   1.2     ad 		 * 3. The onproc check returns false: the holding LWP may
    639   1.2     ad 		 *    or may not be running.  It has context switched at
    640   1.2     ad 		 *    some point during our check.  Again, we have the
    641   1.2     ad 		 *    chance to see if the waiters bit is still set or
    642   1.2     ad 		 *    has been overwritten.
    643   1.2     ad 		 *
    644   1.2     ad 		 * 4. The onproc check returns false: the holding LWP is
    645   1.2     ad 		 *    running on a CPU, but wants the big lock.  It's OK
    646   1.2     ad 		 *    to check the waiters field in this case.
    647   1.2     ad 		 *
    648   1.2     ad 		 * 5. The has-waiters check fails: the mutex has been
    649   1.2     ad 		 *    released, the waiters flag cleared and another LWP
    650   1.2     ad 		 *    now owns the mutex.
    651   1.2     ad 		 *
    652   1.2     ad 		 * 6. The has-waiters check fails: the mutex has been
    653   1.2     ad 		 *    released.
    654   1.2     ad 		 *
    655   1.2     ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    656   1.2     ad 		 * as we might never be awoken.
    657   1.2     ad 		 */
    658  1.13     ad 		if ((mb_read(), mutex_onproc(owner, &ci)) ||
    659  1.13     ad 		    (mb_read(), !MUTEX_HAS_WAITERS(mtx))) {
    660   1.2     ad 			turnstile_exit(mtx);
    661   1.2     ad 			continue;
    662   1.2     ad 		}
    663   1.2     ad #endif	/* MULTIPROCESSOR */
    664   1.2     ad 
    665   1.2     ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    666   1.2     ad 
    667   1.5   yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    668   1.2     ad 
    669   1.2     ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    670   1.2     ad 		LOCKSTAT_COUNT(slpcnt, 1);
    671   1.2     ad 	}
    672   1.2     ad 
    673   1.2     ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    674   1.2     ad 	    slpcnt, slptime);
    675   1.2     ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    676   1.2     ad 	    spincnt, spintime);
    677   1.2     ad 	LOCKSTAT_EXIT(lsflag);
    678   1.2     ad 
    679   1.2     ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    680   1.2     ad 	MUTEX_LOCKED(mtx);
    681   1.2     ad }
    682   1.2     ad 
    683   1.2     ad /*
    684   1.2     ad  * mutex_vector_exit:
    685   1.2     ad  *
    686   1.2     ad  *	Support routine for mutex_exit() that handles all cases.
    687   1.2     ad  */
    688   1.2     ad void
    689   1.2     ad mutex_vector_exit(kmutex_t *mtx)
    690   1.2     ad {
    691   1.2     ad 	turnstile_t *ts;
    692   1.2     ad 	uintptr_t curthread;
    693   1.2     ad 
    694   1.2     ad 	if (MUTEX_SPIN_P(mtx)) {
    695   1.2     ad #ifdef FULL
    696  1.16  skrll 		if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
    697   1.2     ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    698   1.2     ad 		MUTEX_UNLOCKED(mtx);
    699   1.2     ad 		__cpu_simple_unlock(&mtx->mtx_lock);
    700   1.2     ad #endif
    701   1.2     ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    702   1.2     ad 		return;
    703   1.2     ad 	}
    704   1.2     ad 
    705  1.11     ad 	if (__predict_false((uintptr_t)panicstr | cold)) {
    706   1.2     ad 		MUTEX_UNLOCKED(mtx);
    707   1.2     ad 		MUTEX_RELEASE(mtx);
    708   1.2     ad 		return;
    709   1.2     ad 	}
    710   1.2     ad 
    711   1.2     ad 	curthread = (uintptr_t)curlwp;
    712   1.2     ad 	MUTEX_DASSERT(mtx, curthread != 0);
    713   1.2     ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    714   1.2     ad 	MUTEX_UNLOCKED(mtx);
    715   1.2     ad 
    716  1.15     ad #ifdef LOCKDEBUG
    717  1.15     ad 	/*
    718  1.15     ad 	 * Avoid having to take the turnstile chain lock every time
    719  1.15     ad 	 * around.  Raise the priority level to splhigh() in order
    720  1.15     ad 	 * to disable preemption and so make the following atomic.
    721  1.15     ad 	 */
    722  1.15     ad 	{
    723  1.15     ad 		int s = splhigh();
    724  1.15     ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    725  1.15     ad 			MUTEX_RELEASE(mtx);
    726  1.15     ad 			splx(s);
    727  1.15     ad 			return;
    728  1.15     ad 		}
    729  1.15     ad 		splx(s);
    730  1.15     ad 	}
    731  1.15     ad #endif
    732  1.15     ad 
    733   1.2     ad 	/*
    734   1.2     ad 	 * Get this lock's turnstile.  This gets the interlock on
    735   1.2     ad 	 * the sleep queue.  Once we have that, we can clear the
    736   1.2     ad 	 * lock.  If there was no turnstile for the lock, there
    737   1.2     ad 	 * were no waiters remaining.
    738   1.2     ad 	 */
    739   1.2     ad 	ts = turnstile_lookup(mtx);
    740   1.2     ad 
    741   1.2     ad 	if (ts == NULL) {
    742   1.2     ad 		MUTEX_RELEASE(mtx);
    743   1.2     ad 		turnstile_exit(mtx);
    744   1.2     ad 	} else {
    745   1.2     ad 		MUTEX_RELEASE(mtx);
    746   1.2     ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    747   1.2     ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    748   1.2     ad 	}
    749   1.2     ad }
    750   1.2     ad 
    751   1.4     ad #ifndef __HAVE_SIMPLE_MUTEXES
    752   1.4     ad /*
    753   1.4     ad  * mutex_wakeup:
    754   1.4     ad  *
    755   1.4     ad  *	Support routine for mutex_exit() that wakes up all waiters.
    756   1.4     ad  *	We assume that the mutex has been released, but it need not
    757   1.4     ad  *	be.
    758   1.4     ad  */
    759   1.4     ad void
    760   1.4     ad mutex_wakeup(kmutex_t *mtx)
    761   1.4     ad {
    762   1.4     ad 	turnstile_t *ts;
    763   1.4     ad 
    764   1.4     ad 	ts = turnstile_lookup(mtx);
    765   1.4     ad 	if (ts == NULL) {
    766   1.4     ad 		turnstile_exit(mtx);
    767   1.4     ad 		return;
    768   1.4     ad 	}
    769   1.4     ad 	MUTEX_CLEAR_WAITERS(mtx);
    770   1.4     ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    771   1.4     ad }
    772   1.4     ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    773   1.4     ad 
    774   1.2     ad /*
    775   1.2     ad  * mutex_owned:
    776   1.2     ad  *
    777   1.3     ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    778   1.3     ad  *	holds the mutex.
    779   1.2     ad  */
    780   1.2     ad int
    781   1.2     ad mutex_owned(kmutex_t *mtx)
    782   1.2     ad {
    783   1.2     ad 
    784   1.2     ad 	if (MUTEX_ADAPTIVE_P(mtx))
    785   1.2     ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    786   1.2     ad #ifdef FULL
    787  1.16  skrll 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    788   1.2     ad #else
    789   1.2     ad 	return 1;
    790   1.2     ad #endif
    791   1.2     ad }
    792   1.2     ad 
    793   1.2     ad /*
    794   1.2     ad  * mutex_owner:
    795   1.2     ad  *
    796   1.6     ad  *	Return the current owner of an adaptive mutex.  Used for
    797   1.6     ad  *	priority inheritance.
    798   1.2     ad  */
    799   1.6     ad static struct lwp *
    800   1.6     ad mutex_owner(wchan_t obj)
    801   1.2     ad {
    802   1.6     ad 	kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
    803   1.2     ad 
    804   1.2     ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    805   1.2     ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    806   1.2     ad }
    807   1.2     ad 
    808   1.2     ad /*
    809   1.2     ad  * mutex_tryenter:
    810   1.2     ad  *
    811   1.2     ad  *	Try to acquire the mutex; return non-zero if we did.
    812   1.2     ad  */
    813   1.2     ad int
    814   1.2     ad mutex_tryenter(kmutex_t *mtx)
    815   1.2     ad {
    816   1.2     ad 	uintptr_t curthread;
    817   1.2     ad 
    818   1.2     ad 	/*
    819   1.2     ad 	 * Handle spin mutexes.
    820   1.2     ad 	 */
    821   1.2     ad 	if (MUTEX_SPIN_P(mtx)) {
    822   1.2     ad 		MUTEX_SPIN_SPLRAISE(mtx);
    823   1.2     ad #ifdef FULL
    824   1.2     ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    825   1.4     ad 			MUTEX_WANTLOCK(mtx);
    826   1.2     ad 			MUTEX_LOCKED(mtx);
    827   1.2     ad 			return 1;
    828   1.2     ad 		}
    829   1.2     ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    830   1.2     ad #else
    831   1.4     ad 		MUTEX_WANTLOCK(mtx);
    832   1.2     ad 		MUTEX_LOCKED(mtx);
    833   1.2     ad 		return 1;
    834   1.2     ad #endif
    835   1.2     ad 	} else {
    836   1.2     ad 		curthread = (uintptr_t)curlwp;
    837   1.2     ad 		MUTEX_ASSERT(mtx, curthread != 0);
    838   1.2     ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    839   1.4     ad 			MUTEX_WANTLOCK(mtx);
    840   1.2     ad 			MUTEX_LOCKED(mtx);
    841   1.2     ad 			MUTEX_DASSERT(mtx,
    842   1.2     ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    843   1.2     ad 			return 1;
    844   1.2     ad 		}
    845   1.2     ad 	}
    846   1.2     ad 
    847   1.2     ad 	return 0;
    848   1.2     ad }
    849   1.2     ad 
    850   1.2     ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    851   1.2     ad /*
    852   1.2     ad  * mutex_spin_retry:
    853   1.2     ad  *
    854   1.2     ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    855   1.2     ad  *	has already raised the SPL, and adjusted counters.
    856   1.2     ad  */
    857   1.2     ad void
    858   1.2     ad mutex_spin_retry(kmutex_t *mtx)
    859   1.2     ad {
    860   1.2     ad #ifdef MULTIPROCESSOR
    861   1.2     ad 	u_int count;
    862   1.2     ad 	LOCKSTAT_TIMER(spintime);
    863   1.2     ad 	LOCKSTAT_FLAG(lsflag);
    864   1.2     ad #ifdef LOCKDEBUG
    865   1.2     ad 	u_int spins = 0;
    866   1.2     ad #endif	/* LOCKDEBUG */
    867   1.2     ad 
    868   1.2     ad 	MUTEX_WANTLOCK(mtx);
    869   1.2     ad 
    870   1.2     ad 	LOCKSTAT_ENTER(lsflag);
    871   1.2     ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    872   1.2     ad 	count = SPINLOCK_BACKOFF_MIN;
    873   1.2     ad 
    874   1.2     ad 	/*
    875   1.2     ad 	 * Spin testing the lock word and do exponential backoff
    876   1.2     ad 	 * to reduce cache line ping-ponging between CPUs.
    877   1.2     ad 	 */
    878   1.2     ad 	do {
    879   1.2     ad 		if (panicstr != NULL)
    880   1.2     ad 			break;
    881  1.16  skrll 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    882   1.2     ad 			SPINLOCK_BACKOFF(count);
    883   1.2     ad #ifdef LOCKDEBUG
    884   1.2     ad 			if (SPINLOCK_SPINOUT(spins))
    885   1.2     ad 				MUTEX_ABORT(mtx, "spinout");
    886   1.2     ad #endif	/* LOCKDEBUG */
    887   1.2     ad 		}
    888   1.2     ad 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    889   1.2     ad 
    890   1.2     ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    891   1.2     ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    892   1.2     ad 	LOCKSTAT_EXIT(lsflag);
    893   1.2     ad 
    894   1.2     ad 	MUTEX_LOCKED(mtx);
    895   1.2     ad #else	/* MULTIPROCESSOR */
    896   1.2     ad 	MUTEX_ABORT(mtx, "locking against myself");
    897   1.2     ad #endif	/* MULTIPROCESSOR */
    898   1.2     ad }
    899   1.2     ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    900