kern_mutex.c revision 1.30 1 1.30 ad /* $NetBSD: kern_mutex.c,v 1.30 2008/01/05 12:31:39 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.30 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
41 1.2 ad * a description of which can be found in:
42 1.2 ad *
43 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 1.2 ad * Richard McDougall.
45 1.2 ad */
46 1.2 ad
47 1.2 ad #define __MUTEX_PRIVATE
48 1.2 ad
49 1.2 ad #include <sys/cdefs.h>
50 1.30 ad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.30 2008/01/05 12:31:39 ad Exp $");
51 1.18 dsl
52 1.18 dsl #include "opt_multiprocessor.h"
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/mutex.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #include <sys/systm.h>
60 1.2 ad #include <sys/lockdebug.h>
61 1.2 ad #include <sys/kernel.h>
62 1.24 ad #include <sys/atomic.h>
63 1.24 ad #include <sys/intr.h>
64 1.29 xtraeme #include <sys/lock.h>
65 1.2 ad
66 1.2 ad #include <dev/lockstat.h>
67 1.2 ad
68 1.28 ad #include <machine/lock.h>
69 1.28 ad
70 1.2 ad /*
71 1.2 ad * When not running a debug kernel, spin mutexes are not much
72 1.2 ad * more than an splraiseipl() and splx() pair.
73 1.2 ad */
74 1.2 ad
75 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
76 1.2 ad #define FULL
77 1.2 ad #endif
78 1.2 ad
79 1.2 ad /*
80 1.2 ad * Debugging support.
81 1.2 ad */
82 1.2 ad
83 1.2 ad #define MUTEX_WANTLOCK(mtx) \
84 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
85 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
86 1.2 ad #define MUTEX_LOCKED(mtx) \
87 1.23 yamt LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
88 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
89 1.2 ad #define MUTEX_UNLOCKED(mtx) \
90 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
91 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
92 1.2 ad #define MUTEX_ABORT(mtx, msg) \
93 1.17 ad mutex_abort(mtx, __func__, msg)
94 1.2 ad
95 1.2 ad #if defined(LOCKDEBUG)
96 1.2 ad
97 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
98 1.2 ad do { \
99 1.2 ad if (!(cond)) \
100 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
101 1.2 ad } while (/* CONSTCOND */ 0);
102 1.2 ad
103 1.2 ad #else /* LOCKDEBUG */
104 1.2 ad
105 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
106 1.2 ad
107 1.2 ad #endif /* LOCKDEBUG */
108 1.2 ad
109 1.2 ad #if defined(DIAGNOSTIC)
110 1.2 ad
111 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
112 1.2 ad do { \
113 1.2 ad if (!(cond)) \
114 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
115 1.2 ad } while (/* CONSTCOND */ 0)
116 1.2 ad
117 1.2 ad #else /* DIAGNOSTIC */
118 1.2 ad
119 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
120 1.2 ad
121 1.2 ad #endif /* DIAGNOSTIC */
122 1.2 ad
123 1.2 ad /*
124 1.2 ad * Spin mutex SPL save / restore.
125 1.2 ad */
126 1.12 matt #ifndef MUTEX_COUNT_BIAS
127 1.12 matt #define MUTEX_COUNT_BIAS 0
128 1.12 matt #endif
129 1.2 ad
130 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
131 1.2 ad do { \
132 1.2 ad struct cpu_info *x__ci = curcpu(); \
133 1.2 ad int x__cnt, s; \
134 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
135 1.2 ad s = splraiseipl(mtx->mtx_ipl); \
136 1.12 matt if (x__cnt == MUTEX_COUNT_BIAS) \
137 1.2 ad x__ci->ci_mtx_oldspl = (s); \
138 1.2 ad } while (/* CONSTCOND */ 0)
139 1.2 ad
140 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
141 1.2 ad do { \
142 1.2 ad struct cpu_info *x__ci = curcpu(); \
143 1.2 ad int s = x__ci->ci_mtx_oldspl; \
144 1.2 ad __insn_barrier(); \
145 1.12 matt if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
146 1.2 ad splx(s); \
147 1.2 ad } while (/* CONSTCOND */ 0)
148 1.2 ad
149 1.2 ad /*
150 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
151 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
152 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
153 1.2 ad * additional interlock.
154 1.2 ad */
155 1.2 ad
156 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
157 1.2 ad
158 1.2 ad #define MUTEX_OWNER(owner) \
159 1.2 ad (owner & MUTEX_THREAD)
160 1.2 ad #define MUTEX_HAS_WAITERS(mtx) \
161 1.2 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
162 1.2 ad
163 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
164 1.2 ad do { \
165 1.23 yamt if (dodebug) \
166 1.23 yamt (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
167 1.2 ad } while (/* CONSTCOND */ 0);
168 1.2 ad
169 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
170 1.2 ad do { \
171 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
172 1.23 yamt if (dodebug) \
173 1.23 yamt (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
174 1.2 ad (mtx)->mtx_ipl = makeiplcookie((ipl)); \
175 1.2 ad __cpu_simple_lock_init(&(mtx)->mtx_lock); \
176 1.2 ad } while (/* CONSTCOND */ 0)
177 1.2 ad
178 1.2 ad #define MUTEX_DESTROY(mtx) \
179 1.2 ad do { \
180 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
181 1.2 ad } while (/* CONSTCOND */ 0);
182 1.2 ad
183 1.2 ad #define MUTEX_SPIN_P(mtx) \
184 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
185 1.2 ad #define MUTEX_ADAPTIVE_P(mtx) \
186 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
187 1.2 ad
188 1.23 yamt #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
189 1.23 yamt #if defined(LOCKDEBUG)
190 1.23 yamt #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
191 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
192 1.23 yamt #else /* defined(LOCKDEBUG) */
193 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
194 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) /* nothing */
195 1.23 yamt #endif /* defined(LOCKDEBUG) */
196 1.2 ad
197 1.2 ad static inline int
198 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
199 1.2 ad {
200 1.2 ad int rv;
201 1.23 yamt uintptr_t old = 0;
202 1.23 yamt uintptr_t new = curthread;
203 1.23 yamt
204 1.23 yamt MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
205 1.23 yamt MUTEX_INHERITDEBUG(new, old);
206 1.23 yamt rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
207 1.7 itohy MUTEX_RECEIVE(mtx);
208 1.2 ad return rv;
209 1.2 ad }
210 1.2 ad
211 1.2 ad static inline int
212 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
213 1.2 ad {
214 1.2 ad int rv;
215 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
216 1.7 itohy MUTEX_RECEIVE(mtx);
217 1.2 ad return rv;
218 1.2 ad }
219 1.2 ad
220 1.2 ad static inline void
221 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
222 1.2 ad {
223 1.23 yamt uintptr_t new;
224 1.23 yamt
225 1.7 itohy MUTEX_GIVE(mtx);
226 1.23 yamt new = 0;
227 1.23 yamt MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
228 1.23 yamt mtx->mtx_owner = new;
229 1.2 ad }
230 1.4 ad
231 1.4 ad static inline void
232 1.4 ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
233 1.4 ad {
234 1.4 ad /* nothing */
235 1.4 ad }
236 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
237 1.2 ad
238 1.2 ad /*
239 1.2 ad * Patch in stubs via strong alias where they are not available.
240 1.2 ad */
241 1.2 ad
242 1.2 ad #if defined(LOCKDEBUG)
243 1.2 ad #undef __HAVE_MUTEX_STUBS
244 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
245 1.2 ad #endif
246 1.2 ad
247 1.2 ad #ifndef __HAVE_MUTEX_STUBS
248 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
249 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
250 1.2 ad #endif
251 1.2 ad
252 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
253 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
254 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
255 1.2 ad #endif
256 1.2 ad
257 1.2 ad void mutex_abort(kmutex_t *, const char *, const char *);
258 1.2 ad void mutex_dump(volatile void *);
259 1.2 ad int mutex_onproc(uintptr_t, struct cpu_info **);
260 1.2 ad
261 1.2 ad lockops_t mutex_spin_lockops = {
262 1.2 ad "Mutex",
263 1.2 ad 0,
264 1.2 ad mutex_dump
265 1.2 ad };
266 1.2 ad
267 1.2 ad lockops_t mutex_adaptive_lockops = {
268 1.2 ad "Mutex",
269 1.2 ad 1,
270 1.2 ad mutex_dump
271 1.2 ad };
272 1.2 ad
273 1.5 yamt syncobj_t mutex_syncobj = {
274 1.5 yamt SOBJ_SLEEPQ_SORTED,
275 1.5 yamt turnstile_unsleep,
276 1.5 yamt turnstile_changepri,
277 1.5 yamt sleepq_lendpri,
278 1.27 ad (void *)mutex_owner,
279 1.5 yamt };
280 1.5 yamt
281 1.2 ad /*
282 1.2 ad * mutex_dump:
283 1.2 ad *
284 1.2 ad * Dump the contents of a mutex structure.
285 1.2 ad */
286 1.2 ad void
287 1.2 ad mutex_dump(volatile void *cookie)
288 1.2 ad {
289 1.2 ad volatile kmutex_t *mtx = cookie;
290 1.2 ad
291 1.2 ad printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
292 1.2 ad (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
293 1.2 ad MUTEX_SPIN_P(mtx));
294 1.2 ad }
295 1.2 ad
296 1.2 ad /*
297 1.2 ad * mutex_abort:
298 1.2 ad *
299 1.3 ad * Dump information about an error and panic the system. This
300 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
301 1.3 ad * we ask the compiler to not inline it.
302 1.2 ad */
303 1.8 itohy
304 1.8 itohy #if __GNUC_PREREQ__(3, 0)
305 1.8 itohy __attribute ((noinline)) __attribute ((noreturn))
306 1.8 itohy #endif
307 1.8 itohy void
308 1.2 ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
309 1.2 ad {
310 1.2 ad
311 1.23 yamt LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
312 1.3 ad &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
313 1.2 ad /* NOTREACHED */
314 1.2 ad }
315 1.2 ad
316 1.2 ad /*
317 1.2 ad * mutex_init:
318 1.2 ad *
319 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
320 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
321 1.2 ad * CPU time. We can't easily provide a type of mutex that always
322 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
323 1.2 ad * mutexes unlocked.
324 1.2 ad */
325 1.2 ad void
326 1.2 ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
327 1.2 ad {
328 1.23 yamt bool dodebug;
329 1.2 ad
330 1.2 ad memset(mtx, 0, sizeof(*mtx));
331 1.2 ad
332 1.15 ad switch (type) {
333 1.15 ad case MUTEX_ADAPTIVE:
334 1.15 ad KASSERT(ipl == IPL_NONE);
335 1.15 ad break;
336 1.22 ad case MUTEX_DEFAULT:
337 1.15 ad case MUTEX_DRIVER:
338 1.26 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
339 1.26 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
340 1.26 ad ipl == IPL_SOFTSERIAL) {
341 1.22 ad type = MUTEX_ADAPTIVE;
342 1.26 ad } else {
343 1.22 ad type = MUTEX_SPIN;
344 1.22 ad }
345 1.15 ad break;
346 1.15 ad default:
347 1.15 ad break;
348 1.15 ad }
349 1.2 ad
350 1.2 ad switch (type) {
351 1.11 ad case MUTEX_NODEBUG:
352 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
353 1.19 ad (uintptr_t)__builtin_return_address(0));
354 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
355 1.11 ad break;
356 1.2 ad case MUTEX_ADAPTIVE:
357 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
358 1.19 ad (uintptr_t)__builtin_return_address(0));
359 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
360 1.2 ad break;
361 1.2 ad case MUTEX_SPIN:
362 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
363 1.19 ad (uintptr_t)__builtin_return_address(0));
364 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
365 1.2 ad break;
366 1.2 ad default:
367 1.2 ad panic("mutex_init: impossible type");
368 1.2 ad break;
369 1.2 ad }
370 1.2 ad }
371 1.2 ad
372 1.2 ad /*
373 1.2 ad * mutex_destroy:
374 1.2 ad *
375 1.2 ad * Tear down a mutex.
376 1.2 ad */
377 1.2 ad void
378 1.2 ad mutex_destroy(kmutex_t *mtx)
379 1.2 ad {
380 1.2 ad
381 1.2 ad if (MUTEX_ADAPTIVE_P(mtx)) {
382 1.2 ad MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
383 1.2 ad !MUTEX_HAS_WAITERS(mtx));
384 1.2 ad } else {
385 1.16 skrll MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
386 1.2 ad }
387 1.2 ad
388 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
389 1.2 ad MUTEX_DESTROY(mtx);
390 1.2 ad }
391 1.2 ad
392 1.2 ad /*
393 1.2 ad * mutex_onproc:
394 1.2 ad *
395 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
396 1.2 ad * system. If the target is waiting on the kernel big lock, then we
397 1.15 ad * must release it. This is necessary to avoid deadlock.
398 1.2 ad *
399 1.2 ad * Note that we can't use the mutex owner field as an LWP pointer. We
400 1.2 ad * don't have full control over the timing of our execution, and so the
401 1.2 ad * pointer could be completely invalid by the time we dereference it.
402 1.2 ad */
403 1.2 ad #ifdef MULTIPROCESSOR
404 1.2 ad int
405 1.2 ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
406 1.2 ad {
407 1.2 ad CPU_INFO_ITERATOR cii;
408 1.2 ad struct cpu_info *ci;
409 1.2 ad struct lwp *l;
410 1.2 ad
411 1.2 ad if (!MUTEX_OWNED(owner))
412 1.2 ad return 0;
413 1.2 ad l = (struct lwp *)MUTEX_OWNER(owner);
414 1.2 ad
415 1.15 ad /* See if the target is running on a CPU somewhere. */
416 1.10 ad if ((ci = *cip) != NULL && ci->ci_curlwp == l)
417 1.15 ad goto run;
418 1.15 ad for (CPU_INFO_FOREACH(cii, ci))
419 1.15 ad if (ci->ci_curlwp == l)
420 1.15 ad goto run;
421 1.2 ad
422 1.15 ad /* No: it may be safe to block now. */
423 1.2 ad *cip = NULL;
424 1.2 ad return 0;
425 1.15 ad
426 1.15 ad run:
427 1.15 ad /* Target is running; do we need to block? */
428 1.15 ad *cip = ci;
429 1.15 ad return ci->ci_biglock_wanted != l;
430 1.2 ad }
431 1.15 ad #endif /* MULTIPROCESSOR */
432 1.2 ad
433 1.2 ad /*
434 1.2 ad * mutex_vector_enter:
435 1.2 ad *
436 1.2 ad * Support routine for mutex_enter() that must handles all cases. In
437 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
438 1.2 ad * fast-path stubs are available. If an mutex_spin_enter() stub is
439 1.2 ad * not available, then it is also aliased directly here.
440 1.2 ad */
441 1.2 ad void
442 1.2 ad mutex_vector_enter(kmutex_t *mtx)
443 1.2 ad {
444 1.2 ad uintptr_t owner, curthread;
445 1.2 ad turnstile_t *ts;
446 1.2 ad #ifdef MULTIPROCESSOR
447 1.2 ad struct cpu_info *ci = NULL;
448 1.2 ad u_int count;
449 1.2 ad #endif
450 1.2 ad LOCKSTAT_COUNTER(spincnt);
451 1.2 ad LOCKSTAT_COUNTER(slpcnt);
452 1.2 ad LOCKSTAT_TIMER(spintime);
453 1.2 ad LOCKSTAT_TIMER(slptime);
454 1.2 ad LOCKSTAT_FLAG(lsflag);
455 1.2 ad
456 1.2 ad /*
457 1.2 ad * Handle spin mutexes.
458 1.2 ad */
459 1.2 ad if (MUTEX_SPIN_P(mtx)) {
460 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
461 1.2 ad u_int spins = 0;
462 1.2 ad #endif
463 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
464 1.2 ad MUTEX_WANTLOCK(mtx);
465 1.2 ad #ifdef FULL
466 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
467 1.2 ad MUTEX_LOCKED(mtx);
468 1.2 ad return;
469 1.2 ad }
470 1.2 ad #if !defined(MULTIPROCESSOR)
471 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
472 1.2 ad #else /* !MULTIPROCESSOR */
473 1.2 ad
474 1.2 ad LOCKSTAT_ENTER(lsflag);
475 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
476 1.2 ad count = SPINLOCK_BACKOFF_MIN;
477 1.2 ad
478 1.2 ad /*
479 1.2 ad * Spin testing the lock word and do exponential backoff
480 1.2 ad * to reduce cache line ping-ponging between CPUs.
481 1.2 ad */
482 1.2 ad do {
483 1.2 ad if (panicstr != NULL)
484 1.2 ad break;
485 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
486 1.2 ad SPINLOCK_BACKOFF(count);
487 1.2 ad #ifdef LOCKDEBUG
488 1.2 ad if (SPINLOCK_SPINOUT(spins))
489 1.2 ad MUTEX_ABORT(mtx, "spinout");
490 1.2 ad #endif /* LOCKDEBUG */
491 1.2 ad }
492 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
493 1.2 ad
494 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
495 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
496 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
497 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
498 1.2 ad }
499 1.2 ad LOCKSTAT_EXIT(lsflag);
500 1.2 ad #endif /* !MULTIPROCESSOR */
501 1.2 ad #endif /* FULL */
502 1.2 ad MUTEX_LOCKED(mtx);
503 1.2 ad return;
504 1.2 ad }
505 1.2 ad
506 1.2 ad curthread = (uintptr_t)curlwp;
507 1.2 ad
508 1.2 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
509 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
510 1.2 ad MUTEX_WANTLOCK(mtx);
511 1.2 ad
512 1.2 ad if (panicstr == NULL) {
513 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
514 1.2 ad }
515 1.2 ad
516 1.2 ad LOCKSTAT_ENTER(lsflag);
517 1.2 ad
518 1.2 ad /*
519 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
520 1.2 ad * determine that the owner is not running on a processor,
521 1.2 ad * then we stop spinning, and sleep instead.
522 1.2 ad */
523 1.2 ad for (;;) {
524 1.2 ad owner = mtx->mtx_owner;
525 1.2 ad if (!MUTEX_OWNED(owner)) {
526 1.2 ad /*
527 1.2 ad * Mutex owner clear could mean two things:
528 1.2 ad *
529 1.2 ad * * The mutex has been released.
530 1.2 ad * * The owner field hasn't been set yet.
531 1.2 ad *
532 1.2 ad * Try to acquire it again. If that fails,
533 1.2 ad * we'll just loop again.
534 1.2 ad */
535 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
536 1.2 ad break;
537 1.2 ad continue;
538 1.2 ad }
539 1.2 ad
540 1.2 ad if (panicstr != NULL)
541 1.2 ad return;
542 1.2 ad if (MUTEX_OWNER(owner) == curthread)
543 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
544 1.2 ad
545 1.2 ad #ifdef MULTIPROCESSOR
546 1.2 ad /*
547 1.2 ad * Check to see if the owner is running on a processor.
548 1.2 ad * If so, then we should just spin, as the owner will
549 1.2 ad * likely release the lock very soon.
550 1.2 ad */
551 1.2 ad if (mutex_onproc(owner, &ci)) {
552 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
553 1.2 ad count = SPINLOCK_BACKOFF_MIN;
554 1.2 ad for (;;) {
555 1.2 ad owner = mtx->mtx_owner;
556 1.2 ad if (!mutex_onproc(owner, &ci))
557 1.2 ad break;
558 1.2 ad SPINLOCK_BACKOFF(count);
559 1.2 ad }
560 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
561 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
562 1.2 ad if (!MUTEX_OWNED(owner))
563 1.2 ad continue;
564 1.2 ad }
565 1.2 ad #endif
566 1.2 ad
567 1.2 ad ts = turnstile_lookup(mtx);
568 1.2 ad
569 1.2 ad /*
570 1.2 ad * Once we have the turnstile chain interlock, mark the
571 1.2 ad * mutex has having waiters. If that fails, spin again:
572 1.2 ad * chances are that the mutex has been released.
573 1.2 ad */
574 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
575 1.2 ad turnstile_exit(mtx);
576 1.2 ad continue;
577 1.2 ad }
578 1.2 ad
579 1.2 ad #ifdef MULTIPROCESSOR
580 1.2 ad /*
581 1.2 ad * mutex_exit() is permitted to release the mutex without
582 1.2 ad * any interlocking instructions, and the following can
583 1.2 ad * occur as a result:
584 1.2 ad *
585 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
586 1.2 ad * ---------------------------- ----------------------------
587 1.2 ad * .. acquire cache line
588 1.2 ad * .. test for waiters
589 1.2 ad * acquire cache line <- lose cache line
590 1.2 ad * lock cache line ..
591 1.2 ad * verify mutex is held ..
592 1.2 ad * set waiters ..
593 1.2 ad * unlock cache line ..
594 1.2 ad * lose cache line -> acquire cache line
595 1.2 ad * .. clear lock word, waiters
596 1.2 ad * return success
597 1.2 ad *
598 1.2 ad * There is a another race that can occur: a third CPU could
599 1.2 ad * acquire the mutex as soon as it is released. Since
600 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
601 1.2 ad * something that we need to worry about too much. What we
602 1.2 ad * do need to ensure is that the waiters bit gets set.
603 1.2 ad *
604 1.2 ad * To allow the unlocked release, we need to make some
605 1.2 ad * assumptions here:
606 1.2 ad *
607 1.2 ad * o Release is the only non-atomic/unlocked operation
608 1.2 ad * that can be performed on the mutex. (It must still
609 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
610 1.2 ad * or preempted).
611 1.2 ad *
612 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
613 1.21 pooka * be in progress on one CPU in the system - guaranteed
614 1.2 ad * by the turnstile chain lock.
615 1.2 ad *
616 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
617 1.2 ad * and release can modify a mutex with a non-zero
618 1.2 ad * owner field.
619 1.2 ad *
620 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
621 1.2 ad * is an unbuffered write that is immediately visible
622 1.2 ad * to all other processors in the system.
623 1.2 ad *
624 1.2 ad * o If the holding LWP switches away, it posts a store
625 1.2 ad * fence before changing curlwp, ensuring that any
626 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
627 1.2 ad * completes before the modification of curlwp becomes
628 1.2 ad * visible to this CPU.
629 1.2 ad *
630 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
631 1.2 ad * and before resuming execution of an LWP.
632 1.2 ad *
633 1.2 ad * o _kernel_lock() posts a store fence before setting
634 1.2 ad * curcpu()->ci_biglock_wanted, and after clearing it.
635 1.2 ad * This ensures that any overwrite of the mutex waiters
636 1.2 ad * flag by mutex_exit() completes before the modification
637 1.2 ad * of ci_biglock_wanted becomes visible.
638 1.2 ad *
639 1.2 ad * We now post a read memory barrier (after setting the
640 1.2 ad * waiters field) and check the lock holder's status again.
641 1.2 ad * Some of the possible outcomes (not an exhaustive list):
642 1.2 ad *
643 1.2 ad * 1. The onproc check returns true: the holding LWP is
644 1.2 ad * running again. The lock may be released soon and
645 1.2 ad * we should spin. Importantly, we can't trust the
646 1.2 ad * value of the waiters flag.
647 1.2 ad *
648 1.2 ad * 2. The onproc check returns false: the holding LWP is
649 1.2 ad * not running. We now have the oppertunity to check
650 1.2 ad * if mutex_exit() has blatted the modifications made
651 1.2 ad * by MUTEX_SET_WAITERS().
652 1.2 ad *
653 1.2 ad * 3. The onproc check returns false: the holding LWP may
654 1.2 ad * or may not be running. It has context switched at
655 1.2 ad * some point during our check. Again, we have the
656 1.2 ad * chance to see if the waiters bit is still set or
657 1.2 ad * has been overwritten.
658 1.2 ad *
659 1.2 ad * 4. The onproc check returns false: the holding LWP is
660 1.2 ad * running on a CPU, but wants the big lock. It's OK
661 1.2 ad * to check the waiters field in this case.
662 1.2 ad *
663 1.2 ad * 5. The has-waiters check fails: the mutex has been
664 1.2 ad * released, the waiters flag cleared and another LWP
665 1.2 ad * now owns the mutex.
666 1.2 ad *
667 1.2 ad * 6. The has-waiters check fails: the mutex has been
668 1.2 ad * released.
669 1.2 ad *
670 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
671 1.2 ad * as we might never be awoken.
672 1.2 ad */
673 1.24 ad if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
674 1.24 ad (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
675 1.2 ad turnstile_exit(mtx);
676 1.2 ad continue;
677 1.2 ad }
678 1.2 ad #endif /* MULTIPROCESSOR */
679 1.2 ad
680 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
681 1.2 ad
682 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
683 1.2 ad
684 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
685 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
686 1.2 ad }
687 1.2 ad
688 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
689 1.2 ad slpcnt, slptime);
690 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
691 1.2 ad spincnt, spintime);
692 1.2 ad LOCKSTAT_EXIT(lsflag);
693 1.2 ad
694 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
695 1.2 ad MUTEX_LOCKED(mtx);
696 1.2 ad }
697 1.2 ad
698 1.2 ad /*
699 1.2 ad * mutex_vector_exit:
700 1.2 ad *
701 1.2 ad * Support routine for mutex_exit() that handles all cases.
702 1.2 ad */
703 1.2 ad void
704 1.2 ad mutex_vector_exit(kmutex_t *mtx)
705 1.2 ad {
706 1.2 ad turnstile_t *ts;
707 1.2 ad uintptr_t curthread;
708 1.2 ad
709 1.2 ad if (MUTEX_SPIN_P(mtx)) {
710 1.2 ad #ifdef FULL
711 1.16 skrll if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
712 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
713 1.2 ad MUTEX_UNLOCKED(mtx);
714 1.2 ad __cpu_simple_unlock(&mtx->mtx_lock);
715 1.2 ad #endif
716 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
717 1.2 ad return;
718 1.2 ad }
719 1.2 ad
720 1.11 ad if (__predict_false((uintptr_t)panicstr | cold)) {
721 1.2 ad MUTEX_UNLOCKED(mtx);
722 1.2 ad MUTEX_RELEASE(mtx);
723 1.2 ad return;
724 1.2 ad }
725 1.2 ad
726 1.2 ad curthread = (uintptr_t)curlwp;
727 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
728 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
729 1.2 ad MUTEX_UNLOCKED(mtx);
730 1.2 ad
731 1.15 ad #ifdef LOCKDEBUG
732 1.15 ad /*
733 1.15 ad * Avoid having to take the turnstile chain lock every time
734 1.15 ad * around. Raise the priority level to splhigh() in order
735 1.15 ad * to disable preemption and so make the following atomic.
736 1.15 ad */
737 1.15 ad {
738 1.15 ad int s = splhigh();
739 1.15 ad if (!MUTEX_HAS_WAITERS(mtx)) {
740 1.15 ad MUTEX_RELEASE(mtx);
741 1.15 ad splx(s);
742 1.15 ad return;
743 1.15 ad }
744 1.15 ad splx(s);
745 1.15 ad }
746 1.15 ad #endif
747 1.15 ad
748 1.2 ad /*
749 1.2 ad * Get this lock's turnstile. This gets the interlock on
750 1.2 ad * the sleep queue. Once we have that, we can clear the
751 1.2 ad * lock. If there was no turnstile for the lock, there
752 1.2 ad * were no waiters remaining.
753 1.2 ad */
754 1.2 ad ts = turnstile_lookup(mtx);
755 1.2 ad
756 1.2 ad if (ts == NULL) {
757 1.2 ad MUTEX_RELEASE(mtx);
758 1.2 ad turnstile_exit(mtx);
759 1.2 ad } else {
760 1.2 ad MUTEX_RELEASE(mtx);
761 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
762 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
763 1.2 ad }
764 1.2 ad }
765 1.2 ad
766 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
767 1.4 ad /*
768 1.4 ad * mutex_wakeup:
769 1.4 ad *
770 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
771 1.4 ad * We assume that the mutex has been released, but it need not
772 1.4 ad * be.
773 1.4 ad */
774 1.4 ad void
775 1.4 ad mutex_wakeup(kmutex_t *mtx)
776 1.4 ad {
777 1.4 ad turnstile_t *ts;
778 1.4 ad
779 1.4 ad ts = turnstile_lookup(mtx);
780 1.4 ad if (ts == NULL) {
781 1.4 ad turnstile_exit(mtx);
782 1.4 ad return;
783 1.4 ad }
784 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
785 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
786 1.4 ad }
787 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
788 1.4 ad
789 1.2 ad /*
790 1.2 ad * mutex_owned:
791 1.2 ad *
792 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
793 1.3 ad * holds the mutex.
794 1.2 ad */
795 1.2 ad int
796 1.2 ad mutex_owned(kmutex_t *mtx)
797 1.2 ad {
798 1.2 ad
799 1.2 ad if (MUTEX_ADAPTIVE_P(mtx))
800 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
801 1.2 ad #ifdef FULL
802 1.16 skrll return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
803 1.2 ad #else
804 1.2 ad return 1;
805 1.2 ad #endif
806 1.2 ad }
807 1.2 ad
808 1.2 ad /*
809 1.2 ad * mutex_owner:
810 1.2 ad *
811 1.6 ad * Return the current owner of an adaptive mutex. Used for
812 1.6 ad * priority inheritance.
813 1.2 ad */
814 1.27 ad lwp_t *
815 1.27 ad mutex_owner(kmutex_t *mtx)
816 1.2 ad {
817 1.2 ad
818 1.2 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
819 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
820 1.2 ad }
821 1.2 ad
822 1.2 ad /*
823 1.2 ad * mutex_tryenter:
824 1.2 ad *
825 1.2 ad * Try to acquire the mutex; return non-zero if we did.
826 1.2 ad */
827 1.2 ad int
828 1.2 ad mutex_tryenter(kmutex_t *mtx)
829 1.2 ad {
830 1.2 ad uintptr_t curthread;
831 1.2 ad
832 1.2 ad /*
833 1.2 ad * Handle spin mutexes.
834 1.2 ad */
835 1.2 ad if (MUTEX_SPIN_P(mtx)) {
836 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
837 1.2 ad #ifdef FULL
838 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
839 1.4 ad MUTEX_WANTLOCK(mtx);
840 1.2 ad MUTEX_LOCKED(mtx);
841 1.2 ad return 1;
842 1.2 ad }
843 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
844 1.2 ad #else
845 1.4 ad MUTEX_WANTLOCK(mtx);
846 1.2 ad MUTEX_LOCKED(mtx);
847 1.2 ad return 1;
848 1.2 ad #endif
849 1.2 ad } else {
850 1.2 ad curthread = (uintptr_t)curlwp;
851 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
852 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
853 1.4 ad MUTEX_WANTLOCK(mtx);
854 1.2 ad MUTEX_LOCKED(mtx);
855 1.2 ad MUTEX_DASSERT(mtx,
856 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
857 1.2 ad return 1;
858 1.2 ad }
859 1.2 ad }
860 1.2 ad
861 1.2 ad return 0;
862 1.2 ad }
863 1.2 ad
864 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
865 1.2 ad /*
866 1.2 ad * mutex_spin_retry:
867 1.2 ad *
868 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
869 1.2 ad * has already raised the SPL, and adjusted counters.
870 1.2 ad */
871 1.2 ad void
872 1.2 ad mutex_spin_retry(kmutex_t *mtx)
873 1.2 ad {
874 1.2 ad #ifdef MULTIPROCESSOR
875 1.2 ad u_int count;
876 1.2 ad LOCKSTAT_TIMER(spintime);
877 1.2 ad LOCKSTAT_FLAG(lsflag);
878 1.2 ad #ifdef LOCKDEBUG
879 1.2 ad u_int spins = 0;
880 1.2 ad #endif /* LOCKDEBUG */
881 1.2 ad
882 1.2 ad MUTEX_WANTLOCK(mtx);
883 1.2 ad
884 1.2 ad LOCKSTAT_ENTER(lsflag);
885 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
886 1.2 ad count = SPINLOCK_BACKOFF_MIN;
887 1.2 ad
888 1.2 ad /*
889 1.2 ad * Spin testing the lock word and do exponential backoff
890 1.2 ad * to reduce cache line ping-ponging between CPUs.
891 1.2 ad */
892 1.2 ad do {
893 1.2 ad if (panicstr != NULL)
894 1.2 ad break;
895 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
896 1.2 ad SPINLOCK_BACKOFF(count);
897 1.2 ad #ifdef LOCKDEBUG
898 1.2 ad if (SPINLOCK_SPINOUT(spins))
899 1.2 ad MUTEX_ABORT(mtx, "spinout");
900 1.2 ad #endif /* LOCKDEBUG */
901 1.2 ad }
902 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
903 1.2 ad
904 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
905 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
906 1.2 ad LOCKSTAT_EXIT(lsflag);
907 1.2 ad
908 1.2 ad MUTEX_LOCKED(mtx);
909 1.2 ad #else /* MULTIPROCESSOR */
910 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
911 1.2 ad #endif /* MULTIPROCESSOR */
912 1.2 ad }
913 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
914