kern_mutex.c revision 1.40 1 1.40 ad /* $NetBSD: kern_mutex.c,v 1.40 2008/05/06 17:11:45 ad Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.30 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
34 1.2 ad * a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.2 ad #define __MUTEX_PRIVATE
41 1.2 ad
42 1.2 ad #include <sys/cdefs.h>
43 1.40 ad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.40 2008/05/06 17:11:45 ad Exp $");
44 1.18 dsl
45 1.18 dsl #include "opt_multiprocessor.h"
46 1.2 ad
47 1.2 ad #include <sys/param.h>
48 1.2 ad #include <sys/proc.h>
49 1.2 ad #include <sys/mutex.h>
50 1.2 ad #include <sys/sched.h>
51 1.2 ad #include <sys/sleepq.h>
52 1.2 ad #include <sys/systm.h>
53 1.2 ad #include <sys/lockdebug.h>
54 1.2 ad #include <sys/kernel.h>
55 1.24 ad #include <sys/atomic.h>
56 1.24 ad #include <sys/intr.h>
57 1.29 xtraeme #include <sys/lock.h>
58 1.31 ad #include <sys/pool.h>
59 1.2 ad
60 1.2 ad #include <dev/lockstat.h>
61 1.2 ad
62 1.28 ad #include <machine/lock.h>
63 1.28 ad
64 1.2 ad /*
65 1.2 ad * When not running a debug kernel, spin mutexes are not much
66 1.2 ad * more than an splraiseipl() and splx() pair.
67 1.2 ad */
68 1.2 ad
69 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
70 1.2 ad #define FULL
71 1.2 ad #endif
72 1.2 ad
73 1.2 ad /*
74 1.2 ad * Debugging support.
75 1.2 ad */
76 1.2 ad
77 1.2 ad #define MUTEX_WANTLOCK(mtx) \
78 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
79 1.40 ad (uintptr_t)__builtin_return_address(0), false, false)
80 1.2 ad #define MUTEX_LOCKED(mtx) \
81 1.23 yamt LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
82 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
83 1.2 ad #define MUTEX_UNLOCKED(mtx) \
84 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
85 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
86 1.2 ad #define MUTEX_ABORT(mtx, msg) \
87 1.17 ad mutex_abort(mtx, __func__, msg)
88 1.2 ad
89 1.2 ad #if defined(LOCKDEBUG)
90 1.2 ad
91 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
92 1.2 ad do { \
93 1.2 ad if (!(cond)) \
94 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
95 1.2 ad } while (/* CONSTCOND */ 0);
96 1.2 ad
97 1.2 ad #else /* LOCKDEBUG */
98 1.2 ad
99 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
100 1.2 ad
101 1.2 ad #endif /* LOCKDEBUG */
102 1.2 ad
103 1.2 ad #if defined(DIAGNOSTIC)
104 1.2 ad
105 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
106 1.2 ad do { \
107 1.2 ad if (!(cond)) \
108 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
109 1.2 ad } while (/* CONSTCOND */ 0)
110 1.2 ad
111 1.2 ad #else /* DIAGNOSTIC */
112 1.2 ad
113 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
114 1.2 ad
115 1.2 ad #endif /* DIAGNOSTIC */
116 1.2 ad
117 1.2 ad /*
118 1.2 ad * Spin mutex SPL save / restore.
119 1.2 ad */
120 1.12 matt #ifndef MUTEX_COUNT_BIAS
121 1.12 matt #define MUTEX_COUNT_BIAS 0
122 1.12 matt #endif
123 1.2 ad
124 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
125 1.2 ad do { \
126 1.36 ad struct cpu_info *x__ci; \
127 1.2 ad int x__cnt, s; \
128 1.36 ad s = splraiseipl(mtx->mtx_ipl); \
129 1.36 ad x__ci = curcpu(); \
130 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
131 1.37 ad __insn_barrier(); \
132 1.12 matt if (x__cnt == MUTEX_COUNT_BIAS) \
133 1.2 ad x__ci->ci_mtx_oldspl = (s); \
134 1.2 ad } while (/* CONSTCOND */ 0)
135 1.2 ad
136 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
137 1.2 ad do { \
138 1.2 ad struct cpu_info *x__ci = curcpu(); \
139 1.2 ad int s = x__ci->ci_mtx_oldspl; \
140 1.2 ad __insn_barrier(); \
141 1.12 matt if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
142 1.2 ad splx(s); \
143 1.2 ad } while (/* CONSTCOND */ 0)
144 1.2 ad
145 1.2 ad /*
146 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
147 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
148 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
149 1.2 ad * additional interlock.
150 1.2 ad */
151 1.2 ad
152 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
153 1.2 ad
154 1.2 ad #define MUTEX_OWNER(owner) \
155 1.2 ad (owner & MUTEX_THREAD)
156 1.2 ad #define MUTEX_HAS_WAITERS(mtx) \
157 1.2 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
158 1.2 ad
159 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
160 1.2 ad do { \
161 1.23 yamt if (dodebug) \
162 1.23 yamt (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
163 1.2 ad } while (/* CONSTCOND */ 0);
164 1.2 ad
165 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
166 1.2 ad do { \
167 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
168 1.23 yamt if (dodebug) \
169 1.23 yamt (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
170 1.2 ad (mtx)->mtx_ipl = makeiplcookie((ipl)); \
171 1.2 ad __cpu_simple_lock_init(&(mtx)->mtx_lock); \
172 1.2 ad } while (/* CONSTCOND */ 0)
173 1.2 ad
174 1.2 ad #define MUTEX_DESTROY(mtx) \
175 1.2 ad do { \
176 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
177 1.2 ad } while (/* CONSTCOND */ 0);
178 1.2 ad
179 1.2 ad #define MUTEX_SPIN_P(mtx) \
180 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
181 1.2 ad #define MUTEX_ADAPTIVE_P(mtx) \
182 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
183 1.2 ad
184 1.23 yamt #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
185 1.23 yamt #if defined(LOCKDEBUG)
186 1.23 yamt #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
187 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
188 1.23 yamt #else /* defined(LOCKDEBUG) */
189 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
190 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) /* nothing */
191 1.23 yamt #endif /* defined(LOCKDEBUG) */
192 1.2 ad
193 1.2 ad static inline int
194 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
195 1.2 ad {
196 1.2 ad int rv;
197 1.23 yamt uintptr_t old = 0;
198 1.23 yamt uintptr_t new = curthread;
199 1.23 yamt
200 1.23 yamt MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
201 1.23 yamt MUTEX_INHERITDEBUG(new, old);
202 1.23 yamt rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
203 1.7 itohy MUTEX_RECEIVE(mtx);
204 1.2 ad return rv;
205 1.2 ad }
206 1.2 ad
207 1.2 ad static inline int
208 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
209 1.2 ad {
210 1.2 ad int rv;
211 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
212 1.7 itohy MUTEX_RECEIVE(mtx);
213 1.2 ad return rv;
214 1.2 ad }
215 1.2 ad
216 1.2 ad static inline void
217 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
218 1.2 ad {
219 1.23 yamt uintptr_t new;
220 1.23 yamt
221 1.7 itohy MUTEX_GIVE(mtx);
222 1.23 yamt new = 0;
223 1.23 yamt MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
224 1.23 yamt mtx->mtx_owner = new;
225 1.2 ad }
226 1.4 ad
227 1.4 ad static inline void
228 1.4 ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
229 1.4 ad {
230 1.4 ad /* nothing */
231 1.4 ad }
232 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
233 1.2 ad
234 1.2 ad /*
235 1.2 ad * Patch in stubs via strong alias where they are not available.
236 1.2 ad */
237 1.2 ad
238 1.2 ad #if defined(LOCKDEBUG)
239 1.2 ad #undef __HAVE_MUTEX_STUBS
240 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
241 1.2 ad #endif
242 1.2 ad
243 1.2 ad #ifndef __HAVE_MUTEX_STUBS
244 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
245 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
246 1.2 ad #endif
247 1.2 ad
248 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
249 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
250 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
251 1.2 ad #endif
252 1.2 ad
253 1.2 ad void mutex_abort(kmutex_t *, const char *, const char *);
254 1.2 ad void mutex_dump(volatile void *);
255 1.2 ad int mutex_onproc(uintptr_t, struct cpu_info **);
256 1.2 ad
257 1.2 ad lockops_t mutex_spin_lockops = {
258 1.2 ad "Mutex",
259 1.2 ad 0,
260 1.2 ad mutex_dump
261 1.2 ad };
262 1.2 ad
263 1.2 ad lockops_t mutex_adaptive_lockops = {
264 1.2 ad "Mutex",
265 1.2 ad 1,
266 1.2 ad mutex_dump
267 1.2 ad };
268 1.2 ad
269 1.5 yamt syncobj_t mutex_syncobj = {
270 1.5 yamt SOBJ_SLEEPQ_SORTED,
271 1.5 yamt turnstile_unsleep,
272 1.5 yamt turnstile_changepri,
273 1.5 yamt sleepq_lendpri,
274 1.27 ad (void *)mutex_owner,
275 1.5 yamt };
276 1.5 yamt
277 1.31 ad /* Mutex cache */
278 1.31 ad #define MUTEX_OBJ_MAGIC 0x5aa3c85d
279 1.31 ad struct kmutexobj {
280 1.31 ad kmutex_t mo_lock;
281 1.31 ad u_int mo_magic;
282 1.31 ad u_int mo_refcnt;
283 1.31 ad };
284 1.31 ad
285 1.31 ad static int mutex_obj_ctor(void *, void *, int);
286 1.31 ad
287 1.31 ad static pool_cache_t mutex_obj_cache;
288 1.31 ad
289 1.2 ad /*
290 1.2 ad * mutex_dump:
291 1.2 ad *
292 1.2 ad * Dump the contents of a mutex structure.
293 1.2 ad */
294 1.2 ad void
295 1.2 ad mutex_dump(volatile void *cookie)
296 1.2 ad {
297 1.2 ad volatile kmutex_t *mtx = cookie;
298 1.2 ad
299 1.2 ad printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
300 1.2 ad (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
301 1.2 ad MUTEX_SPIN_P(mtx));
302 1.2 ad }
303 1.2 ad
304 1.2 ad /*
305 1.2 ad * mutex_abort:
306 1.2 ad *
307 1.3 ad * Dump information about an error and panic the system. This
308 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
309 1.3 ad * we ask the compiler to not inline it.
310 1.2 ad */
311 1.8 itohy
312 1.8 itohy #if __GNUC_PREREQ__(3, 0)
313 1.8 itohy __attribute ((noinline)) __attribute ((noreturn))
314 1.8 itohy #endif
315 1.8 itohy void
316 1.2 ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
317 1.2 ad {
318 1.2 ad
319 1.23 yamt LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
320 1.3 ad &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
321 1.2 ad /* NOTREACHED */
322 1.2 ad }
323 1.2 ad
324 1.2 ad /*
325 1.2 ad * mutex_init:
326 1.2 ad *
327 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
328 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
329 1.2 ad * CPU time. We can't easily provide a type of mutex that always
330 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
331 1.2 ad * mutexes unlocked.
332 1.2 ad */
333 1.2 ad void
334 1.2 ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
335 1.2 ad {
336 1.23 yamt bool dodebug;
337 1.2 ad
338 1.2 ad memset(mtx, 0, sizeof(*mtx));
339 1.2 ad
340 1.15 ad switch (type) {
341 1.15 ad case MUTEX_ADAPTIVE:
342 1.15 ad KASSERT(ipl == IPL_NONE);
343 1.15 ad break;
344 1.22 ad case MUTEX_DEFAULT:
345 1.15 ad case MUTEX_DRIVER:
346 1.26 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
347 1.26 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
348 1.26 ad ipl == IPL_SOFTSERIAL) {
349 1.22 ad type = MUTEX_ADAPTIVE;
350 1.26 ad } else {
351 1.22 ad type = MUTEX_SPIN;
352 1.22 ad }
353 1.15 ad break;
354 1.15 ad default:
355 1.15 ad break;
356 1.15 ad }
357 1.2 ad
358 1.2 ad switch (type) {
359 1.11 ad case MUTEX_NODEBUG:
360 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
361 1.19 ad (uintptr_t)__builtin_return_address(0));
362 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
363 1.11 ad break;
364 1.2 ad case MUTEX_ADAPTIVE:
365 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
366 1.19 ad (uintptr_t)__builtin_return_address(0));
367 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
368 1.2 ad break;
369 1.2 ad case MUTEX_SPIN:
370 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
371 1.19 ad (uintptr_t)__builtin_return_address(0));
372 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
373 1.2 ad break;
374 1.2 ad default:
375 1.2 ad panic("mutex_init: impossible type");
376 1.2 ad break;
377 1.2 ad }
378 1.2 ad }
379 1.2 ad
380 1.2 ad /*
381 1.2 ad * mutex_destroy:
382 1.2 ad *
383 1.2 ad * Tear down a mutex.
384 1.2 ad */
385 1.2 ad void
386 1.2 ad mutex_destroy(kmutex_t *mtx)
387 1.2 ad {
388 1.2 ad
389 1.2 ad if (MUTEX_ADAPTIVE_P(mtx)) {
390 1.2 ad MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
391 1.2 ad !MUTEX_HAS_WAITERS(mtx));
392 1.2 ad } else {
393 1.16 skrll MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
394 1.2 ad }
395 1.2 ad
396 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
397 1.2 ad MUTEX_DESTROY(mtx);
398 1.2 ad }
399 1.2 ad
400 1.2 ad /*
401 1.2 ad * mutex_onproc:
402 1.2 ad *
403 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
404 1.2 ad * system. If the target is waiting on the kernel big lock, then we
405 1.15 ad * must release it. This is necessary to avoid deadlock.
406 1.2 ad *
407 1.2 ad * Note that we can't use the mutex owner field as an LWP pointer. We
408 1.2 ad * don't have full control over the timing of our execution, and so the
409 1.2 ad * pointer could be completely invalid by the time we dereference it.
410 1.2 ad */
411 1.2 ad #ifdef MULTIPROCESSOR
412 1.2 ad int
413 1.2 ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
414 1.2 ad {
415 1.2 ad CPU_INFO_ITERATOR cii;
416 1.2 ad struct cpu_info *ci;
417 1.2 ad struct lwp *l;
418 1.2 ad
419 1.2 ad if (!MUTEX_OWNED(owner))
420 1.2 ad return 0;
421 1.2 ad l = (struct lwp *)MUTEX_OWNER(owner);
422 1.2 ad
423 1.15 ad /* See if the target is running on a CPU somewhere. */
424 1.10 ad if ((ci = *cip) != NULL && ci->ci_curlwp == l)
425 1.15 ad goto run;
426 1.15 ad for (CPU_INFO_FOREACH(cii, ci))
427 1.15 ad if (ci->ci_curlwp == l)
428 1.15 ad goto run;
429 1.2 ad
430 1.15 ad /* No: it may be safe to block now. */
431 1.2 ad *cip = NULL;
432 1.2 ad return 0;
433 1.15 ad
434 1.15 ad run:
435 1.15 ad /* Target is running; do we need to block? */
436 1.15 ad *cip = ci;
437 1.15 ad return ci->ci_biglock_wanted != l;
438 1.2 ad }
439 1.15 ad #endif /* MULTIPROCESSOR */
440 1.2 ad
441 1.2 ad /*
442 1.2 ad * mutex_vector_enter:
443 1.2 ad *
444 1.2 ad * Support routine for mutex_enter() that must handles all cases. In
445 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
446 1.2 ad * fast-path stubs are available. If an mutex_spin_enter() stub is
447 1.2 ad * not available, then it is also aliased directly here.
448 1.2 ad */
449 1.2 ad void
450 1.2 ad mutex_vector_enter(kmutex_t *mtx)
451 1.2 ad {
452 1.2 ad uintptr_t owner, curthread;
453 1.2 ad turnstile_t *ts;
454 1.2 ad #ifdef MULTIPROCESSOR
455 1.2 ad struct cpu_info *ci = NULL;
456 1.2 ad u_int count;
457 1.2 ad #endif
458 1.2 ad LOCKSTAT_COUNTER(spincnt);
459 1.2 ad LOCKSTAT_COUNTER(slpcnt);
460 1.2 ad LOCKSTAT_TIMER(spintime);
461 1.2 ad LOCKSTAT_TIMER(slptime);
462 1.2 ad LOCKSTAT_FLAG(lsflag);
463 1.2 ad
464 1.2 ad /*
465 1.2 ad * Handle spin mutexes.
466 1.2 ad */
467 1.2 ad if (MUTEX_SPIN_P(mtx)) {
468 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
469 1.2 ad u_int spins = 0;
470 1.2 ad #endif
471 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
472 1.2 ad MUTEX_WANTLOCK(mtx);
473 1.2 ad #ifdef FULL
474 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
475 1.2 ad MUTEX_LOCKED(mtx);
476 1.2 ad return;
477 1.2 ad }
478 1.2 ad #if !defined(MULTIPROCESSOR)
479 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
480 1.2 ad #else /* !MULTIPROCESSOR */
481 1.2 ad
482 1.2 ad LOCKSTAT_ENTER(lsflag);
483 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
484 1.2 ad count = SPINLOCK_BACKOFF_MIN;
485 1.2 ad
486 1.2 ad /*
487 1.2 ad * Spin testing the lock word and do exponential backoff
488 1.2 ad * to reduce cache line ping-ponging between CPUs.
489 1.2 ad */
490 1.2 ad do {
491 1.2 ad if (panicstr != NULL)
492 1.2 ad break;
493 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
494 1.2 ad SPINLOCK_BACKOFF(count);
495 1.2 ad #ifdef LOCKDEBUG
496 1.2 ad if (SPINLOCK_SPINOUT(spins))
497 1.2 ad MUTEX_ABORT(mtx, "spinout");
498 1.2 ad #endif /* LOCKDEBUG */
499 1.2 ad }
500 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
501 1.2 ad
502 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
503 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
504 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
505 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
506 1.2 ad }
507 1.2 ad LOCKSTAT_EXIT(lsflag);
508 1.2 ad #endif /* !MULTIPROCESSOR */
509 1.2 ad #endif /* FULL */
510 1.2 ad MUTEX_LOCKED(mtx);
511 1.2 ad return;
512 1.2 ad }
513 1.2 ad
514 1.2 ad curthread = (uintptr_t)curlwp;
515 1.2 ad
516 1.2 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
517 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
518 1.2 ad MUTEX_WANTLOCK(mtx);
519 1.2 ad
520 1.2 ad if (panicstr == NULL) {
521 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
522 1.2 ad }
523 1.2 ad
524 1.2 ad LOCKSTAT_ENTER(lsflag);
525 1.2 ad
526 1.2 ad /*
527 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
528 1.2 ad * determine that the owner is not running on a processor,
529 1.2 ad * then we stop spinning, and sleep instead.
530 1.2 ad */
531 1.34 ad for (owner = mtx->mtx_owner;;) {
532 1.2 ad if (!MUTEX_OWNED(owner)) {
533 1.2 ad /*
534 1.2 ad * Mutex owner clear could mean two things:
535 1.2 ad *
536 1.2 ad * * The mutex has been released.
537 1.2 ad * * The owner field hasn't been set yet.
538 1.2 ad *
539 1.2 ad * Try to acquire it again. If that fails,
540 1.2 ad * we'll just loop again.
541 1.2 ad */
542 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
543 1.2 ad break;
544 1.34 ad owner = mtx->mtx_owner;
545 1.2 ad continue;
546 1.2 ad }
547 1.2 ad
548 1.2 ad if (panicstr != NULL)
549 1.2 ad return;
550 1.2 ad if (MUTEX_OWNER(owner) == curthread)
551 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
552 1.2 ad
553 1.2 ad #ifdef MULTIPROCESSOR
554 1.2 ad /*
555 1.2 ad * Check to see if the owner is running on a processor.
556 1.2 ad * If so, then we should just spin, as the owner will
557 1.2 ad * likely release the lock very soon.
558 1.2 ad */
559 1.2 ad if (mutex_onproc(owner, &ci)) {
560 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
561 1.2 ad count = SPINLOCK_BACKOFF_MIN;
562 1.2 ad for (;;) {
563 1.34 ad SPINLOCK_BACKOFF(count);
564 1.2 ad owner = mtx->mtx_owner;
565 1.2 ad if (!mutex_onproc(owner, &ci))
566 1.2 ad break;
567 1.2 ad }
568 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
569 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
570 1.2 ad if (!MUTEX_OWNED(owner))
571 1.2 ad continue;
572 1.2 ad }
573 1.2 ad #endif
574 1.2 ad
575 1.2 ad ts = turnstile_lookup(mtx);
576 1.2 ad
577 1.2 ad /*
578 1.2 ad * Once we have the turnstile chain interlock, mark the
579 1.2 ad * mutex has having waiters. If that fails, spin again:
580 1.2 ad * chances are that the mutex has been released.
581 1.2 ad */
582 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
583 1.2 ad turnstile_exit(mtx);
584 1.34 ad owner = mtx->mtx_owner;
585 1.2 ad continue;
586 1.2 ad }
587 1.2 ad
588 1.2 ad #ifdef MULTIPROCESSOR
589 1.2 ad /*
590 1.2 ad * mutex_exit() is permitted to release the mutex without
591 1.2 ad * any interlocking instructions, and the following can
592 1.2 ad * occur as a result:
593 1.2 ad *
594 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
595 1.2 ad * ---------------------------- ----------------------------
596 1.2 ad * .. acquire cache line
597 1.2 ad * .. test for waiters
598 1.2 ad * acquire cache line <- lose cache line
599 1.2 ad * lock cache line ..
600 1.2 ad * verify mutex is held ..
601 1.2 ad * set waiters ..
602 1.2 ad * unlock cache line ..
603 1.2 ad * lose cache line -> acquire cache line
604 1.2 ad * .. clear lock word, waiters
605 1.2 ad * return success
606 1.2 ad *
607 1.2 ad * There is a another race that can occur: a third CPU could
608 1.2 ad * acquire the mutex as soon as it is released. Since
609 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
610 1.2 ad * something that we need to worry about too much. What we
611 1.2 ad * do need to ensure is that the waiters bit gets set.
612 1.2 ad *
613 1.2 ad * To allow the unlocked release, we need to make some
614 1.2 ad * assumptions here:
615 1.2 ad *
616 1.2 ad * o Release is the only non-atomic/unlocked operation
617 1.2 ad * that can be performed on the mutex. (It must still
618 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
619 1.2 ad * or preempted).
620 1.2 ad *
621 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
622 1.21 pooka * be in progress on one CPU in the system - guaranteed
623 1.2 ad * by the turnstile chain lock.
624 1.2 ad *
625 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
626 1.2 ad * and release can modify a mutex with a non-zero
627 1.2 ad * owner field.
628 1.2 ad *
629 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
630 1.2 ad * is an unbuffered write that is immediately visible
631 1.2 ad * to all other processors in the system.
632 1.2 ad *
633 1.2 ad * o If the holding LWP switches away, it posts a store
634 1.2 ad * fence before changing curlwp, ensuring that any
635 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
636 1.2 ad * completes before the modification of curlwp becomes
637 1.2 ad * visible to this CPU.
638 1.2 ad *
639 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
640 1.2 ad * and before resuming execution of an LWP.
641 1.2 ad *
642 1.2 ad * o _kernel_lock() posts a store fence before setting
643 1.2 ad * curcpu()->ci_biglock_wanted, and after clearing it.
644 1.2 ad * This ensures that any overwrite of the mutex waiters
645 1.2 ad * flag by mutex_exit() completes before the modification
646 1.2 ad * of ci_biglock_wanted becomes visible.
647 1.2 ad *
648 1.2 ad * We now post a read memory barrier (after setting the
649 1.2 ad * waiters field) and check the lock holder's status again.
650 1.2 ad * Some of the possible outcomes (not an exhaustive list):
651 1.2 ad *
652 1.2 ad * 1. The onproc check returns true: the holding LWP is
653 1.2 ad * running again. The lock may be released soon and
654 1.2 ad * we should spin. Importantly, we can't trust the
655 1.2 ad * value of the waiters flag.
656 1.2 ad *
657 1.2 ad * 2. The onproc check returns false: the holding LWP is
658 1.39 yamt * not running. We now have the opportunity to check
659 1.2 ad * if mutex_exit() has blatted the modifications made
660 1.2 ad * by MUTEX_SET_WAITERS().
661 1.2 ad *
662 1.2 ad * 3. The onproc check returns false: the holding LWP may
663 1.2 ad * or may not be running. It has context switched at
664 1.2 ad * some point during our check. Again, we have the
665 1.2 ad * chance to see if the waiters bit is still set or
666 1.2 ad * has been overwritten.
667 1.2 ad *
668 1.2 ad * 4. The onproc check returns false: the holding LWP is
669 1.2 ad * running on a CPU, but wants the big lock. It's OK
670 1.2 ad * to check the waiters field in this case.
671 1.2 ad *
672 1.2 ad * 5. The has-waiters check fails: the mutex has been
673 1.2 ad * released, the waiters flag cleared and another LWP
674 1.2 ad * now owns the mutex.
675 1.2 ad *
676 1.2 ad * 6. The has-waiters check fails: the mutex has been
677 1.2 ad * released.
678 1.2 ad *
679 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
680 1.2 ad * as we might never be awoken.
681 1.2 ad */
682 1.24 ad if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
683 1.24 ad (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
684 1.2 ad turnstile_exit(mtx);
685 1.34 ad owner = mtx->mtx_owner;
686 1.2 ad continue;
687 1.2 ad }
688 1.2 ad #endif /* MULTIPROCESSOR */
689 1.2 ad
690 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
691 1.2 ad
692 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
693 1.2 ad
694 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
695 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
696 1.34 ad
697 1.34 ad owner = mtx->mtx_owner;
698 1.2 ad }
699 1.2 ad
700 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
701 1.2 ad slpcnt, slptime);
702 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
703 1.2 ad spincnt, spintime);
704 1.2 ad LOCKSTAT_EXIT(lsflag);
705 1.2 ad
706 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
707 1.2 ad MUTEX_LOCKED(mtx);
708 1.2 ad }
709 1.2 ad
710 1.2 ad /*
711 1.2 ad * mutex_vector_exit:
712 1.2 ad *
713 1.2 ad * Support routine for mutex_exit() that handles all cases.
714 1.2 ad */
715 1.2 ad void
716 1.2 ad mutex_vector_exit(kmutex_t *mtx)
717 1.2 ad {
718 1.2 ad turnstile_t *ts;
719 1.2 ad uintptr_t curthread;
720 1.2 ad
721 1.2 ad if (MUTEX_SPIN_P(mtx)) {
722 1.2 ad #ifdef FULL
723 1.33 ad if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
724 1.33 ad if (panicstr != NULL)
725 1.33 ad return;
726 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
727 1.33 ad }
728 1.2 ad MUTEX_UNLOCKED(mtx);
729 1.2 ad __cpu_simple_unlock(&mtx->mtx_lock);
730 1.2 ad #endif
731 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
732 1.2 ad return;
733 1.2 ad }
734 1.2 ad
735 1.11 ad if (__predict_false((uintptr_t)panicstr | cold)) {
736 1.2 ad MUTEX_UNLOCKED(mtx);
737 1.2 ad MUTEX_RELEASE(mtx);
738 1.2 ad return;
739 1.2 ad }
740 1.2 ad
741 1.2 ad curthread = (uintptr_t)curlwp;
742 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
743 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
744 1.2 ad MUTEX_UNLOCKED(mtx);
745 1.2 ad
746 1.15 ad #ifdef LOCKDEBUG
747 1.15 ad /*
748 1.15 ad * Avoid having to take the turnstile chain lock every time
749 1.15 ad * around. Raise the priority level to splhigh() in order
750 1.15 ad * to disable preemption and so make the following atomic.
751 1.15 ad */
752 1.15 ad {
753 1.15 ad int s = splhigh();
754 1.15 ad if (!MUTEX_HAS_WAITERS(mtx)) {
755 1.15 ad MUTEX_RELEASE(mtx);
756 1.15 ad splx(s);
757 1.15 ad return;
758 1.15 ad }
759 1.15 ad splx(s);
760 1.15 ad }
761 1.15 ad #endif
762 1.15 ad
763 1.2 ad /*
764 1.2 ad * Get this lock's turnstile. This gets the interlock on
765 1.2 ad * the sleep queue. Once we have that, we can clear the
766 1.2 ad * lock. If there was no turnstile for the lock, there
767 1.2 ad * were no waiters remaining.
768 1.2 ad */
769 1.2 ad ts = turnstile_lookup(mtx);
770 1.2 ad
771 1.2 ad if (ts == NULL) {
772 1.2 ad MUTEX_RELEASE(mtx);
773 1.2 ad turnstile_exit(mtx);
774 1.2 ad } else {
775 1.2 ad MUTEX_RELEASE(mtx);
776 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
777 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
778 1.2 ad }
779 1.2 ad }
780 1.2 ad
781 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
782 1.4 ad /*
783 1.4 ad * mutex_wakeup:
784 1.4 ad *
785 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
786 1.4 ad * We assume that the mutex has been released, but it need not
787 1.4 ad * be.
788 1.4 ad */
789 1.4 ad void
790 1.4 ad mutex_wakeup(kmutex_t *mtx)
791 1.4 ad {
792 1.4 ad turnstile_t *ts;
793 1.4 ad
794 1.4 ad ts = turnstile_lookup(mtx);
795 1.4 ad if (ts == NULL) {
796 1.4 ad turnstile_exit(mtx);
797 1.4 ad return;
798 1.4 ad }
799 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
800 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
801 1.4 ad }
802 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
803 1.4 ad
804 1.2 ad /*
805 1.2 ad * mutex_owned:
806 1.2 ad *
807 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
808 1.3 ad * holds the mutex.
809 1.2 ad */
810 1.2 ad int
811 1.2 ad mutex_owned(kmutex_t *mtx)
812 1.2 ad {
813 1.2 ad
814 1.35 ad if (mtx == NULL)
815 1.35 ad return 0;
816 1.2 ad if (MUTEX_ADAPTIVE_P(mtx))
817 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
818 1.2 ad #ifdef FULL
819 1.16 skrll return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
820 1.2 ad #else
821 1.2 ad return 1;
822 1.2 ad #endif
823 1.2 ad }
824 1.2 ad
825 1.2 ad /*
826 1.2 ad * mutex_owner:
827 1.2 ad *
828 1.6 ad * Return the current owner of an adaptive mutex. Used for
829 1.6 ad * priority inheritance.
830 1.2 ad */
831 1.27 ad lwp_t *
832 1.27 ad mutex_owner(kmutex_t *mtx)
833 1.2 ad {
834 1.2 ad
835 1.2 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
836 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
837 1.2 ad }
838 1.2 ad
839 1.2 ad /*
840 1.2 ad * mutex_tryenter:
841 1.2 ad *
842 1.2 ad * Try to acquire the mutex; return non-zero if we did.
843 1.2 ad */
844 1.2 ad int
845 1.2 ad mutex_tryenter(kmutex_t *mtx)
846 1.2 ad {
847 1.2 ad uintptr_t curthread;
848 1.2 ad
849 1.2 ad /*
850 1.2 ad * Handle spin mutexes.
851 1.2 ad */
852 1.2 ad if (MUTEX_SPIN_P(mtx)) {
853 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
854 1.2 ad #ifdef FULL
855 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
856 1.4 ad MUTEX_WANTLOCK(mtx);
857 1.2 ad MUTEX_LOCKED(mtx);
858 1.2 ad return 1;
859 1.2 ad }
860 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
861 1.2 ad #else
862 1.4 ad MUTEX_WANTLOCK(mtx);
863 1.2 ad MUTEX_LOCKED(mtx);
864 1.2 ad return 1;
865 1.2 ad #endif
866 1.2 ad } else {
867 1.2 ad curthread = (uintptr_t)curlwp;
868 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
869 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
870 1.4 ad MUTEX_WANTLOCK(mtx);
871 1.2 ad MUTEX_LOCKED(mtx);
872 1.2 ad MUTEX_DASSERT(mtx,
873 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
874 1.2 ad return 1;
875 1.2 ad }
876 1.2 ad }
877 1.2 ad
878 1.2 ad return 0;
879 1.2 ad }
880 1.2 ad
881 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
882 1.2 ad /*
883 1.2 ad * mutex_spin_retry:
884 1.2 ad *
885 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
886 1.2 ad * has already raised the SPL, and adjusted counters.
887 1.2 ad */
888 1.2 ad void
889 1.2 ad mutex_spin_retry(kmutex_t *mtx)
890 1.2 ad {
891 1.2 ad #ifdef MULTIPROCESSOR
892 1.2 ad u_int count;
893 1.2 ad LOCKSTAT_TIMER(spintime);
894 1.2 ad LOCKSTAT_FLAG(lsflag);
895 1.2 ad #ifdef LOCKDEBUG
896 1.2 ad u_int spins = 0;
897 1.2 ad #endif /* LOCKDEBUG */
898 1.2 ad
899 1.2 ad MUTEX_WANTLOCK(mtx);
900 1.2 ad
901 1.2 ad LOCKSTAT_ENTER(lsflag);
902 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
903 1.2 ad count = SPINLOCK_BACKOFF_MIN;
904 1.2 ad
905 1.2 ad /*
906 1.2 ad * Spin testing the lock word and do exponential backoff
907 1.2 ad * to reduce cache line ping-ponging between CPUs.
908 1.2 ad */
909 1.2 ad do {
910 1.2 ad if (panicstr != NULL)
911 1.2 ad break;
912 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
913 1.2 ad SPINLOCK_BACKOFF(count);
914 1.2 ad #ifdef LOCKDEBUG
915 1.2 ad if (SPINLOCK_SPINOUT(spins))
916 1.2 ad MUTEX_ABORT(mtx, "spinout");
917 1.2 ad #endif /* LOCKDEBUG */
918 1.2 ad }
919 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
920 1.2 ad
921 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
922 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
923 1.2 ad LOCKSTAT_EXIT(lsflag);
924 1.2 ad
925 1.2 ad MUTEX_LOCKED(mtx);
926 1.2 ad #else /* MULTIPROCESSOR */
927 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
928 1.2 ad #endif /* MULTIPROCESSOR */
929 1.2 ad }
930 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
931 1.31 ad
932 1.31 ad /*
933 1.31 ad * mutex_obj_init:
934 1.31 ad *
935 1.31 ad * Initialize the mutex object store.
936 1.31 ad */
937 1.31 ad void
938 1.31 ad mutex_obj_init(void)
939 1.31 ad {
940 1.31 ad
941 1.31 ad mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
942 1.31 ad coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
943 1.31 ad NULL, NULL);
944 1.31 ad }
945 1.31 ad
946 1.31 ad /*
947 1.31 ad * mutex_obj_ctor:
948 1.31 ad *
949 1.31 ad * Initialize a new lock for the cache.
950 1.31 ad */
951 1.31 ad static int
952 1.31 ad mutex_obj_ctor(void *arg, void *obj, int flags)
953 1.31 ad {
954 1.31 ad struct kmutexobj * mo = obj;
955 1.31 ad
956 1.31 ad mo->mo_magic = MUTEX_OBJ_MAGIC;
957 1.31 ad
958 1.31 ad return 0;
959 1.31 ad }
960 1.31 ad
961 1.31 ad /*
962 1.31 ad * mutex_obj_alloc:
963 1.31 ad *
964 1.31 ad * Allocate a single lock object.
965 1.31 ad */
966 1.31 ad kmutex_t *
967 1.31 ad mutex_obj_alloc(kmutex_type_t type, int ipl)
968 1.31 ad {
969 1.31 ad struct kmutexobj *mo;
970 1.31 ad
971 1.31 ad mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
972 1.31 ad mutex_init(&mo->mo_lock, type, ipl);
973 1.31 ad mo->mo_refcnt = 1;
974 1.31 ad
975 1.31 ad return (kmutex_t *)mo;
976 1.31 ad }
977 1.31 ad
978 1.31 ad /*
979 1.31 ad * mutex_obj_hold:
980 1.31 ad *
981 1.31 ad * Add a single reference to a lock object. A reference to the object
982 1.31 ad * must already be held, and must be held across this call.
983 1.31 ad */
984 1.31 ad void
985 1.31 ad mutex_obj_hold(kmutex_t *lock)
986 1.31 ad {
987 1.31 ad struct kmutexobj *mo = (struct kmutexobj *)lock;
988 1.31 ad
989 1.31 ad KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
990 1.31 ad KASSERT(mo->mo_refcnt > 0);
991 1.31 ad
992 1.31 ad atomic_inc_uint(&mo->mo_refcnt);
993 1.31 ad }
994 1.31 ad
995 1.31 ad /*
996 1.31 ad * mutex_obj_free:
997 1.31 ad *
998 1.31 ad * Drop a reference from a lock object. If the last reference is being
999 1.31 ad * dropped, free the object and return true. Otherwise, return false.
1000 1.31 ad */
1001 1.31 ad bool
1002 1.31 ad mutex_obj_free(kmutex_t *lock)
1003 1.31 ad {
1004 1.31 ad struct kmutexobj *mo = (struct kmutexobj *)lock;
1005 1.31 ad
1006 1.31 ad KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
1007 1.31 ad KASSERT(mo->mo_refcnt > 0);
1008 1.31 ad
1009 1.31 ad if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
1010 1.31 ad return false;
1011 1.31 ad }
1012 1.31 ad mutex_destroy(&mo->mo_lock);
1013 1.31 ad pool_cache_put(mutex_obj_cache, mo);
1014 1.31 ad return true;
1015 1.31 ad }
1016