kern_mutex.c revision 1.33 1 1.33 ad /* $NetBSD: kern_mutex.c,v 1.33 2008/03/28 22:19:39 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.30 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad * 3. All advertising materials mentioning features or use of this software
19 1.2 ad * must display the following acknowledgement:
20 1.2 ad * This product includes software developed by the NetBSD
21 1.2 ad * Foundation, Inc. and its contributors.
22 1.2 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.2 ad * contributors may be used to endorse or promote products derived
24 1.2 ad * from this software without specific prior written permission.
25 1.2 ad *
26 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.2 ad */
38 1.2 ad
39 1.2 ad /*
40 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
41 1.2 ad * a description of which can be found in:
42 1.2 ad *
43 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 1.2 ad * Richard McDougall.
45 1.2 ad */
46 1.2 ad
47 1.2 ad #define __MUTEX_PRIVATE
48 1.2 ad
49 1.2 ad #include <sys/cdefs.h>
50 1.33 ad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.33 2008/03/28 22:19:39 ad Exp $");
51 1.18 dsl
52 1.18 dsl #include "opt_multiprocessor.h"
53 1.2 ad
54 1.2 ad #include <sys/param.h>
55 1.2 ad #include <sys/proc.h>
56 1.2 ad #include <sys/mutex.h>
57 1.2 ad #include <sys/sched.h>
58 1.2 ad #include <sys/sleepq.h>
59 1.2 ad #include <sys/systm.h>
60 1.2 ad #include <sys/lockdebug.h>
61 1.2 ad #include <sys/kernel.h>
62 1.24 ad #include <sys/atomic.h>
63 1.24 ad #include <sys/intr.h>
64 1.29 xtraeme #include <sys/lock.h>
65 1.31 ad #include <sys/pool.h>
66 1.2 ad
67 1.2 ad #include <dev/lockstat.h>
68 1.2 ad
69 1.28 ad #include <machine/lock.h>
70 1.28 ad
71 1.2 ad /*
72 1.2 ad * When not running a debug kernel, spin mutexes are not much
73 1.2 ad * more than an splraiseipl() and splx() pair.
74 1.2 ad */
75 1.2 ad
76 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
77 1.2 ad #define FULL
78 1.2 ad #endif
79 1.2 ad
80 1.2 ad /*
81 1.2 ad * Debugging support.
82 1.2 ad */
83 1.2 ad
84 1.2 ad #define MUTEX_WANTLOCK(mtx) \
85 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
86 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
87 1.2 ad #define MUTEX_LOCKED(mtx) \
88 1.23 yamt LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
89 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
90 1.2 ad #define MUTEX_UNLOCKED(mtx) \
91 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
92 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
93 1.2 ad #define MUTEX_ABORT(mtx, msg) \
94 1.17 ad mutex_abort(mtx, __func__, msg)
95 1.2 ad
96 1.2 ad #if defined(LOCKDEBUG)
97 1.2 ad
98 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
99 1.2 ad do { \
100 1.2 ad if (!(cond)) \
101 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
102 1.2 ad } while (/* CONSTCOND */ 0);
103 1.2 ad
104 1.2 ad #else /* LOCKDEBUG */
105 1.2 ad
106 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
107 1.2 ad
108 1.2 ad #endif /* LOCKDEBUG */
109 1.2 ad
110 1.2 ad #if defined(DIAGNOSTIC)
111 1.2 ad
112 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
113 1.2 ad do { \
114 1.2 ad if (!(cond)) \
115 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
116 1.2 ad } while (/* CONSTCOND */ 0)
117 1.2 ad
118 1.2 ad #else /* DIAGNOSTIC */
119 1.2 ad
120 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
121 1.2 ad
122 1.2 ad #endif /* DIAGNOSTIC */
123 1.2 ad
124 1.2 ad /*
125 1.2 ad * Spin mutex SPL save / restore.
126 1.2 ad */
127 1.12 matt #ifndef MUTEX_COUNT_BIAS
128 1.12 matt #define MUTEX_COUNT_BIAS 0
129 1.12 matt #endif
130 1.2 ad
131 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
132 1.2 ad do { \
133 1.2 ad struct cpu_info *x__ci = curcpu(); \
134 1.2 ad int x__cnt, s; \
135 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
136 1.2 ad s = splraiseipl(mtx->mtx_ipl); \
137 1.12 matt if (x__cnt == MUTEX_COUNT_BIAS) \
138 1.2 ad x__ci->ci_mtx_oldspl = (s); \
139 1.2 ad } while (/* CONSTCOND */ 0)
140 1.2 ad
141 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
142 1.2 ad do { \
143 1.2 ad struct cpu_info *x__ci = curcpu(); \
144 1.2 ad int s = x__ci->ci_mtx_oldspl; \
145 1.2 ad __insn_barrier(); \
146 1.12 matt if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
147 1.2 ad splx(s); \
148 1.2 ad } while (/* CONSTCOND */ 0)
149 1.2 ad
150 1.2 ad /*
151 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
152 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
153 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
154 1.2 ad * additional interlock.
155 1.2 ad */
156 1.2 ad
157 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
158 1.2 ad
159 1.2 ad #define MUTEX_OWNER(owner) \
160 1.2 ad (owner & MUTEX_THREAD)
161 1.2 ad #define MUTEX_HAS_WAITERS(mtx) \
162 1.2 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
163 1.2 ad
164 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
165 1.2 ad do { \
166 1.23 yamt if (dodebug) \
167 1.23 yamt (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
168 1.2 ad } while (/* CONSTCOND */ 0);
169 1.2 ad
170 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
171 1.2 ad do { \
172 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
173 1.23 yamt if (dodebug) \
174 1.23 yamt (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
175 1.2 ad (mtx)->mtx_ipl = makeiplcookie((ipl)); \
176 1.2 ad __cpu_simple_lock_init(&(mtx)->mtx_lock); \
177 1.2 ad } while (/* CONSTCOND */ 0)
178 1.2 ad
179 1.2 ad #define MUTEX_DESTROY(mtx) \
180 1.2 ad do { \
181 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
182 1.2 ad } while (/* CONSTCOND */ 0);
183 1.2 ad
184 1.2 ad #define MUTEX_SPIN_P(mtx) \
185 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
186 1.2 ad #define MUTEX_ADAPTIVE_P(mtx) \
187 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
188 1.2 ad
189 1.23 yamt #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
190 1.23 yamt #if defined(LOCKDEBUG)
191 1.23 yamt #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
192 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
193 1.23 yamt #else /* defined(LOCKDEBUG) */
194 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
195 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) /* nothing */
196 1.23 yamt #endif /* defined(LOCKDEBUG) */
197 1.2 ad
198 1.2 ad static inline int
199 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
200 1.2 ad {
201 1.2 ad int rv;
202 1.23 yamt uintptr_t old = 0;
203 1.23 yamt uintptr_t new = curthread;
204 1.23 yamt
205 1.23 yamt MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
206 1.23 yamt MUTEX_INHERITDEBUG(new, old);
207 1.23 yamt rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
208 1.7 itohy MUTEX_RECEIVE(mtx);
209 1.2 ad return rv;
210 1.2 ad }
211 1.2 ad
212 1.2 ad static inline int
213 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
214 1.2 ad {
215 1.2 ad int rv;
216 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
217 1.7 itohy MUTEX_RECEIVE(mtx);
218 1.2 ad return rv;
219 1.2 ad }
220 1.2 ad
221 1.2 ad static inline void
222 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
223 1.2 ad {
224 1.23 yamt uintptr_t new;
225 1.23 yamt
226 1.7 itohy MUTEX_GIVE(mtx);
227 1.23 yamt new = 0;
228 1.23 yamt MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
229 1.23 yamt mtx->mtx_owner = new;
230 1.2 ad }
231 1.4 ad
232 1.4 ad static inline void
233 1.4 ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
234 1.4 ad {
235 1.4 ad /* nothing */
236 1.4 ad }
237 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
238 1.2 ad
239 1.2 ad /*
240 1.2 ad * Patch in stubs via strong alias where they are not available.
241 1.2 ad */
242 1.2 ad
243 1.2 ad #if defined(LOCKDEBUG)
244 1.2 ad #undef __HAVE_MUTEX_STUBS
245 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
246 1.2 ad #endif
247 1.2 ad
248 1.2 ad #ifndef __HAVE_MUTEX_STUBS
249 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
250 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
251 1.2 ad #endif
252 1.2 ad
253 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
254 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
255 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
256 1.2 ad #endif
257 1.2 ad
258 1.2 ad void mutex_abort(kmutex_t *, const char *, const char *);
259 1.2 ad void mutex_dump(volatile void *);
260 1.2 ad int mutex_onproc(uintptr_t, struct cpu_info **);
261 1.2 ad
262 1.2 ad lockops_t mutex_spin_lockops = {
263 1.2 ad "Mutex",
264 1.2 ad 0,
265 1.2 ad mutex_dump
266 1.2 ad };
267 1.2 ad
268 1.2 ad lockops_t mutex_adaptive_lockops = {
269 1.2 ad "Mutex",
270 1.2 ad 1,
271 1.2 ad mutex_dump
272 1.2 ad };
273 1.2 ad
274 1.5 yamt syncobj_t mutex_syncobj = {
275 1.5 yamt SOBJ_SLEEPQ_SORTED,
276 1.5 yamt turnstile_unsleep,
277 1.5 yamt turnstile_changepri,
278 1.5 yamt sleepq_lendpri,
279 1.27 ad (void *)mutex_owner,
280 1.5 yamt };
281 1.5 yamt
282 1.31 ad /* Mutex cache */
283 1.31 ad #define MUTEX_OBJ_MAGIC 0x5aa3c85d
284 1.31 ad struct kmutexobj {
285 1.31 ad kmutex_t mo_lock;
286 1.31 ad u_int mo_magic;
287 1.31 ad u_int mo_refcnt;
288 1.31 ad };
289 1.31 ad
290 1.31 ad static int mutex_obj_ctor(void *, void *, int);
291 1.31 ad
292 1.31 ad static pool_cache_t mutex_obj_cache;
293 1.31 ad
294 1.2 ad /*
295 1.2 ad * mutex_dump:
296 1.2 ad *
297 1.2 ad * Dump the contents of a mutex structure.
298 1.2 ad */
299 1.2 ad void
300 1.2 ad mutex_dump(volatile void *cookie)
301 1.2 ad {
302 1.2 ad volatile kmutex_t *mtx = cookie;
303 1.2 ad
304 1.2 ad printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
305 1.2 ad (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
306 1.2 ad MUTEX_SPIN_P(mtx));
307 1.2 ad }
308 1.2 ad
309 1.2 ad /*
310 1.2 ad * mutex_abort:
311 1.2 ad *
312 1.3 ad * Dump information about an error and panic the system. This
313 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
314 1.3 ad * we ask the compiler to not inline it.
315 1.2 ad */
316 1.8 itohy
317 1.8 itohy #if __GNUC_PREREQ__(3, 0)
318 1.8 itohy __attribute ((noinline)) __attribute ((noreturn))
319 1.8 itohy #endif
320 1.8 itohy void
321 1.2 ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
322 1.2 ad {
323 1.2 ad
324 1.23 yamt LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
325 1.3 ad &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
326 1.2 ad /* NOTREACHED */
327 1.2 ad }
328 1.2 ad
329 1.2 ad /*
330 1.2 ad * mutex_init:
331 1.2 ad *
332 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
333 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
334 1.2 ad * CPU time. We can't easily provide a type of mutex that always
335 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
336 1.2 ad * mutexes unlocked.
337 1.2 ad */
338 1.2 ad void
339 1.2 ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
340 1.2 ad {
341 1.23 yamt bool dodebug;
342 1.2 ad
343 1.2 ad memset(mtx, 0, sizeof(*mtx));
344 1.2 ad
345 1.15 ad switch (type) {
346 1.15 ad case MUTEX_ADAPTIVE:
347 1.15 ad KASSERT(ipl == IPL_NONE);
348 1.15 ad break;
349 1.22 ad case MUTEX_DEFAULT:
350 1.15 ad case MUTEX_DRIVER:
351 1.26 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
352 1.26 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
353 1.26 ad ipl == IPL_SOFTSERIAL) {
354 1.22 ad type = MUTEX_ADAPTIVE;
355 1.26 ad } else {
356 1.22 ad type = MUTEX_SPIN;
357 1.22 ad }
358 1.15 ad break;
359 1.15 ad default:
360 1.15 ad break;
361 1.15 ad }
362 1.2 ad
363 1.2 ad switch (type) {
364 1.11 ad case MUTEX_NODEBUG:
365 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
366 1.19 ad (uintptr_t)__builtin_return_address(0));
367 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
368 1.11 ad break;
369 1.2 ad case MUTEX_ADAPTIVE:
370 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
371 1.19 ad (uintptr_t)__builtin_return_address(0));
372 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
373 1.2 ad break;
374 1.2 ad case MUTEX_SPIN:
375 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
376 1.19 ad (uintptr_t)__builtin_return_address(0));
377 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
378 1.2 ad break;
379 1.2 ad default:
380 1.2 ad panic("mutex_init: impossible type");
381 1.2 ad break;
382 1.2 ad }
383 1.2 ad }
384 1.2 ad
385 1.2 ad /*
386 1.2 ad * mutex_destroy:
387 1.2 ad *
388 1.2 ad * Tear down a mutex.
389 1.2 ad */
390 1.2 ad void
391 1.2 ad mutex_destroy(kmutex_t *mtx)
392 1.2 ad {
393 1.2 ad
394 1.2 ad if (MUTEX_ADAPTIVE_P(mtx)) {
395 1.2 ad MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
396 1.2 ad !MUTEX_HAS_WAITERS(mtx));
397 1.2 ad } else {
398 1.16 skrll MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
399 1.2 ad }
400 1.2 ad
401 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
402 1.2 ad MUTEX_DESTROY(mtx);
403 1.2 ad }
404 1.2 ad
405 1.2 ad /*
406 1.2 ad * mutex_onproc:
407 1.2 ad *
408 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
409 1.2 ad * system. If the target is waiting on the kernel big lock, then we
410 1.15 ad * must release it. This is necessary to avoid deadlock.
411 1.2 ad *
412 1.2 ad * Note that we can't use the mutex owner field as an LWP pointer. We
413 1.2 ad * don't have full control over the timing of our execution, and so the
414 1.2 ad * pointer could be completely invalid by the time we dereference it.
415 1.2 ad */
416 1.2 ad #ifdef MULTIPROCESSOR
417 1.2 ad int
418 1.2 ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
419 1.2 ad {
420 1.2 ad CPU_INFO_ITERATOR cii;
421 1.2 ad struct cpu_info *ci;
422 1.2 ad struct lwp *l;
423 1.2 ad
424 1.2 ad if (!MUTEX_OWNED(owner))
425 1.2 ad return 0;
426 1.2 ad l = (struct lwp *)MUTEX_OWNER(owner);
427 1.2 ad
428 1.15 ad /* See if the target is running on a CPU somewhere. */
429 1.10 ad if ((ci = *cip) != NULL && ci->ci_curlwp == l)
430 1.15 ad goto run;
431 1.15 ad for (CPU_INFO_FOREACH(cii, ci))
432 1.15 ad if (ci->ci_curlwp == l)
433 1.15 ad goto run;
434 1.2 ad
435 1.15 ad /* No: it may be safe to block now. */
436 1.2 ad *cip = NULL;
437 1.2 ad return 0;
438 1.15 ad
439 1.15 ad run:
440 1.15 ad /* Target is running; do we need to block? */
441 1.15 ad *cip = ci;
442 1.15 ad return ci->ci_biglock_wanted != l;
443 1.2 ad }
444 1.15 ad #endif /* MULTIPROCESSOR */
445 1.2 ad
446 1.2 ad /*
447 1.2 ad * mutex_vector_enter:
448 1.2 ad *
449 1.2 ad * Support routine for mutex_enter() that must handles all cases. In
450 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
451 1.2 ad * fast-path stubs are available. If an mutex_spin_enter() stub is
452 1.2 ad * not available, then it is also aliased directly here.
453 1.2 ad */
454 1.2 ad void
455 1.2 ad mutex_vector_enter(kmutex_t *mtx)
456 1.2 ad {
457 1.2 ad uintptr_t owner, curthread;
458 1.2 ad turnstile_t *ts;
459 1.2 ad #ifdef MULTIPROCESSOR
460 1.2 ad struct cpu_info *ci = NULL;
461 1.2 ad u_int count;
462 1.2 ad #endif
463 1.2 ad LOCKSTAT_COUNTER(spincnt);
464 1.2 ad LOCKSTAT_COUNTER(slpcnt);
465 1.2 ad LOCKSTAT_TIMER(spintime);
466 1.2 ad LOCKSTAT_TIMER(slptime);
467 1.2 ad LOCKSTAT_FLAG(lsflag);
468 1.2 ad
469 1.2 ad /*
470 1.2 ad * Handle spin mutexes.
471 1.2 ad */
472 1.2 ad if (MUTEX_SPIN_P(mtx)) {
473 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
474 1.2 ad u_int spins = 0;
475 1.2 ad #endif
476 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
477 1.2 ad MUTEX_WANTLOCK(mtx);
478 1.2 ad #ifdef FULL
479 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
480 1.2 ad MUTEX_LOCKED(mtx);
481 1.2 ad return;
482 1.2 ad }
483 1.2 ad #if !defined(MULTIPROCESSOR)
484 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
485 1.2 ad #else /* !MULTIPROCESSOR */
486 1.2 ad
487 1.2 ad LOCKSTAT_ENTER(lsflag);
488 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
489 1.2 ad count = SPINLOCK_BACKOFF_MIN;
490 1.2 ad
491 1.2 ad /*
492 1.2 ad * Spin testing the lock word and do exponential backoff
493 1.2 ad * to reduce cache line ping-ponging between CPUs.
494 1.2 ad */
495 1.2 ad do {
496 1.2 ad if (panicstr != NULL)
497 1.2 ad break;
498 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
499 1.2 ad SPINLOCK_BACKOFF(count);
500 1.2 ad #ifdef LOCKDEBUG
501 1.2 ad if (SPINLOCK_SPINOUT(spins))
502 1.2 ad MUTEX_ABORT(mtx, "spinout");
503 1.2 ad #endif /* LOCKDEBUG */
504 1.2 ad }
505 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
506 1.2 ad
507 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
508 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
509 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
510 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
511 1.2 ad }
512 1.2 ad LOCKSTAT_EXIT(lsflag);
513 1.2 ad #endif /* !MULTIPROCESSOR */
514 1.2 ad #endif /* FULL */
515 1.2 ad MUTEX_LOCKED(mtx);
516 1.2 ad return;
517 1.2 ad }
518 1.2 ad
519 1.2 ad curthread = (uintptr_t)curlwp;
520 1.2 ad
521 1.2 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
522 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
523 1.2 ad MUTEX_WANTLOCK(mtx);
524 1.2 ad
525 1.2 ad if (panicstr == NULL) {
526 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
527 1.2 ad }
528 1.2 ad
529 1.2 ad LOCKSTAT_ENTER(lsflag);
530 1.2 ad
531 1.2 ad /*
532 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
533 1.2 ad * determine that the owner is not running on a processor,
534 1.2 ad * then we stop spinning, and sleep instead.
535 1.2 ad */
536 1.2 ad for (;;) {
537 1.2 ad owner = mtx->mtx_owner;
538 1.2 ad if (!MUTEX_OWNED(owner)) {
539 1.2 ad /*
540 1.2 ad * Mutex owner clear could mean two things:
541 1.2 ad *
542 1.2 ad * * The mutex has been released.
543 1.2 ad * * The owner field hasn't been set yet.
544 1.2 ad *
545 1.2 ad * Try to acquire it again. If that fails,
546 1.2 ad * we'll just loop again.
547 1.2 ad */
548 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
549 1.2 ad break;
550 1.2 ad continue;
551 1.2 ad }
552 1.2 ad
553 1.2 ad if (panicstr != NULL)
554 1.2 ad return;
555 1.2 ad if (MUTEX_OWNER(owner) == curthread)
556 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
557 1.2 ad
558 1.2 ad #ifdef MULTIPROCESSOR
559 1.2 ad /*
560 1.2 ad * Check to see if the owner is running on a processor.
561 1.2 ad * If so, then we should just spin, as the owner will
562 1.2 ad * likely release the lock very soon.
563 1.2 ad */
564 1.2 ad if (mutex_onproc(owner, &ci)) {
565 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
566 1.2 ad count = SPINLOCK_BACKOFF_MIN;
567 1.2 ad for (;;) {
568 1.2 ad owner = mtx->mtx_owner;
569 1.2 ad if (!mutex_onproc(owner, &ci))
570 1.2 ad break;
571 1.2 ad SPINLOCK_BACKOFF(count);
572 1.2 ad }
573 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
574 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
575 1.2 ad if (!MUTEX_OWNED(owner))
576 1.2 ad continue;
577 1.2 ad }
578 1.2 ad #endif
579 1.2 ad
580 1.2 ad ts = turnstile_lookup(mtx);
581 1.2 ad
582 1.2 ad /*
583 1.2 ad * Once we have the turnstile chain interlock, mark the
584 1.2 ad * mutex has having waiters. If that fails, spin again:
585 1.2 ad * chances are that the mutex has been released.
586 1.2 ad */
587 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
588 1.2 ad turnstile_exit(mtx);
589 1.2 ad continue;
590 1.2 ad }
591 1.2 ad
592 1.2 ad #ifdef MULTIPROCESSOR
593 1.2 ad /*
594 1.2 ad * mutex_exit() is permitted to release the mutex without
595 1.2 ad * any interlocking instructions, and the following can
596 1.2 ad * occur as a result:
597 1.2 ad *
598 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
599 1.2 ad * ---------------------------- ----------------------------
600 1.2 ad * .. acquire cache line
601 1.2 ad * .. test for waiters
602 1.2 ad * acquire cache line <- lose cache line
603 1.2 ad * lock cache line ..
604 1.2 ad * verify mutex is held ..
605 1.2 ad * set waiters ..
606 1.2 ad * unlock cache line ..
607 1.2 ad * lose cache line -> acquire cache line
608 1.2 ad * .. clear lock word, waiters
609 1.2 ad * return success
610 1.2 ad *
611 1.2 ad * There is a another race that can occur: a third CPU could
612 1.2 ad * acquire the mutex as soon as it is released. Since
613 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
614 1.2 ad * something that we need to worry about too much. What we
615 1.2 ad * do need to ensure is that the waiters bit gets set.
616 1.2 ad *
617 1.2 ad * To allow the unlocked release, we need to make some
618 1.2 ad * assumptions here:
619 1.2 ad *
620 1.2 ad * o Release is the only non-atomic/unlocked operation
621 1.2 ad * that can be performed on the mutex. (It must still
622 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
623 1.2 ad * or preempted).
624 1.2 ad *
625 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
626 1.21 pooka * be in progress on one CPU in the system - guaranteed
627 1.2 ad * by the turnstile chain lock.
628 1.2 ad *
629 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
630 1.2 ad * and release can modify a mutex with a non-zero
631 1.2 ad * owner field.
632 1.2 ad *
633 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
634 1.2 ad * is an unbuffered write that is immediately visible
635 1.2 ad * to all other processors in the system.
636 1.2 ad *
637 1.2 ad * o If the holding LWP switches away, it posts a store
638 1.2 ad * fence before changing curlwp, ensuring that any
639 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
640 1.2 ad * completes before the modification of curlwp becomes
641 1.2 ad * visible to this CPU.
642 1.2 ad *
643 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
644 1.2 ad * and before resuming execution of an LWP.
645 1.2 ad *
646 1.2 ad * o _kernel_lock() posts a store fence before setting
647 1.2 ad * curcpu()->ci_biglock_wanted, and after clearing it.
648 1.2 ad * This ensures that any overwrite of the mutex waiters
649 1.2 ad * flag by mutex_exit() completes before the modification
650 1.2 ad * of ci_biglock_wanted becomes visible.
651 1.2 ad *
652 1.2 ad * We now post a read memory barrier (after setting the
653 1.2 ad * waiters field) and check the lock holder's status again.
654 1.2 ad * Some of the possible outcomes (not an exhaustive list):
655 1.2 ad *
656 1.2 ad * 1. The onproc check returns true: the holding LWP is
657 1.2 ad * running again. The lock may be released soon and
658 1.2 ad * we should spin. Importantly, we can't trust the
659 1.2 ad * value of the waiters flag.
660 1.2 ad *
661 1.2 ad * 2. The onproc check returns false: the holding LWP is
662 1.2 ad * not running. We now have the oppertunity to check
663 1.2 ad * if mutex_exit() has blatted the modifications made
664 1.2 ad * by MUTEX_SET_WAITERS().
665 1.2 ad *
666 1.2 ad * 3. The onproc check returns false: the holding LWP may
667 1.2 ad * or may not be running. It has context switched at
668 1.2 ad * some point during our check. Again, we have the
669 1.2 ad * chance to see if the waiters bit is still set or
670 1.2 ad * has been overwritten.
671 1.2 ad *
672 1.2 ad * 4. The onproc check returns false: the holding LWP is
673 1.2 ad * running on a CPU, but wants the big lock. It's OK
674 1.2 ad * to check the waiters field in this case.
675 1.2 ad *
676 1.2 ad * 5. The has-waiters check fails: the mutex has been
677 1.2 ad * released, the waiters flag cleared and another LWP
678 1.2 ad * now owns the mutex.
679 1.2 ad *
680 1.2 ad * 6. The has-waiters check fails: the mutex has been
681 1.2 ad * released.
682 1.2 ad *
683 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
684 1.2 ad * as we might never be awoken.
685 1.2 ad */
686 1.24 ad if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
687 1.24 ad (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
688 1.2 ad turnstile_exit(mtx);
689 1.2 ad continue;
690 1.2 ad }
691 1.2 ad #endif /* MULTIPROCESSOR */
692 1.2 ad
693 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
694 1.2 ad
695 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
696 1.2 ad
697 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
698 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
699 1.2 ad }
700 1.2 ad
701 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
702 1.2 ad slpcnt, slptime);
703 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
704 1.2 ad spincnt, spintime);
705 1.2 ad LOCKSTAT_EXIT(lsflag);
706 1.2 ad
707 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
708 1.2 ad MUTEX_LOCKED(mtx);
709 1.2 ad }
710 1.2 ad
711 1.2 ad /*
712 1.2 ad * mutex_vector_exit:
713 1.2 ad *
714 1.2 ad * Support routine for mutex_exit() that handles all cases.
715 1.2 ad */
716 1.2 ad void
717 1.2 ad mutex_vector_exit(kmutex_t *mtx)
718 1.2 ad {
719 1.2 ad turnstile_t *ts;
720 1.2 ad uintptr_t curthread;
721 1.2 ad
722 1.2 ad if (MUTEX_SPIN_P(mtx)) {
723 1.2 ad #ifdef FULL
724 1.33 ad if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
725 1.33 ad if (panicstr != NULL)
726 1.33 ad return;
727 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
728 1.33 ad }
729 1.2 ad MUTEX_UNLOCKED(mtx);
730 1.2 ad __cpu_simple_unlock(&mtx->mtx_lock);
731 1.2 ad #endif
732 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
733 1.2 ad return;
734 1.2 ad }
735 1.2 ad
736 1.11 ad if (__predict_false((uintptr_t)panicstr | cold)) {
737 1.2 ad MUTEX_UNLOCKED(mtx);
738 1.2 ad MUTEX_RELEASE(mtx);
739 1.2 ad return;
740 1.2 ad }
741 1.2 ad
742 1.2 ad curthread = (uintptr_t)curlwp;
743 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
744 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
745 1.2 ad MUTEX_UNLOCKED(mtx);
746 1.2 ad
747 1.15 ad #ifdef LOCKDEBUG
748 1.15 ad /*
749 1.15 ad * Avoid having to take the turnstile chain lock every time
750 1.15 ad * around. Raise the priority level to splhigh() in order
751 1.15 ad * to disable preemption and so make the following atomic.
752 1.15 ad */
753 1.15 ad {
754 1.15 ad int s = splhigh();
755 1.15 ad if (!MUTEX_HAS_WAITERS(mtx)) {
756 1.15 ad MUTEX_RELEASE(mtx);
757 1.15 ad splx(s);
758 1.15 ad return;
759 1.15 ad }
760 1.15 ad splx(s);
761 1.15 ad }
762 1.15 ad #endif
763 1.15 ad
764 1.2 ad /*
765 1.2 ad * Get this lock's turnstile. This gets the interlock on
766 1.2 ad * the sleep queue. Once we have that, we can clear the
767 1.2 ad * lock. If there was no turnstile for the lock, there
768 1.2 ad * were no waiters remaining.
769 1.2 ad */
770 1.2 ad ts = turnstile_lookup(mtx);
771 1.2 ad
772 1.2 ad if (ts == NULL) {
773 1.2 ad MUTEX_RELEASE(mtx);
774 1.2 ad turnstile_exit(mtx);
775 1.2 ad } else {
776 1.2 ad MUTEX_RELEASE(mtx);
777 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
778 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
779 1.2 ad }
780 1.2 ad }
781 1.2 ad
782 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
783 1.4 ad /*
784 1.4 ad * mutex_wakeup:
785 1.4 ad *
786 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
787 1.4 ad * We assume that the mutex has been released, but it need not
788 1.4 ad * be.
789 1.4 ad */
790 1.4 ad void
791 1.4 ad mutex_wakeup(kmutex_t *mtx)
792 1.4 ad {
793 1.4 ad turnstile_t *ts;
794 1.4 ad
795 1.4 ad ts = turnstile_lookup(mtx);
796 1.4 ad if (ts == NULL) {
797 1.4 ad turnstile_exit(mtx);
798 1.4 ad return;
799 1.4 ad }
800 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
801 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
802 1.4 ad }
803 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
804 1.4 ad
805 1.2 ad /*
806 1.2 ad * mutex_owned:
807 1.2 ad *
808 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
809 1.3 ad * holds the mutex.
810 1.2 ad */
811 1.2 ad int
812 1.2 ad mutex_owned(kmutex_t *mtx)
813 1.2 ad {
814 1.2 ad
815 1.2 ad if (MUTEX_ADAPTIVE_P(mtx))
816 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
817 1.2 ad #ifdef FULL
818 1.16 skrll return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
819 1.2 ad #else
820 1.2 ad return 1;
821 1.2 ad #endif
822 1.2 ad }
823 1.2 ad
824 1.2 ad /*
825 1.2 ad * mutex_owner:
826 1.2 ad *
827 1.6 ad * Return the current owner of an adaptive mutex. Used for
828 1.6 ad * priority inheritance.
829 1.2 ad */
830 1.27 ad lwp_t *
831 1.27 ad mutex_owner(kmutex_t *mtx)
832 1.2 ad {
833 1.2 ad
834 1.2 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
835 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
836 1.2 ad }
837 1.2 ad
838 1.2 ad /*
839 1.2 ad * mutex_tryenter:
840 1.2 ad *
841 1.2 ad * Try to acquire the mutex; return non-zero if we did.
842 1.2 ad */
843 1.2 ad int
844 1.2 ad mutex_tryenter(kmutex_t *mtx)
845 1.2 ad {
846 1.2 ad uintptr_t curthread;
847 1.2 ad
848 1.2 ad /*
849 1.2 ad * Handle spin mutexes.
850 1.2 ad */
851 1.2 ad if (MUTEX_SPIN_P(mtx)) {
852 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
853 1.2 ad #ifdef FULL
854 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
855 1.4 ad MUTEX_WANTLOCK(mtx);
856 1.2 ad MUTEX_LOCKED(mtx);
857 1.2 ad return 1;
858 1.2 ad }
859 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
860 1.2 ad #else
861 1.4 ad MUTEX_WANTLOCK(mtx);
862 1.2 ad MUTEX_LOCKED(mtx);
863 1.2 ad return 1;
864 1.2 ad #endif
865 1.2 ad } else {
866 1.2 ad curthread = (uintptr_t)curlwp;
867 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
868 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
869 1.4 ad MUTEX_WANTLOCK(mtx);
870 1.2 ad MUTEX_LOCKED(mtx);
871 1.2 ad MUTEX_DASSERT(mtx,
872 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
873 1.2 ad return 1;
874 1.2 ad }
875 1.2 ad }
876 1.2 ad
877 1.2 ad return 0;
878 1.2 ad }
879 1.2 ad
880 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
881 1.2 ad /*
882 1.2 ad * mutex_spin_retry:
883 1.2 ad *
884 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
885 1.2 ad * has already raised the SPL, and adjusted counters.
886 1.2 ad */
887 1.2 ad void
888 1.2 ad mutex_spin_retry(kmutex_t *mtx)
889 1.2 ad {
890 1.2 ad #ifdef MULTIPROCESSOR
891 1.2 ad u_int count;
892 1.2 ad LOCKSTAT_TIMER(spintime);
893 1.2 ad LOCKSTAT_FLAG(lsflag);
894 1.2 ad #ifdef LOCKDEBUG
895 1.2 ad u_int spins = 0;
896 1.2 ad #endif /* LOCKDEBUG */
897 1.2 ad
898 1.2 ad MUTEX_WANTLOCK(mtx);
899 1.2 ad
900 1.2 ad LOCKSTAT_ENTER(lsflag);
901 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
902 1.2 ad count = SPINLOCK_BACKOFF_MIN;
903 1.2 ad
904 1.2 ad /*
905 1.2 ad * Spin testing the lock word and do exponential backoff
906 1.2 ad * to reduce cache line ping-ponging between CPUs.
907 1.2 ad */
908 1.2 ad do {
909 1.2 ad if (panicstr != NULL)
910 1.2 ad break;
911 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
912 1.2 ad SPINLOCK_BACKOFF(count);
913 1.2 ad #ifdef LOCKDEBUG
914 1.2 ad if (SPINLOCK_SPINOUT(spins))
915 1.2 ad MUTEX_ABORT(mtx, "spinout");
916 1.2 ad #endif /* LOCKDEBUG */
917 1.2 ad }
918 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
919 1.2 ad
920 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
921 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
922 1.2 ad LOCKSTAT_EXIT(lsflag);
923 1.2 ad
924 1.2 ad MUTEX_LOCKED(mtx);
925 1.2 ad #else /* MULTIPROCESSOR */
926 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
927 1.2 ad #endif /* MULTIPROCESSOR */
928 1.2 ad }
929 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
930 1.31 ad
931 1.31 ad /*
932 1.31 ad * mutex_obj_init:
933 1.31 ad *
934 1.31 ad * Initialize the mutex object store.
935 1.31 ad */
936 1.31 ad void
937 1.31 ad mutex_obj_init(void)
938 1.31 ad {
939 1.31 ad
940 1.31 ad mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
941 1.31 ad coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
942 1.31 ad NULL, NULL);
943 1.31 ad }
944 1.31 ad
945 1.31 ad /*
946 1.31 ad * mutex_obj_ctor:
947 1.31 ad *
948 1.31 ad * Initialize a new lock for the cache.
949 1.31 ad */
950 1.31 ad static int
951 1.31 ad mutex_obj_ctor(void *arg, void *obj, int flags)
952 1.31 ad {
953 1.31 ad struct kmutexobj * mo = obj;
954 1.31 ad
955 1.31 ad mo->mo_magic = MUTEX_OBJ_MAGIC;
956 1.31 ad
957 1.31 ad return 0;
958 1.31 ad }
959 1.31 ad
960 1.31 ad /*
961 1.31 ad * mutex_obj_alloc:
962 1.31 ad *
963 1.31 ad * Allocate a single lock object.
964 1.31 ad */
965 1.31 ad kmutex_t *
966 1.31 ad mutex_obj_alloc(kmutex_type_t type, int ipl)
967 1.31 ad {
968 1.31 ad struct kmutexobj *mo;
969 1.31 ad
970 1.31 ad mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
971 1.31 ad mutex_init(&mo->mo_lock, type, ipl);
972 1.31 ad mo->mo_refcnt = 1;
973 1.31 ad
974 1.31 ad return (kmutex_t *)mo;
975 1.31 ad }
976 1.31 ad
977 1.31 ad /*
978 1.31 ad * mutex_obj_hold:
979 1.31 ad *
980 1.31 ad * Add a single reference to a lock object. A reference to the object
981 1.31 ad * must already be held, and must be held across this call.
982 1.31 ad */
983 1.31 ad void
984 1.31 ad mutex_obj_hold(kmutex_t *lock)
985 1.31 ad {
986 1.31 ad struct kmutexobj *mo = (struct kmutexobj *)lock;
987 1.31 ad
988 1.31 ad KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
989 1.31 ad KASSERT(mo->mo_refcnt > 0);
990 1.31 ad
991 1.31 ad atomic_inc_uint(&mo->mo_refcnt);
992 1.31 ad }
993 1.31 ad
994 1.31 ad /*
995 1.31 ad * mutex_obj_free:
996 1.31 ad *
997 1.31 ad * Drop a reference from a lock object. If the last reference is being
998 1.31 ad * dropped, free the object and return true. Otherwise, return false.
999 1.31 ad */
1000 1.31 ad bool
1001 1.31 ad mutex_obj_free(kmutex_t *lock)
1002 1.31 ad {
1003 1.31 ad struct kmutexobj *mo = (struct kmutexobj *)lock;
1004 1.31 ad
1005 1.31 ad KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
1006 1.31 ad KASSERT(mo->mo_refcnt > 0);
1007 1.31 ad
1008 1.31 ad if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
1009 1.31 ad return false;
1010 1.31 ad }
1011 1.31 ad mutex_destroy(&mo->mo_lock);
1012 1.31 ad pool_cache_put(mutex_obj_cache, mo);
1013 1.31 ad return true;
1014 1.31 ad }
1015