Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.36
      1  1.36       ad /*	$NetBSD: kern_mutex.c,v 1.36 2008/04/27 14:29:09 ad Exp $	*/
      2   1.2       ad 
      3   1.2       ad /*-
      4  1.30       ad  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2       ad  * All rights reserved.
      6   1.2       ad  *
      7   1.2       ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2       ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2       ad  *
     10   1.2       ad  * Redistribution and use in source and binary forms, with or without
     11   1.2       ad  * modification, are permitted provided that the following conditions
     12   1.2       ad  * are met:
     13   1.2       ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2       ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2       ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2       ad  *    documentation and/or other materials provided with the distribution.
     18   1.2       ad  * 3. All advertising materials mentioning features or use of this software
     19   1.2       ad  *    must display the following acknowledgement:
     20   1.2       ad  *	This product includes software developed by the NetBSD
     21   1.2       ad  *	Foundation, Inc. and its contributors.
     22   1.2       ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.2       ad  *    contributors may be used to endorse or promote products derived
     24   1.2       ad  *    from this software without specific prior written permission.
     25   1.2       ad  *
     26   1.2       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.2       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.2       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.2       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.2       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.2       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.2       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.2       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.2       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.2       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.2       ad  * POSSIBILITY OF SUCH DAMAGE.
     37   1.2       ad  */
     38   1.2       ad 
     39   1.2       ad /*
     40   1.2       ad  * Kernel mutex implementation, modeled after those found in Solaris,
     41   1.2       ad  * a description of which can be found in:
     42   1.2       ad  *
     43   1.2       ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44   1.2       ad  *	    Richard McDougall.
     45   1.2       ad  */
     46   1.2       ad 
     47   1.2       ad #define	__MUTEX_PRIVATE
     48   1.2       ad 
     49   1.2       ad #include <sys/cdefs.h>
     50  1.36       ad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.36 2008/04/27 14:29:09 ad Exp $");
     51  1.18      dsl 
     52  1.18      dsl #include "opt_multiprocessor.h"
     53   1.2       ad 
     54   1.2       ad #include <sys/param.h>
     55   1.2       ad #include <sys/proc.h>
     56   1.2       ad #include <sys/mutex.h>
     57   1.2       ad #include <sys/sched.h>
     58   1.2       ad #include <sys/sleepq.h>
     59   1.2       ad #include <sys/systm.h>
     60   1.2       ad #include <sys/lockdebug.h>
     61   1.2       ad #include <sys/kernel.h>
     62  1.24       ad #include <sys/atomic.h>
     63  1.24       ad #include <sys/intr.h>
     64  1.29  xtraeme #include <sys/lock.h>
     65  1.31       ad #include <sys/pool.h>
     66   1.2       ad 
     67   1.2       ad #include <dev/lockstat.h>
     68   1.2       ad 
     69  1.28       ad #include <machine/lock.h>
     70  1.28       ad 
     71   1.2       ad /*
     72   1.2       ad  * When not running a debug kernel, spin mutexes are not much
     73   1.2       ad  * more than an splraiseipl() and splx() pair.
     74   1.2       ad  */
     75   1.2       ad 
     76   1.2       ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     77   1.2       ad #define	FULL
     78   1.2       ad #endif
     79   1.2       ad 
     80   1.2       ad /*
     81   1.2       ad  * Debugging support.
     82   1.2       ad  */
     83   1.2       ad 
     84   1.2       ad #define	MUTEX_WANTLOCK(mtx)					\
     85  1.23     yamt     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     86   1.2       ad         (uintptr_t)__builtin_return_address(0), 0)
     87   1.2       ad #define	MUTEX_LOCKED(mtx)					\
     88  1.23     yamt     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx),			\
     89   1.2       ad         (uintptr_t)__builtin_return_address(0), 0)
     90   1.2       ad #define	MUTEX_UNLOCKED(mtx)					\
     91  1.23     yamt     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     92   1.2       ad         (uintptr_t)__builtin_return_address(0), 0)
     93   1.2       ad #define	MUTEX_ABORT(mtx, msg)					\
     94  1.17       ad     mutex_abort(mtx, __func__, msg)
     95   1.2       ad 
     96   1.2       ad #if defined(LOCKDEBUG)
     97   1.2       ad 
     98   1.2       ad #define	MUTEX_DASSERT(mtx, cond)				\
     99   1.2       ad do {								\
    100   1.2       ad 	if (!(cond))						\
    101   1.2       ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    102   1.2       ad } while (/* CONSTCOND */ 0);
    103   1.2       ad 
    104   1.2       ad #else	/* LOCKDEBUG */
    105   1.2       ad 
    106   1.2       ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    107   1.2       ad 
    108   1.2       ad #endif /* LOCKDEBUG */
    109   1.2       ad 
    110   1.2       ad #if defined(DIAGNOSTIC)
    111   1.2       ad 
    112   1.2       ad #define	MUTEX_ASSERT(mtx, cond)					\
    113   1.2       ad do {								\
    114   1.2       ad 	if (!(cond))						\
    115   1.2       ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    116   1.2       ad } while (/* CONSTCOND */ 0)
    117   1.2       ad 
    118   1.2       ad #else	/* DIAGNOSTIC */
    119   1.2       ad 
    120   1.2       ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    121   1.2       ad 
    122   1.2       ad #endif	/* DIAGNOSTIC */
    123   1.2       ad 
    124   1.2       ad /*
    125   1.2       ad  * Spin mutex SPL save / restore.
    126   1.2       ad  */
    127  1.12     matt #ifndef MUTEX_COUNT_BIAS
    128  1.12     matt #define	MUTEX_COUNT_BIAS	0
    129  1.12     matt #endif
    130   1.2       ad 
    131   1.2       ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    132   1.2       ad do {									\
    133  1.36       ad 	struct cpu_info *x__ci;						\
    134   1.2       ad 	int x__cnt, s;							\
    135  1.36       ad 	s = splraiseipl(mtx->mtx_ipl);					\
    136  1.36       ad 	x__ci = curcpu();						\
    137   1.2       ad 	x__cnt = x__ci->ci_mtx_count--;					\
    138  1.12     matt 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    139   1.2       ad 		x__ci->ci_mtx_oldspl = (s);				\
    140   1.2       ad } while (/* CONSTCOND */ 0)
    141   1.2       ad 
    142   1.2       ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    143   1.2       ad do {									\
    144   1.2       ad 	struct cpu_info *x__ci = curcpu();				\
    145   1.2       ad 	int s = x__ci->ci_mtx_oldspl;					\
    146   1.2       ad 	__insn_barrier();						\
    147  1.12     matt 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    148   1.2       ad 		splx(s);						\
    149   1.2       ad } while (/* CONSTCOND */ 0)
    150   1.2       ad 
    151   1.2       ad /*
    152   1.2       ad  * For architectures that provide 'simple' mutexes: they provide a
    153   1.2       ad  * CAS function that is either MP-safe, or does not need to be MP
    154   1.2       ad  * safe.  Adaptive mutexes on these architectures do not require an
    155   1.2       ad  * additional interlock.
    156   1.2       ad  */
    157   1.2       ad 
    158   1.2       ad #ifdef __HAVE_SIMPLE_MUTEXES
    159   1.2       ad 
    160   1.2       ad #define	MUTEX_OWNER(owner)						\
    161   1.2       ad 	(owner & MUTEX_THREAD)
    162   1.2       ad #define	MUTEX_HAS_WAITERS(mtx)						\
    163   1.2       ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    164   1.2       ad 
    165  1.23     yamt #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    166   1.2       ad do {									\
    167  1.23     yamt 	if (dodebug)							\
    168  1.23     yamt 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    169   1.2       ad } while (/* CONSTCOND */ 0);
    170   1.2       ad 
    171  1.23     yamt #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    172   1.2       ad do {									\
    173   1.2       ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    174  1.23     yamt 	if (dodebug)							\
    175  1.23     yamt 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    176   1.2       ad 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    177   1.2       ad 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    178   1.2       ad } while (/* CONSTCOND */ 0)
    179   1.2       ad 
    180   1.2       ad #define	MUTEX_DESTROY(mtx)						\
    181   1.2       ad do {									\
    182   1.2       ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    183   1.2       ad } while (/* CONSTCOND */ 0);
    184   1.2       ad 
    185   1.2       ad #define	MUTEX_SPIN_P(mtx)		\
    186   1.2       ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    187   1.2       ad #define	MUTEX_ADAPTIVE_P(mtx)		\
    188   1.2       ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    189   1.2       ad 
    190  1.23     yamt #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    191  1.23     yamt #if defined(LOCKDEBUG)
    192  1.23     yamt #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    193  1.23     yamt #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    194  1.23     yamt #else /* defined(LOCKDEBUG) */
    195  1.23     yamt #define	MUTEX_OWNED(owner)		((owner) != 0)
    196  1.23     yamt #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    197  1.23     yamt #endif /* defined(LOCKDEBUG) */
    198   1.2       ad 
    199   1.2       ad static inline int
    200   1.2       ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    201   1.2       ad {
    202   1.2       ad 	int rv;
    203  1.23     yamt 	uintptr_t old = 0;
    204  1.23     yamt 	uintptr_t new = curthread;
    205  1.23     yamt 
    206  1.23     yamt 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    207  1.23     yamt 	MUTEX_INHERITDEBUG(new, old);
    208  1.23     yamt 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    209   1.7    itohy 	MUTEX_RECEIVE(mtx);
    210   1.2       ad 	return rv;
    211   1.2       ad }
    212   1.2       ad 
    213   1.2       ad static inline int
    214   1.2       ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    215   1.2       ad {
    216   1.2       ad 	int rv;
    217   1.2       ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    218   1.7    itohy 	MUTEX_RECEIVE(mtx);
    219   1.2       ad 	return rv;
    220   1.2       ad }
    221   1.2       ad 
    222   1.2       ad static inline void
    223   1.2       ad MUTEX_RELEASE(kmutex_t *mtx)
    224   1.2       ad {
    225  1.23     yamt 	uintptr_t new;
    226  1.23     yamt 
    227   1.7    itohy 	MUTEX_GIVE(mtx);
    228  1.23     yamt 	new = 0;
    229  1.23     yamt 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    230  1.23     yamt 	mtx->mtx_owner = new;
    231   1.2       ad }
    232   1.4       ad 
    233   1.4       ad static inline void
    234   1.4       ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    235   1.4       ad {
    236   1.4       ad 	/* nothing */
    237   1.4       ad }
    238   1.2       ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    239   1.2       ad 
    240   1.2       ad /*
    241   1.2       ad  * Patch in stubs via strong alias where they are not available.
    242   1.2       ad  */
    243   1.2       ad 
    244   1.2       ad #if defined(LOCKDEBUG)
    245   1.2       ad #undef	__HAVE_MUTEX_STUBS
    246   1.2       ad #undef	__HAVE_SPIN_MUTEX_STUBS
    247   1.2       ad #endif
    248   1.2       ad 
    249   1.2       ad #ifndef __HAVE_MUTEX_STUBS
    250   1.8    itohy __strong_alias(mutex_enter,mutex_vector_enter);
    251   1.8    itohy __strong_alias(mutex_exit,mutex_vector_exit);
    252   1.2       ad #endif
    253   1.2       ad 
    254   1.2       ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    255   1.8    itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    256   1.8    itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    257   1.2       ad #endif
    258   1.2       ad 
    259   1.2       ad void	mutex_abort(kmutex_t *, const char *, const char *);
    260   1.2       ad void	mutex_dump(volatile void *);
    261   1.2       ad int	mutex_onproc(uintptr_t, struct cpu_info **);
    262   1.2       ad 
    263   1.2       ad lockops_t mutex_spin_lockops = {
    264   1.2       ad 	"Mutex",
    265   1.2       ad 	0,
    266   1.2       ad 	mutex_dump
    267   1.2       ad };
    268   1.2       ad 
    269   1.2       ad lockops_t mutex_adaptive_lockops = {
    270   1.2       ad 	"Mutex",
    271   1.2       ad 	1,
    272   1.2       ad 	mutex_dump
    273   1.2       ad };
    274   1.2       ad 
    275   1.5     yamt syncobj_t mutex_syncobj = {
    276   1.5     yamt 	SOBJ_SLEEPQ_SORTED,
    277   1.5     yamt 	turnstile_unsleep,
    278   1.5     yamt 	turnstile_changepri,
    279   1.5     yamt 	sleepq_lendpri,
    280  1.27       ad 	(void *)mutex_owner,
    281   1.5     yamt };
    282   1.5     yamt 
    283  1.31       ad /* Mutex cache */
    284  1.31       ad #define	MUTEX_OBJ_MAGIC	0x5aa3c85d
    285  1.31       ad struct kmutexobj {
    286  1.31       ad 	kmutex_t	mo_lock;
    287  1.31       ad 	u_int		mo_magic;
    288  1.31       ad 	u_int		mo_refcnt;
    289  1.31       ad };
    290  1.31       ad 
    291  1.31       ad static int	mutex_obj_ctor(void *, void *, int);
    292  1.31       ad 
    293  1.31       ad static pool_cache_t	mutex_obj_cache;
    294  1.31       ad 
    295   1.2       ad /*
    296   1.2       ad  * mutex_dump:
    297   1.2       ad  *
    298   1.2       ad  *	Dump the contents of a mutex structure.
    299   1.2       ad  */
    300   1.2       ad void
    301   1.2       ad mutex_dump(volatile void *cookie)
    302   1.2       ad {
    303   1.2       ad 	volatile kmutex_t *mtx = cookie;
    304   1.2       ad 
    305   1.2       ad 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    306   1.2       ad 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    307   1.2       ad 	    MUTEX_SPIN_P(mtx));
    308   1.2       ad }
    309   1.2       ad 
    310   1.2       ad /*
    311   1.2       ad  * mutex_abort:
    312   1.2       ad  *
    313   1.3       ad  *	Dump information about an error and panic the system.  This
    314   1.3       ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    315   1.3       ad  *	we ask the compiler to not inline it.
    316   1.2       ad  */
    317   1.8    itohy 
    318   1.8    itohy #if __GNUC_PREREQ__(3, 0)
    319   1.8    itohy __attribute ((noinline)) __attribute ((noreturn))
    320   1.8    itohy #endif
    321   1.8    itohy void
    322   1.2       ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    323   1.2       ad {
    324   1.2       ad 
    325  1.23     yamt 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    326   1.3       ad 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    327   1.2       ad 	/* NOTREACHED */
    328   1.2       ad }
    329   1.2       ad 
    330   1.2       ad /*
    331   1.2       ad  * mutex_init:
    332   1.2       ad  *
    333   1.2       ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    334   1.2       ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    335   1.2       ad  *	CPU time.  We can't easily provide a type of mutex that always
    336   1.2       ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    337   1.2       ad  *	mutexes unlocked.
    338   1.2       ad  */
    339   1.2       ad void
    340   1.2       ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    341   1.2       ad {
    342  1.23     yamt 	bool dodebug;
    343   1.2       ad 
    344   1.2       ad 	memset(mtx, 0, sizeof(*mtx));
    345   1.2       ad 
    346  1.15       ad 	switch (type) {
    347  1.15       ad 	case MUTEX_ADAPTIVE:
    348  1.15       ad 		KASSERT(ipl == IPL_NONE);
    349  1.15       ad 		break;
    350  1.22       ad 	case MUTEX_DEFAULT:
    351  1.15       ad 	case MUTEX_DRIVER:
    352  1.26       ad 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    353  1.26       ad 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    354  1.26       ad 		    ipl == IPL_SOFTSERIAL) {
    355  1.22       ad 			type = MUTEX_ADAPTIVE;
    356  1.26       ad 		} else {
    357  1.22       ad 			type = MUTEX_SPIN;
    358  1.22       ad 		}
    359  1.15       ad 		break;
    360  1.15       ad 	default:
    361  1.15       ad 		break;
    362  1.15       ad 	}
    363   1.2       ad 
    364   1.2       ad 	switch (type) {
    365  1.11       ad 	case MUTEX_NODEBUG:
    366  1.23     yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    367  1.19       ad 		    (uintptr_t)__builtin_return_address(0));
    368  1.23     yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    369  1.11       ad 		break;
    370   1.2       ad 	case MUTEX_ADAPTIVE:
    371  1.23     yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    372  1.19       ad 		    (uintptr_t)__builtin_return_address(0));
    373  1.23     yamt 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    374   1.2       ad 		break;
    375   1.2       ad 	case MUTEX_SPIN:
    376  1.23     yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    377  1.19       ad 		    (uintptr_t)__builtin_return_address(0));
    378  1.23     yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    379   1.2       ad 		break;
    380   1.2       ad 	default:
    381   1.2       ad 		panic("mutex_init: impossible type");
    382   1.2       ad 		break;
    383   1.2       ad 	}
    384   1.2       ad }
    385   1.2       ad 
    386   1.2       ad /*
    387   1.2       ad  * mutex_destroy:
    388   1.2       ad  *
    389   1.2       ad  *	Tear down a mutex.
    390   1.2       ad  */
    391   1.2       ad void
    392   1.2       ad mutex_destroy(kmutex_t *mtx)
    393   1.2       ad {
    394   1.2       ad 
    395   1.2       ad 	if (MUTEX_ADAPTIVE_P(mtx)) {
    396   1.2       ad 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    397   1.2       ad 		    !MUTEX_HAS_WAITERS(mtx));
    398   1.2       ad 	} else {
    399  1.16    skrll 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    400   1.2       ad 	}
    401   1.2       ad 
    402  1.23     yamt 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    403   1.2       ad 	MUTEX_DESTROY(mtx);
    404   1.2       ad }
    405   1.2       ad 
    406   1.2       ad /*
    407   1.2       ad  * mutex_onproc:
    408   1.2       ad  *
    409   1.2       ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    410   1.2       ad  *	system.  If the target is waiting on the kernel big lock, then we
    411  1.15       ad  *	must release it.  This is necessary to avoid deadlock.
    412   1.2       ad  *
    413   1.2       ad  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    414   1.2       ad  *	don't have full control over the timing of our execution, and so the
    415   1.2       ad  *	pointer could be completely invalid by the time we dereference it.
    416   1.2       ad  */
    417   1.2       ad #ifdef MULTIPROCESSOR
    418   1.2       ad int
    419   1.2       ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    420   1.2       ad {
    421   1.2       ad 	CPU_INFO_ITERATOR cii;
    422   1.2       ad 	struct cpu_info *ci;
    423   1.2       ad 	struct lwp *l;
    424   1.2       ad 
    425   1.2       ad 	if (!MUTEX_OWNED(owner))
    426   1.2       ad 		return 0;
    427   1.2       ad 	l = (struct lwp *)MUTEX_OWNER(owner);
    428   1.2       ad 
    429  1.15       ad 	/* See if the target is running on a CPU somewhere. */
    430  1.10       ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    431  1.15       ad 		goto run;
    432  1.15       ad 	for (CPU_INFO_FOREACH(cii, ci))
    433  1.15       ad 		if (ci->ci_curlwp == l)
    434  1.15       ad 			goto run;
    435   1.2       ad 
    436  1.15       ad 	/* No: it may be safe to block now. */
    437   1.2       ad 	*cip = NULL;
    438   1.2       ad 	return 0;
    439  1.15       ad 
    440  1.15       ad  run:
    441  1.15       ad  	/* Target is running; do we need to block? */
    442  1.15       ad  	*cip = ci;
    443  1.15       ad 	return ci->ci_biglock_wanted != l;
    444   1.2       ad }
    445  1.15       ad #endif	/* MULTIPROCESSOR */
    446   1.2       ad 
    447   1.2       ad /*
    448   1.2       ad  * mutex_vector_enter:
    449   1.2       ad  *
    450   1.2       ad  *	Support routine for mutex_enter() that must handles all cases.  In
    451   1.2       ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    452   1.2       ad  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    453   1.2       ad  *	not available, then it is also aliased directly here.
    454   1.2       ad  */
    455   1.2       ad void
    456   1.2       ad mutex_vector_enter(kmutex_t *mtx)
    457   1.2       ad {
    458   1.2       ad 	uintptr_t owner, curthread;
    459   1.2       ad 	turnstile_t *ts;
    460   1.2       ad #ifdef MULTIPROCESSOR
    461   1.2       ad 	struct cpu_info *ci = NULL;
    462   1.2       ad 	u_int count;
    463   1.2       ad #endif
    464   1.2       ad 	LOCKSTAT_COUNTER(spincnt);
    465   1.2       ad 	LOCKSTAT_COUNTER(slpcnt);
    466   1.2       ad 	LOCKSTAT_TIMER(spintime);
    467   1.2       ad 	LOCKSTAT_TIMER(slptime);
    468   1.2       ad 	LOCKSTAT_FLAG(lsflag);
    469   1.2       ad 
    470   1.2       ad 	/*
    471   1.2       ad 	 * Handle spin mutexes.
    472   1.2       ad 	 */
    473   1.2       ad 	if (MUTEX_SPIN_P(mtx)) {
    474   1.2       ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    475   1.2       ad 		u_int spins = 0;
    476   1.2       ad #endif
    477   1.2       ad 		MUTEX_SPIN_SPLRAISE(mtx);
    478   1.2       ad 		MUTEX_WANTLOCK(mtx);
    479   1.2       ad #ifdef FULL
    480   1.2       ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    481   1.2       ad 			MUTEX_LOCKED(mtx);
    482   1.2       ad 			return;
    483   1.2       ad 		}
    484   1.2       ad #if !defined(MULTIPROCESSOR)
    485   1.2       ad 		MUTEX_ABORT(mtx, "locking against myself");
    486   1.2       ad #else /* !MULTIPROCESSOR */
    487   1.2       ad 
    488   1.2       ad 		LOCKSTAT_ENTER(lsflag);
    489   1.2       ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    490   1.2       ad 		count = SPINLOCK_BACKOFF_MIN;
    491   1.2       ad 
    492   1.2       ad 		/*
    493   1.2       ad 		 * Spin testing the lock word and do exponential backoff
    494   1.2       ad 		 * to reduce cache line ping-ponging between CPUs.
    495   1.2       ad 		 */
    496   1.2       ad 		do {
    497   1.2       ad 			if (panicstr != NULL)
    498   1.2       ad 				break;
    499  1.16    skrll 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    500   1.2       ad 				SPINLOCK_BACKOFF(count);
    501   1.2       ad #ifdef LOCKDEBUG
    502   1.2       ad 				if (SPINLOCK_SPINOUT(spins))
    503   1.2       ad 					MUTEX_ABORT(mtx, "spinout");
    504   1.2       ad #endif	/* LOCKDEBUG */
    505   1.2       ad 			}
    506   1.2       ad 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    507   1.2       ad 
    508   1.2       ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    509   1.2       ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    510   1.2       ad 			LOCKSTAT_EVENT(lsflag, mtx,
    511   1.2       ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    512   1.2       ad 		}
    513   1.2       ad 		LOCKSTAT_EXIT(lsflag);
    514   1.2       ad #endif	/* !MULTIPROCESSOR */
    515   1.2       ad #endif	/* FULL */
    516   1.2       ad 		MUTEX_LOCKED(mtx);
    517   1.2       ad 		return;
    518   1.2       ad 	}
    519   1.2       ad 
    520   1.2       ad 	curthread = (uintptr_t)curlwp;
    521   1.2       ad 
    522   1.2       ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    523   1.2       ad 	MUTEX_ASSERT(mtx, curthread != 0);
    524   1.2       ad 	MUTEX_WANTLOCK(mtx);
    525   1.2       ad 
    526   1.2       ad 	if (panicstr == NULL) {
    527   1.2       ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    528   1.2       ad 	}
    529   1.2       ad 
    530   1.2       ad 	LOCKSTAT_ENTER(lsflag);
    531   1.2       ad 
    532   1.2       ad 	/*
    533   1.2       ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    534   1.2       ad 	 * determine that the owner is not running on a processor,
    535   1.2       ad 	 * then we stop spinning, and sleep instead.
    536   1.2       ad 	 */
    537  1.34       ad 	for (owner = mtx->mtx_owner;;) {
    538   1.2       ad 		if (!MUTEX_OWNED(owner)) {
    539   1.2       ad 			/*
    540   1.2       ad 			 * Mutex owner clear could mean two things:
    541   1.2       ad 			 *
    542   1.2       ad 			 *	* The mutex has been released.
    543   1.2       ad 			 *	* The owner field hasn't been set yet.
    544   1.2       ad 			 *
    545   1.2       ad 			 * Try to acquire it again.  If that fails,
    546   1.2       ad 			 * we'll just loop again.
    547   1.2       ad 			 */
    548   1.2       ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    549   1.2       ad 				break;
    550  1.34       ad 			owner = mtx->mtx_owner;
    551   1.2       ad 			continue;
    552   1.2       ad 		}
    553   1.2       ad 
    554   1.2       ad 		if (panicstr != NULL)
    555   1.2       ad 			return;
    556   1.2       ad 		if (MUTEX_OWNER(owner) == curthread)
    557   1.2       ad 			MUTEX_ABORT(mtx, "locking against myself");
    558   1.2       ad 
    559   1.2       ad #ifdef MULTIPROCESSOR
    560   1.2       ad 		/*
    561   1.2       ad 		 * Check to see if the owner is running on a processor.
    562   1.2       ad 		 * If so, then we should just spin, as the owner will
    563   1.2       ad 		 * likely release the lock very soon.
    564   1.2       ad 		 */
    565   1.2       ad 		if (mutex_onproc(owner, &ci)) {
    566   1.2       ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    567   1.2       ad 			count = SPINLOCK_BACKOFF_MIN;
    568   1.2       ad 			for (;;) {
    569  1.34       ad 				SPINLOCK_BACKOFF(count);
    570   1.2       ad 				owner = mtx->mtx_owner;
    571   1.2       ad 				if (!mutex_onproc(owner, &ci))
    572   1.2       ad 					break;
    573   1.2       ad 			}
    574   1.2       ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    575   1.2       ad 			LOCKSTAT_COUNT(spincnt, 1);
    576   1.2       ad 			if (!MUTEX_OWNED(owner))
    577   1.2       ad 				continue;
    578   1.2       ad 		}
    579   1.2       ad #endif
    580   1.2       ad 
    581   1.2       ad 		ts = turnstile_lookup(mtx);
    582   1.2       ad 
    583   1.2       ad 		/*
    584   1.2       ad 		 * Once we have the turnstile chain interlock, mark the
    585   1.2       ad 		 * mutex has having waiters.  If that fails, spin again:
    586   1.2       ad 		 * chances are that the mutex has been released.
    587   1.2       ad 		 */
    588   1.2       ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    589   1.2       ad 			turnstile_exit(mtx);
    590  1.34       ad 			owner = mtx->mtx_owner;
    591   1.2       ad 			continue;
    592   1.2       ad 		}
    593   1.2       ad 
    594   1.2       ad #ifdef MULTIPROCESSOR
    595   1.2       ad 		/*
    596   1.2       ad 		 * mutex_exit() is permitted to release the mutex without
    597   1.2       ad 		 * any interlocking instructions, and the following can
    598   1.2       ad 		 * occur as a result:
    599   1.2       ad 		 *
    600   1.2       ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    601   1.2       ad 		 * ---------------------------- ----------------------------
    602   1.2       ad 		 *		..		    acquire cache line
    603   1.2       ad 		 *		..                   test for waiters
    604   1.2       ad 		 *	acquire cache line    <-      lose cache line
    605   1.2       ad 		 *	 lock cache line	           ..
    606   1.2       ad 		 *     verify mutex is held                ..
    607   1.2       ad 		 *	    set waiters  	           ..
    608   1.2       ad 		 *	 unlock cache line		   ..
    609   1.2       ad 		 *	  lose cache line     ->    acquire cache line
    610   1.2       ad 		 *		..	          clear lock word, waiters
    611   1.2       ad 		 *	  return success
    612   1.2       ad 		 *
    613   1.2       ad 		 * There is a another race that can occur: a third CPU could
    614   1.2       ad 		 * acquire the mutex as soon as it is released.  Since
    615   1.2       ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    616   1.2       ad 		 * something that we need to worry about too much.  What we
    617   1.2       ad 		 * do need to ensure is that the waiters bit gets set.
    618   1.2       ad 		 *
    619   1.2       ad 		 * To allow the unlocked release, we need to make some
    620   1.2       ad 		 * assumptions here:
    621   1.2       ad 		 *
    622   1.2       ad 		 * o Release is the only non-atomic/unlocked operation
    623   1.2       ad 		 *   that can be performed on the mutex.  (It must still
    624   1.2       ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    625   1.2       ad 		 *   or preempted).
    626   1.2       ad 		 *
    627   1.2       ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    628  1.21    pooka 		 *   be in progress on one CPU in the system - guaranteed
    629   1.2       ad 		 *   by the turnstile chain lock.
    630   1.2       ad 		 *
    631   1.2       ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    632   1.2       ad 		 *   and release can modify a mutex with a non-zero
    633   1.2       ad 		 *   owner field.
    634   1.2       ad 		 *
    635   1.2       ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    636   1.2       ad 		 *   is an unbuffered write that is immediately visible
    637   1.2       ad 		 *   to all other processors in the system.
    638   1.2       ad 		 *
    639   1.2       ad 		 * o If the holding LWP switches away, it posts a store
    640   1.2       ad 		 *   fence before changing curlwp, ensuring that any
    641   1.2       ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    642   1.2       ad 		 *   completes before the modification of curlwp becomes
    643   1.2       ad 		 *   visible to this CPU.
    644   1.2       ad 		 *
    645  1.14     yamt 		 * o mi_switch() posts a store fence before setting curlwp
    646   1.2       ad 		 *   and before resuming execution of an LWP.
    647   1.2       ad 		 *
    648   1.2       ad 		 * o _kernel_lock() posts a store fence before setting
    649   1.2       ad 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    650   1.2       ad 		 *   This ensures that any overwrite of the mutex waiters
    651   1.2       ad 		 *   flag by mutex_exit() completes before the modification
    652   1.2       ad 		 *   of ci_biglock_wanted becomes visible.
    653   1.2       ad 		 *
    654   1.2       ad 		 * We now post a read memory barrier (after setting the
    655   1.2       ad 		 * waiters field) and check the lock holder's status again.
    656   1.2       ad 		 * Some of the possible outcomes (not an exhaustive list):
    657   1.2       ad 		 *
    658   1.2       ad 		 * 1. The onproc check returns true: the holding LWP is
    659   1.2       ad 		 *    running again.  The lock may be released soon and
    660   1.2       ad 		 *    we should spin.  Importantly, we can't trust the
    661   1.2       ad 		 *    value of the waiters flag.
    662   1.2       ad 		 *
    663   1.2       ad 		 * 2. The onproc check returns false: the holding LWP is
    664   1.2       ad 		 *    not running.  We now have the oppertunity to check
    665   1.2       ad 		 *    if mutex_exit() has blatted the modifications made
    666   1.2       ad 		 *    by MUTEX_SET_WAITERS().
    667   1.2       ad 		 *
    668   1.2       ad 		 * 3. The onproc check returns false: the holding LWP may
    669   1.2       ad 		 *    or may not be running.  It has context switched at
    670   1.2       ad 		 *    some point during our check.  Again, we have the
    671   1.2       ad 		 *    chance to see if the waiters bit is still set or
    672   1.2       ad 		 *    has been overwritten.
    673   1.2       ad 		 *
    674   1.2       ad 		 * 4. The onproc check returns false: the holding LWP is
    675   1.2       ad 		 *    running on a CPU, but wants the big lock.  It's OK
    676   1.2       ad 		 *    to check the waiters field in this case.
    677   1.2       ad 		 *
    678   1.2       ad 		 * 5. The has-waiters check fails: the mutex has been
    679   1.2       ad 		 *    released, the waiters flag cleared and another LWP
    680   1.2       ad 		 *    now owns the mutex.
    681   1.2       ad 		 *
    682   1.2       ad 		 * 6. The has-waiters check fails: the mutex has been
    683   1.2       ad 		 *    released.
    684   1.2       ad 		 *
    685   1.2       ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    686   1.2       ad 		 * as we might never be awoken.
    687   1.2       ad 		 */
    688  1.24       ad 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    689  1.24       ad 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    690   1.2       ad 			turnstile_exit(mtx);
    691  1.34       ad 			owner = mtx->mtx_owner;
    692   1.2       ad 			continue;
    693   1.2       ad 		}
    694   1.2       ad #endif	/* MULTIPROCESSOR */
    695   1.2       ad 
    696   1.2       ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    697   1.2       ad 
    698   1.5     yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    699   1.2       ad 
    700   1.2       ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    701   1.2       ad 		LOCKSTAT_COUNT(slpcnt, 1);
    702  1.34       ad 
    703  1.34       ad 		owner = mtx->mtx_owner;
    704   1.2       ad 	}
    705   1.2       ad 
    706   1.2       ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    707   1.2       ad 	    slpcnt, slptime);
    708   1.2       ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    709   1.2       ad 	    spincnt, spintime);
    710   1.2       ad 	LOCKSTAT_EXIT(lsflag);
    711   1.2       ad 
    712   1.2       ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    713   1.2       ad 	MUTEX_LOCKED(mtx);
    714   1.2       ad }
    715   1.2       ad 
    716   1.2       ad /*
    717   1.2       ad  * mutex_vector_exit:
    718   1.2       ad  *
    719   1.2       ad  *	Support routine for mutex_exit() that handles all cases.
    720   1.2       ad  */
    721   1.2       ad void
    722   1.2       ad mutex_vector_exit(kmutex_t *mtx)
    723   1.2       ad {
    724   1.2       ad 	turnstile_t *ts;
    725   1.2       ad 	uintptr_t curthread;
    726   1.2       ad 
    727   1.2       ad 	if (MUTEX_SPIN_P(mtx)) {
    728   1.2       ad #ifdef FULL
    729  1.33       ad 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    730  1.33       ad 			if (panicstr != NULL)
    731  1.33       ad 				return;
    732   1.2       ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    733  1.33       ad 		}
    734   1.2       ad 		MUTEX_UNLOCKED(mtx);
    735   1.2       ad 		__cpu_simple_unlock(&mtx->mtx_lock);
    736   1.2       ad #endif
    737   1.2       ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    738   1.2       ad 		return;
    739   1.2       ad 	}
    740   1.2       ad 
    741  1.11       ad 	if (__predict_false((uintptr_t)panicstr | cold)) {
    742   1.2       ad 		MUTEX_UNLOCKED(mtx);
    743   1.2       ad 		MUTEX_RELEASE(mtx);
    744   1.2       ad 		return;
    745   1.2       ad 	}
    746   1.2       ad 
    747   1.2       ad 	curthread = (uintptr_t)curlwp;
    748   1.2       ad 	MUTEX_DASSERT(mtx, curthread != 0);
    749   1.2       ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    750   1.2       ad 	MUTEX_UNLOCKED(mtx);
    751   1.2       ad 
    752  1.15       ad #ifdef LOCKDEBUG
    753  1.15       ad 	/*
    754  1.15       ad 	 * Avoid having to take the turnstile chain lock every time
    755  1.15       ad 	 * around.  Raise the priority level to splhigh() in order
    756  1.15       ad 	 * to disable preemption and so make the following atomic.
    757  1.15       ad 	 */
    758  1.15       ad 	{
    759  1.15       ad 		int s = splhigh();
    760  1.15       ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    761  1.15       ad 			MUTEX_RELEASE(mtx);
    762  1.15       ad 			splx(s);
    763  1.15       ad 			return;
    764  1.15       ad 		}
    765  1.15       ad 		splx(s);
    766  1.15       ad 	}
    767  1.15       ad #endif
    768  1.15       ad 
    769   1.2       ad 	/*
    770   1.2       ad 	 * Get this lock's turnstile.  This gets the interlock on
    771   1.2       ad 	 * the sleep queue.  Once we have that, we can clear the
    772   1.2       ad 	 * lock.  If there was no turnstile for the lock, there
    773   1.2       ad 	 * were no waiters remaining.
    774   1.2       ad 	 */
    775   1.2       ad 	ts = turnstile_lookup(mtx);
    776   1.2       ad 
    777   1.2       ad 	if (ts == NULL) {
    778   1.2       ad 		MUTEX_RELEASE(mtx);
    779   1.2       ad 		turnstile_exit(mtx);
    780   1.2       ad 	} else {
    781   1.2       ad 		MUTEX_RELEASE(mtx);
    782   1.2       ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    783   1.2       ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    784   1.2       ad 	}
    785   1.2       ad }
    786   1.2       ad 
    787   1.4       ad #ifndef __HAVE_SIMPLE_MUTEXES
    788   1.4       ad /*
    789   1.4       ad  * mutex_wakeup:
    790   1.4       ad  *
    791   1.4       ad  *	Support routine for mutex_exit() that wakes up all waiters.
    792   1.4       ad  *	We assume that the mutex has been released, but it need not
    793   1.4       ad  *	be.
    794   1.4       ad  */
    795   1.4       ad void
    796   1.4       ad mutex_wakeup(kmutex_t *mtx)
    797   1.4       ad {
    798   1.4       ad 	turnstile_t *ts;
    799   1.4       ad 
    800   1.4       ad 	ts = turnstile_lookup(mtx);
    801   1.4       ad 	if (ts == NULL) {
    802   1.4       ad 		turnstile_exit(mtx);
    803   1.4       ad 		return;
    804   1.4       ad 	}
    805   1.4       ad 	MUTEX_CLEAR_WAITERS(mtx);
    806   1.4       ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    807   1.4       ad }
    808   1.4       ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    809   1.4       ad 
    810   1.2       ad /*
    811   1.2       ad  * mutex_owned:
    812   1.2       ad  *
    813   1.3       ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    814   1.3       ad  *	holds the mutex.
    815   1.2       ad  */
    816   1.2       ad int
    817   1.2       ad mutex_owned(kmutex_t *mtx)
    818   1.2       ad {
    819   1.2       ad 
    820  1.35       ad 	if (mtx == NULL)
    821  1.35       ad 		return 0;
    822   1.2       ad 	if (MUTEX_ADAPTIVE_P(mtx))
    823   1.2       ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    824   1.2       ad #ifdef FULL
    825  1.16    skrll 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    826   1.2       ad #else
    827   1.2       ad 	return 1;
    828   1.2       ad #endif
    829   1.2       ad }
    830   1.2       ad 
    831   1.2       ad /*
    832   1.2       ad  * mutex_owner:
    833   1.2       ad  *
    834   1.6       ad  *	Return the current owner of an adaptive mutex.  Used for
    835   1.6       ad  *	priority inheritance.
    836   1.2       ad  */
    837  1.27       ad lwp_t *
    838  1.27       ad mutex_owner(kmutex_t *mtx)
    839   1.2       ad {
    840   1.2       ad 
    841   1.2       ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    842   1.2       ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    843   1.2       ad }
    844   1.2       ad 
    845   1.2       ad /*
    846   1.2       ad  * mutex_tryenter:
    847   1.2       ad  *
    848   1.2       ad  *	Try to acquire the mutex; return non-zero if we did.
    849   1.2       ad  */
    850   1.2       ad int
    851   1.2       ad mutex_tryenter(kmutex_t *mtx)
    852   1.2       ad {
    853   1.2       ad 	uintptr_t curthread;
    854   1.2       ad 
    855   1.2       ad 	/*
    856   1.2       ad 	 * Handle spin mutexes.
    857   1.2       ad 	 */
    858   1.2       ad 	if (MUTEX_SPIN_P(mtx)) {
    859   1.2       ad 		MUTEX_SPIN_SPLRAISE(mtx);
    860   1.2       ad #ifdef FULL
    861   1.2       ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    862   1.4       ad 			MUTEX_WANTLOCK(mtx);
    863   1.2       ad 			MUTEX_LOCKED(mtx);
    864   1.2       ad 			return 1;
    865   1.2       ad 		}
    866   1.2       ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    867   1.2       ad #else
    868   1.4       ad 		MUTEX_WANTLOCK(mtx);
    869   1.2       ad 		MUTEX_LOCKED(mtx);
    870   1.2       ad 		return 1;
    871   1.2       ad #endif
    872   1.2       ad 	} else {
    873   1.2       ad 		curthread = (uintptr_t)curlwp;
    874   1.2       ad 		MUTEX_ASSERT(mtx, curthread != 0);
    875   1.2       ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    876   1.4       ad 			MUTEX_WANTLOCK(mtx);
    877   1.2       ad 			MUTEX_LOCKED(mtx);
    878   1.2       ad 			MUTEX_DASSERT(mtx,
    879   1.2       ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    880   1.2       ad 			return 1;
    881   1.2       ad 		}
    882   1.2       ad 	}
    883   1.2       ad 
    884   1.2       ad 	return 0;
    885   1.2       ad }
    886   1.2       ad 
    887   1.2       ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    888   1.2       ad /*
    889   1.2       ad  * mutex_spin_retry:
    890   1.2       ad  *
    891   1.2       ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    892   1.2       ad  *	has already raised the SPL, and adjusted counters.
    893   1.2       ad  */
    894   1.2       ad void
    895   1.2       ad mutex_spin_retry(kmutex_t *mtx)
    896   1.2       ad {
    897   1.2       ad #ifdef MULTIPROCESSOR
    898   1.2       ad 	u_int count;
    899   1.2       ad 	LOCKSTAT_TIMER(spintime);
    900   1.2       ad 	LOCKSTAT_FLAG(lsflag);
    901   1.2       ad #ifdef LOCKDEBUG
    902   1.2       ad 	u_int spins = 0;
    903   1.2       ad #endif	/* LOCKDEBUG */
    904   1.2       ad 
    905   1.2       ad 	MUTEX_WANTLOCK(mtx);
    906   1.2       ad 
    907   1.2       ad 	LOCKSTAT_ENTER(lsflag);
    908   1.2       ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    909   1.2       ad 	count = SPINLOCK_BACKOFF_MIN;
    910   1.2       ad 
    911   1.2       ad 	/*
    912   1.2       ad 	 * Spin testing the lock word and do exponential backoff
    913   1.2       ad 	 * to reduce cache line ping-ponging between CPUs.
    914   1.2       ad 	 */
    915   1.2       ad 	do {
    916   1.2       ad 		if (panicstr != NULL)
    917   1.2       ad 			break;
    918  1.16    skrll 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    919   1.2       ad 			SPINLOCK_BACKOFF(count);
    920   1.2       ad #ifdef LOCKDEBUG
    921   1.2       ad 			if (SPINLOCK_SPINOUT(spins))
    922   1.2       ad 				MUTEX_ABORT(mtx, "spinout");
    923   1.2       ad #endif	/* LOCKDEBUG */
    924   1.2       ad 		}
    925   1.2       ad 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    926   1.2       ad 
    927   1.2       ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    928   1.2       ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    929   1.2       ad 	LOCKSTAT_EXIT(lsflag);
    930   1.2       ad 
    931   1.2       ad 	MUTEX_LOCKED(mtx);
    932   1.2       ad #else	/* MULTIPROCESSOR */
    933   1.2       ad 	MUTEX_ABORT(mtx, "locking against myself");
    934   1.2       ad #endif	/* MULTIPROCESSOR */
    935   1.2       ad }
    936   1.2       ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    937  1.31       ad 
    938  1.31       ad /*
    939  1.31       ad  * mutex_obj_init:
    940  1.31       ad  *
    941  1.31       ad  *	Initialize the mutex object store.
    942  1.31       ad  */
    943  1.31       ad void
    944  1.31       ad mutex_obj_init(void)
    945  1.31       ad {
    946  1.31       ad 
    947  1.31       ad 	mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
    948  1.31       ad 	    coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
    949  1.31       ad 	    NULL, NULL);
    950  1.31       ad }
    951  1.31       ad 
    952  1.31       ad /*
    953  1.31       ad  * mutex_obj_ctor:
    954  1.31       ad  *
    955  1.31       ad  *	Initialize a new lock for the cache.
    956  1.31       ad  */
    957  1.31       ad static int
    958  1.31       ad mutex_obj_ctor(void *arg, void *obj, int flags)
    959  1.31       ad {
    960  1.31       ad 	struct kmutexobj * mo = obj;
    961  1.31       ad 
    962  1.31       ad 	mo->mo_magic = MUTEX_OBJ_MAGIC;
    963  1.31       ad 
    964  1.31       ad 	return 0;
    965  1.31       ad }
    966  1.31       ad 
    967  1.31       ad /*
    968  1.31       ad  * mutex_obj_alloc:
    969  1.31       ad  *
    970  1.31       ad  *	Allocate a single lock object.
    971  1.31       ad  */
    972  1.31       ad kmutex_t *
    973  1.31       ad mutex_obj_alloc(kmutex_type_t type, int ipl)
    974  1.31       ad {
    975  1.31       ad 	struct kmutexobj *mo;
    976  1.31       ad 
    977  1.31       ad 	mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
    978  1.31       ad 	mutex_init(&mo->mo_lock, type, ipl);
    979  1.31       ad 	mo->mo_refcnt = 1;
    980  1.31       ad 
    981  1.31       ad 	return (kmutex_t *)mo;
    982  1.31       ad }
    983  1.31       ad 
    984  1.31       ad /*
    985  1.31       ad  * mutex_obj_hold:
    986  1.31       ad  *
    987  1.31       ad  *	Add a single reference to a lock object.  A reference to the object
    988  1.31       ad  *	must already be held, and must be held across this call.
    989  1.31       ad  */
    990  1.31       ad void
    991  1.31       ad mutex_obj_hold(kmutex_t *lock)
    992  1.31       ad {
    993  1.31       ad 	struct kmutexobj *mo = (struct kmutexobj *)lock;
    994  1.31       ad 
    995  1.31       ad 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
    996  1.31       ad 	KASSERT(mo->mo_refcnt > 0);
    997  1.31       ad 
    998  1.31       ad 	atomic_inc_uint(&mo->mo_refcnt);
    999  1.31       ad }
   1000  1.31       ad 
   1001  1.31       ad /*
   1002  1.31       ad  * mutex_obj_free:
   1003  1.31       ad  *
   1004  1.31       ad  *	Drop a reference from a lock object.  If the last reference is being
   1005  1.31       ad  *	dropped, free the object and return true.  Otherwise, return false.
   1006  1.31       ad  */
   1007  1.31       ad bool
   1008  1.31       ad mutex_obj_free(kmutex_t *lock)
   1009  1.31       ad {
   1010  1.31       ad 	struct kmutexobj *mo = (struct kmutexobj *)lock;
   1011  1.31       ad 
   1012  1.31       ad 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
   1013  1.31       ad 	KASSERT(mo->mo_refcnt > 0);
   1014  1.31       ad 
   1015  1.31       ad 	if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
   1016  1.31       ad 		return false;
   1017  1.31       ad 	}
   1018  1.31       ad 	mutex_destroy(&mo->mo_lock);
   1019  1.31       ad 	pool_cache_put(mutex_obj_cache, mo);
   1020  1.31       ad 	return true;
   1021  1.31       ad }
   1022