Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.42
      1  1.42       ad /*	$NetBSD: kern_mutex.c,v 1.42 2008/05/31 13:15:21 ad Exp $	*/
      2   1.2       ad 
      3   1.2       ad /*-
      4  1.30       ad  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2       ad  * All rights reserved.
      6   1.2       ad  *
      7   1.2       ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2       ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2       ad  *
     10   1.2       ad  * Redistribution and use in source and binary forms, with or without
     11   1.2       ad  * modification, are permitted provided that the following conditions
     12   1.2       ad  * are met:
     13   1.2       ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2       ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2       ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2       ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2       ad  *    documentation and/or other materials provided with the distribution.
     18   1.2       ad  *
     19   1.2       ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2       ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2       ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2       ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2       ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2       ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2       ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2       ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2       ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2       ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2       ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2       ad  */
     31   1.2       ad 
     32   1.2       ad /*
     33   1.2       ad  * Kernel mutex implementation, modeled after those found in Solaris,
     34   1.2       ad  * a description of which can be found in:
     35   1.2       ad  *
     36   1.2       ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37   1.2       ad  *	    Richard McDougall.
     38   1.2       ad  */
     39   1.2       ad 
     40   1.2       ad #define	__MUTEX_PRIVATE
     41   1.2       ad 
     42   1.2       ad #include <sys/cdefs.h>
     43  1.42       ad __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.42 2008/05/31 13:15:21 ad Exp $");
     44   1.2       ad 
     45   1.2       ad #include <sys/param.h>
     46   1.2       ad #include <sys/proc.h>
     47   1.2       ad #include <sys/mutex.h>
     48   1.2       ad #include <sys/sched.h>
     49   1.2       ad #include <sys/sleepq.h>
     50   1.2       ad #include <sys/systm.h>
     51   1.2       ad #include <sys/lockdebug.h>
     52   1.2       ad #include <sys/kernel.h>
     53  1.24       ad #include <sys/atomic.h>
     54  1.24       ad #include <sys/intr.h>
     55  1.29  xtraeme #include <sys/lock.h>
     56  1.31       ad #include <sys/pool.h>
     57   1.2       ad 
     58   1.2       ad #include <dev/lockstat.h>
     59   1.2       ad 
     60  1.28       ad #include <machine/lock.h>
     61  1.28       ad 
     62   1.2       ad /*
     63   1.2       ad  * When not running a debug kernel, spin mutexes are not much
     64   1.2       ad  * more than an splraiseipl() and splx() pair.
     65   1.2       ad  */
     66   1.2       ad 
     67   1.2       ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     68   1.2       ad #define	FULL
     69   1.2       ad #endif
     70   1.2       ad 
     71   1.2       ad /*
     72   1.2       ad  * Debugging support.
     73   1.2       ad  */
     74   1.2       ad 
     75   1.2       ad #define	MUTEX_WANTLOCK(mtx)					\
     76  1.23     yamt     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     77  1.40       ad         (uintptr_t)__builtin_return_address(0), false, false)
     78   1.2       ad #define	MUTEX_LOCKED(mtx)					\
     79  1.42       ad     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     80   1.2       ad         (uintptr_t)__builtin_return_address(0), 0)
     81   1.2       ad #define	MUTEX_UNLOCKED(mtx)					\
     82  1.23     yamt     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     83   1.2       ad         (uintptr_t)__builtin_return_address(0), 0)
     84   1.2       ad #define	MUTEX_ABORT(mtx, msg)					\
     85  1.17       ad     mutex_abort(mtx, __func__, msg)
     86   1.2       ad 
     87   1.2       ad #if defined(LOCKDEBUG)
     88   1.2       ad 
     89   1.2       ad #define	MUTEX_DASSERT(mtx, cond)				\
     90   1.2       ad do {								\
     91   1.2       ad 	if (!(cond))						\
     92   1.2       ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     93   1.2       ad } while (/* CONSTCOND */ 0);
     94   1.2       ad 
     95   1.2       ad #else	/* LOCKDEBUG */
     96   1.2       ad 
     97   1.2       ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
     98   1.2       ad 
     99   1.2       ad #endif /* LOCKDEBUG */
    100   1.2       ad 
    101   1.2       ad #if defined(DIAGNOSTIC)
    102   1.2       ad 
    103   1.2       ad #define	MUTEX_ASSERT(mtx, cond)					\
    104   1.2       ad do {								\
    105   1.2       ad 	if (!(cond))						\
    106   1.2       ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    107   1.2       ad } while (/* CONSTCOND */ 0)
    108   1.2       ad 
    109   1.2       ad #else	/* DIAGNOSTIC */
    110   1.2       ad 
    111   1.2       ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    112   1.2       ad 
    113   1.2       ad #endif	/* DIAGNOSTIC */
    114   1.2       ad 
    115   1.2       ad /*
    116   1.2       ad  * Spin mutex SPL save / restore.
    117   1.2       ad  */
    118  1.12     matt #ifndef MUTEX_COUNT_BIAS
    119  1.12     matt #define	MUTEX_COUNT_BIAS	0
    120  1.12     matt #endif
    121   1.2       ad 
    122   1.2       ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    123   1.2       ad do {									\
    124  1.36       ad 	struct cpu_info *x__ci;						\
    125   1.2       ad 	int x__cnt, s;							\
    126  1.36       ad 	s = splraiseipl(mtx->mtx_ipl);					\
    127  1.36       ad 	x__ci = curcpu();						\
    128   1.2       ad 	x__cnt = x__ci->ci_mtx_count--;					\
    129  1.37       ad 	__insn_barrier();						\
    130  1.12     matt 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    131   1.2       ad 		x__ci->ci_mtx_oldspl = (s);				\
    132   1.2       ad } while (/* CONSTCOND */ 0)
    133   1.2       ad 
    134   1.2       ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    135   1.2       ad do {									\
    136   1.2       ad 	struct cpu_info *x__ci = curcpu();				\
    137   1.2       ad 	int s = x__ci->ci_mtx_oldspl;					\
    138   1.2       ad 	__insn_barrier();						\
    139  1.12     matt 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    140   1.2       ad 		splx(s);						\
    141   1.2       ad } while (/* CONSTCOND */ 0)
    142   1.2       ad 
    143   1.2       ad /*
    144   1.2       ad  * For architectures that provide 'simple' mutexes: they provide a
    145   1.2       ad  * CAS function that is either MP-safe, or does not need to be MP
    146   1.2       ad  * safe.  Adaptive mutexes on these architectures do not require an
    147   1.2       ad  * additional interlock.
    148   1.2       ad  */
    149   1.2       ad 
    150   1.2       ad #ifdef __HAVE_SIMPLE_MUTEXES
    151   1.2       ad 
    152   1.2       ad #define	MUTEX_OWNER(owner)						\
    153   1.2       ad 	(owner & MUTEX_THREAD)
    154   1.2       ad #define	MUTEX_HAS_WAITERS(mtx)						\
    155   1.2       ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    156   1.2       ad 
    157  1.23     yamt #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    158   1.2       ad do {									\
    159  1.23     yamt 	if (dodebug)							\
    160  1.23     yamt 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    161   1.2       ad } while (/* CONSTCOND */ 0);
    162   1.2       ad 
    163  1.23     yamt #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    164   1.2       ad do {									\
    165   1.2       ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    166  1.23     yamt 	if (dodebug)							\
    167  1.23     yamt 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    168   1.2       ad 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    169   1.2       ad 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    170   1.2       ad } while (/* CONSTCOND */ 0)
    171   1.2       ad 
    172   1.2       ad #define	MUTEX_DESTROY(mtx)						\
    173   1.2       ad do {									\
    174   1.2       ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    175   1.2       ad } while (/* CONSTCOND */ 0);
    176   1.2       ad 
    177   1.2       ad #define	MUTEX_SPIN_P(mtx)		\
    178   1.2       ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    179   1.2       ad #define	MUTEX_ADAPTIVE_P(mtx)		\
    180   1.2       ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    181   1.2       ad 
    182  1.23     yamt #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    183  1.23     yamt #if defined(LOCKDEBUG)
    184  1.23     yamt #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    185  1.23     yamt #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    186  1.23     yamt #else /* defined(LOCKDEBUG) */
    187  1.23     yamt #define	MUTEX_OWNED(owner)		((owner) != 0)
    188  1.23     yamt #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    189  1.23     yamt #endif /* defined(LOCKDEBUG) */
    190   1.2       ad 
    191   1.2       ad static inline int
    192   1.2       ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    193   1.2       ad {
    194   1.2       ad 	int rv;
    195  1.23     yamt 	uintptr_t old = 0;
    196  1.23     yamt 	uintptr_t new = curthread;
    197  1.23     yamt 
    198  1.23     yamt 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    199  1.23     yamt 	MUTEX_INHERITDEBUG(new, old);
    200  1.23     yamt 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    201   1.7    itohy 	MUTEX_RECEIVE(mtx);
    202   1.2       ad 	return rv;
    203   1.2       ad }
    204   1.2       ad 
    205   1.2       ad static inline int
    206   1.2       ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    207   1.2       ad {
    208   1.2       ad 	int rv;
    209   1.2       ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    210   1.7    itohy 	MUTEX_RECEIVE(mtx);
    211   1.2       ad 	return rv;
    212   1.2       ad }
    213   1.2       ad 
    214   1.2       ad static inline void
    215   1.2       ad MUTEX_RELEASE(kmutex_t *mtx)
    216   1.2       ad {
    217  1.23     yamt 	uintptr_t new;
    218  1.23     yamt 
    219   1.7    itohy 	MUTEX_GIVE(mtx);
    220  1.23     yamt 	new = 0;
    221  1.23     yamt 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    222  1.23     yamt 	mtx->mtx_owner = new;
    223   1.2       ad }
    224   1.4       ad 
    225   1.4       ad static inline void
    226   1.4       ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    227   1.4       ad {
    228   1.4       ad 	/* nothing */
    229   1.4       ad }
    230   1.2       ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    231   1.2       ad 
    232   1.2       ad /*
    233   1.2       ad  * Patch in stubs via strong alias where they are not available.
    234   1.2       ad  */
    235   1.2       ad 
    236   1.2       ad #if defined(LOCKDEBUG)
    237   1.2       ad #undef	__HAVE_MUTEX_STUBS
    238   1.2       ad #undef	__HAVE_SPIN_MUTEX_STUBS
    239   1.2       ad #endif
    240   1.2       ad 
    241   1.2       ad #ifndef __HAVE_MUTEX_STUBS
    242   1.8    itohy __strong_alias(mutex_enter,mutex_vector_enter);
    243   1.8    itohy __strong_alias(mutex_exit,mutex_vector_exit);
    244   1.2       ad #endif
    245   1.2       ad 
    246   1.2       ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    247   1.8    itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    248   1.8    itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    249   1.2       ad #endif
    250   1.2       ad 
    251   1.2       ad void	mutex_abort(kmutex_t *, const char *, const char *);
    252   1.2       ad void	mutex_dump(volatile void *);
    253   1.2       ad int	mutex_onproc(uintptr_t, struct cpu_info **);
    254   1.2       ad 
    255   1.2       ad lockops_t mutex_spin_lockops = {
    256   1.2       ad 	"Mutex",
    257  1.42       ad 	LOCKOPS_SPIN,
    258   1.2       ad 	mutex_dump
    259   1.2       ad };
    260   1.2       ad 
    261   1.2       ad lockops_t mutex_adaptive_lockops = {
    262   1.2       ad 	"Mutex",
    263  1.42       ad 	LOCKOPS_SLEEP,
    264   1.2       ad 	mutex_dump
    265   1.2       ad };
    266   1.2       ad 
    267   1.5     yamt syncobj_t mutex_syncobj = {
    268   1.5     yamt 	SOBJ_SLEEPQ_SORTED,
    269   1.5     yamt 	turnstile_unsleep,
    270   1.5     yamt 	turnstile_changepri,
    271   1.5     yamt 	sleepq_lendpri,
    272  1.27       ad 	(void *)mutex_owner,
    273   1.5     yamt };
    274   1.5     yamt 
    275  1.31       ad /* Mutex cache */
    276  1.31       ad #define	MUTEX_OBJ_MAGIC	0x5aa3c85d
    277  1.31       ad struct kmutexobj {
    278  1.31       ad 	kmutex_t	mo_lock;
    279  1.31       ad 	u_int		mo_magic;
    280  1.31       ad 	u_int		mo_refcnt;
    281  1.31       ad };
    282  1.31       ad 
    283  1.31       ad static int	mutex_obj_ctor(void *, void *, int);
    284  1.31       ad 
    285  1.31       ad static pool_cache_t	mutex_obj_cache;
    286  1.31       ad 
    287   1.2       ad /*
    288   1.2       ad  * mutex_dump:
    289   1.2       ad  *
    290   1.2       ad  *	Dump the contents of a mutex structure.
    291   1.2       ad  */
    292   1.2       ad void
    293   1.2       ad mutex_dump(volatile void *cookie)
    294   1.2       ad {
    295   1.2       ad 	volatile kmutex_t *mtx = cookie;
    296   1.2       ad 
    297   1.2       ad 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    298   1.2       ad 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    299   1.2       ad 	    MUTEX_SPIN_P(mtx));
    300   1.2       ad }
    301   1.2       ad 
    302   1.2       ad /*
    303   1.2       ad  * mutex_abort:
    304   1.2       ad  *
    305   1.3       ad  *	Dump information about an error and panic the system.  This
    306   1.3       ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    307   1.3       ad  *	we ask the compiler to not inline it.
    308   1.2       ad  */
    309   1.8    itohy 
    310   1.8    itohy #if __GNUC_PREREQ__(3, 0)
    311   1.8    itohy __attribute ((noinline)) __attribute ((noreturn))
    312   1.8    itohy #endif
    313   1.8    itohy void
    314   1.2       ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    315   1.2       ad {
    316   1.2       ad 
    317  1.23     yamt 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    318   1.3       ad 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    319   1.2       ad 	/* NOTREACHED */
    320   1.2       ad }
    321   1.2       ad 
    322   1.2       ad /*
    323   1.2       ad  * mutex_init:
    324   1.2       ad  *
    325   1.2       ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    326   1.2       ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    327   1.2       ad  *	CPU time.  We can't easily provide a type of mutex that always
    328   1.2       ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    329   1.2       ad  *	mutexes unlocked.
    330   1.2       ad  */
    331   1.2       ad void
    332   1.2       ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    333   1.2       ad {
    334  1.23     yamt 	bool dodebug;
    335   1.2       ad 
    336   1.2       ad 	memset(mtx, 0, sizeof(*mtx));
    337   1.2       ad 
    338  1.15       ad 	switch (type) {
    339  1.15       ad 	case MUTEX_ADAPTIVE:
    340  1.15       ad 		KASSERT(ipl == IPL_NONE);
    341  1.15       ad 		break;
    342  1.22       ad 	case MUTEX_DEFAULT:
    343  1.15       ad 	case MUTEX_DRIVER:
    344  1.26       ad 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    345  1.26       ad 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    346  1.26       ad 		    ipl == IPL_SOFTSERIAL) {
    347  1.22       ad 			type = MUTEX_ADAPTIVE;
    348  1.26       ad 		} else {
    349  1.22       ad 			type = MUTEX_SPIN;
    350  1.22       ad 		}
    351  1.15       ad 		break;
    352  1.15       ad 	default:
    353  1.15       ad 		break;
    354  1.15       ad 	}
    355   1.2       ad 
    356   1.2       ad 	switch (type) {
    357  1.11       ad 	case MUTEX_NODEBUG:
    358  1.23     yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    359  1.19       ad 		    (uintptr_t)__builtin_return_address(0));
    360  1.23     yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    361  1.11       ad 		break;
    362   1.2       ad 	case MUTEX_ADAPTIVE:
    363  1.23     yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    364  1.19       ad 		    (uintptr_t)__builtin_return_address(0));
    365  1.23     yamt 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    366   1.2       ad 		break;
    367   1.2       ad 	case MUTEX_SPIN:
    368  1.23     yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    369  1.19       ad 		    (uintptr_t)__builtin_return_address(0));
    370  1.23     yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    371   1.2       ad 		break;
    372   1.2       ad 	default:
    373   1.2       ad 		panic("mutex_init: impossible type");
    374   1.2       ad 		break;
    375   1.2       ad 	}
    376   1.2       ad }
    377   1.2       ad 
    378   1.2       ad /*
    379   1.2       ad  * mutex_destroy:
    380   1.2       ad  *
    381   1.2       ad  *	Tear down a mutex.
    382   1.2       ad  */
    383   1.2       ad void
    384   1.2       ad mutex_destroy(kmutex_t *mtx)
    385   1.2       ad {
    386   1.2       ad 
    387   1.2       ad 	if (MUTEX_ADAPTIVE_P(mtx)) {
    388   1.2       ad 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    389   1.2       ad 		    !MUTEX_HAS_WAITERS(mtx));
    390   1.2       ad 	} else {
    391  1.16    skrll 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    392   1.2       ad 	}
    393   1.2       ad 
    394  1.23     yamt 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    395   1.2       ad 	MUTEX_DESTROY(mtx);
    396   1.2       ad }
    397   1.2       ad 
    398   1.2       ad /*
    399   1.2       ad  * mutex_onproc:
    400   1.2       ad  *
    401   1.2       ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    402   1.2       ad  *	system.  If the target is waiting on the kernel big lock, then we
    403  1.15       ad  *	must release it.  This is necessary to avoid deadlock.
    404   1.2       ad  *
    405   1.2       ad  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    406   1.2       ad  *	don't have full control over the timing of our execution, and so the
    407   1.2       ad  *	pointer could be completely invalid by the time we dereference it.
    408   1.2       ad  */
    409   1.2       ad #ifdef MULTIPROCESSOR
    410   1.2       ad int
    411   1.2       ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    412   1.2       ad {
    413   1.2       ad 	CPU_INFO_ITERATOR cii;
    414   1.2       ad 	struct cpu_info *ci;
    415   1.2       ad 	struct lwp *l;
    416   1.2       ad 
    417   1.2       ad 	if (!MUTEX_OWNED(owner))
    418   1.2       ad 		return 0;
    419   1.2       ad 	l = (struct lwp *)MUTEX_OWNER(owner);
    420   1.2       ad 
    421  1.15       ad 	/* See if the target is running on a CPU somewhere. */
    422  1.10       ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    423  1.15       ad 		goto run;
    424  1.15       ad 	for (CPU_INFO_FOREACH(cii, ci))
    425  1.15       ad 		if (ci->ci_curlwp == l)
    426  1.15       ad 			goto run;
    427   1.2       ad 
    428  1.15       ad 	/* No: it may be safe to block now. */
    429   1.2       ad 	*cip = NULL;
    430   1.2       ad 	return 0;
    431  1.15       ad 
    432  1.15       ad  run:
    433  1.15       ad  	/* Target is running; do we need to block? */
    434  1.15       ad  	*cip = ci;
    435  1.15       ad 	return ci->ci_biglock_wanted != l;
    436   1.2       ad }
    437  1.15       ad #endif	/* MULTIPROCESSOR */
    438   1.2       ad 
    439   1.2       ad /*
    440   1.2       ad  * mutex_vector_enter:
    441   1.2       ad  *
    442   1.2       ad  *	Support routine for mutex_enter() that must handles all cases.  In
    443   1.2       ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    444   1.2       ad  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    445   1.2       ad  *	not available, then it is also aliased directly here.
    446   1.2       ad  */
    447   1.2       ad void
    448   1.2       ad mutex_vector_enter(kmutex_t *mtx)
    449   1.2       ad {
    450   1.2       ad 	uintptr_t owner, curthread;
    451   1.2       ad 	turnstile_t *ts;
    452   1.2       ad #ifdef MULTIPROCESSOR
    453   1.2       ad 	struct cpu_info *ci = NULL;
    454   1.2       ad 	u_int count;
    455   1.2       ad #endif
    456   1.2       ad 	LOCKSTAT_COUNTER(spincnt);
    457   1.2       ad 	LOCKSTAT_COUNTER(slpcnt);
    458   1.2       ad 	LOCKSTAT_TIMER(spintime);
    459   1.2       ad 	LOCKSTAT_TIMER(slptime);
    460   1.2       ad 	LOCKSTAT_FLAG(lsflag);
    461   1.2       ad 
    462   1.2       ad 	/*
    463   1.2       ad 	 * Handle spin mutexes.
    464   1.2       ad 	 */
    465   1.2       ad 	if (MUTEX_SPIN_P(mtx)) {
    466   1.2       ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    467   1.2       ad 		u_int spins = 0;
    468   1.2       ad #endif
    469   1.2       ad 		MUTEX_SPIN_SPLRAISE(mtx);
    470   1.2       ad 		MUTEX_WANTLOCK(mtx);
    471   1.2       ad #ifdef FULL
    472   1.2       ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    473   1.2       ad 			MUTEX_LOCKED(mtx);
    474   1.2       ad 			return;
    475   1.2       ad 		}
    476   1.2       ad #if !defined(MULTIPROCESSOR)
    477   1.2       ad 		MUTEX_ABORT(mtx, "locking against myself");
    478   1.2       ad #else /* !MULTIPROCESSOR */
    479   1.2       ad 
    480   1.2       ad 		LOCKSTAT_ENTER(lsflag);
    481   1.2       ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    482   1.2       ad 		count = SPINLOCK_BACKOFF_MIN;
    483   1.2       ad 
    484   1.2       ad 		/*
    485   1.2       ad 		 * Spin testing the lock word and do exponential backoff
    486   1.2       ad 		 * to reduce cache line ping-ponging between CPUs.
    487   1.2       ad 		 */
    488   1.2       ad 		do {
    489   1.2       ad 			if (panicstr != NULL)
    490   1.2       ad 				break;
    491  1.16    skrll 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    492   1.2       ad 				SPINLOCK_BACKOFF(count);
    493   1.2       ad #ifdef LOCKDEBUG
    494   1.2       ad 				if (SPINLOCK_SPINOUT(spins))
    495   1.2       ad 					MUTEX_ABORT(mtx, "spinout");
    496   1.2       ad #endif	/* LOCKDEBUG */
    497   1.2       ad 			}
    498   1.2       ad 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    499   1.2       ad 
    500   1.2       ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    501   1.2       ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    502   1.2       ad 			LOCKSTAT_EVENT(lsflag, mtx,
    503   1.2       ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    504   1.2       ad 		}
    505   1.2       ad 		LOCKSTAT_EXIT(lsflag);
    506   1.2       ad #endif	/* !MULTIPROCESSOR */
    507   1.2       ad #endif	/* FULL */
    508   1.2       ad 		MUTEX_LOCKED(mtx);
    509   1.2       ad 		return;
    510   1.2       ad 	}
    511   1.2       ad 
    512   1.2       ad 	curthread = (uintptr_t)curlwp;
    513   1.2       ad 
    514   1.2       ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    515   1.2       ad 	MUTEX_ASSERT(mtx, curthread != 0);
    516   1.2       ad 	MUTEX_WANTLOCK(mtx);
    517   1.2       ad 
    518   1.2       ad 	if (panicstr == NULL) {
    519   1.2       ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    520   1.2       ad 	}
    521   1.2       ad 
    522   1.2       ad 	LOCKSTAT_ENTER(lsflag);
    523   1.2       ad 
    524   1.2       ad 	/*
    525   1.2       ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    526   1.2       ad 	 * determine that the owner is not running on a processor,
    527   1.2       ad 	 * then we stop spinning, and sleep instead.
    528   1.2       ad 	 */
    529  1.34       ad 	for (owner = mtx->mtx_owner;;) {
    530   1.2       ad 		if (!MUTEX_OWNED(owner)) {
    531   1.2       ad 			/*
    532   1.2       ad 			 * Mutex owner clear could mean two things:
    533   1.2       ad 			 *
    534   1.2       ad 			 *	* The mutex has been released.
    535   1.2       ad 			 *	* The owner field hasn't been set yet.
    536   1.2       ad 			 *
    537   1.2       ad 			 * Try to acquire it again.  If that fails,
    538   1.2       ad 			 * we'll just loop again.
    539   1.2       ad 			 */
    540   1.2       ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    541   1.2       ad 				break;
    542  1.34       ad 			owner = mtx->mtx_owner;
    543   1.2       ad 			continue;
    544   1.2       ad 		}
    545   1.2       ad 
    546   1.2       ad 		if (panicstr != NULL)
    547   1.2       ad 			return;
    548   1.2       ad 		if (MUTEX_OWNER(owner) == curthread)
    549   1.2       ad 			MUTEX_ABORT(mtx, "locking against myself");
    550   1.2       ad 
    551   1.2       ad #ifdef MULTIPROCESSOR
    552   1.2       ad 		/*
    553   1.2       ad 		 * Check to see if the owner is running on a processor.
    554   1.2       ad 		 * If so, then we should just spin, as the owner will
    555   1.2       ad 		 * likely release the lock very soon.
    556   1.2       ad 		 */
    557   1.2       ad 		if (mutex_onproc(owner, &ci)) {
    558   1.2       ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    559   1.2       ad 			count = SPINLOCK_BACKOFF_MIN;
    560   1.2       ad 			for (;;) {
    561  1.34       ad 				SPINLOCK_BACKOFF(count);
    562   1.2       ad 				owner = mtx->mtx_owner;
    563   1.2       ad 				if (!mutex_onproc(owner, &ci))
    564   1.2       ad 					break;
    565   1.2       ad 			}
    566   1.2       ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    567   1.2       ad 			LOCKSTAT_COUNT(spincnt, 1);
    568   1.2       ad 			if (!MUTEX_OWNED(owner))
    569   1.2       ad 				continue;
    570   1.2       ad 		}
    571   1.2       ad #endif
    572   1.2       ad 
    573   1.2       ad 		ts = turnstile_lookup(mtx);
    574   1.2       ad 
    575   1.2       ad 		/*
    576   1.2       ad 		 * Once we have the turnstile chain interlock, mark the
    577   1.2       ad 		 * mutex has having waiters.  If that fails, spin again:
    578   1.2       ad 		 * chances are that the mutex has been released.
    579   1.2       ad 		 */
    580   1.2       ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    581   1.2       ad 			turnstile_exit(mtx);
    582  1.34       ad 			owner = mtx->mtx_owner;
    583   1.2       ad 			continue;
    584   1.2       ad 		}
    585   1.2       ad 
    586   1.2       ad #ifdef MULTIPROCESSOR
    587   1.2       ad 		/*
    588   1.2       ad 		 * mutex_exit() is permitted to release the mutex without
    589   1.2       ad 		 * any interlocking instructions, and the following can
    590   1.2       ad 		 * occur as a result:
    591   1.2       ad 		 *
    592   1.2       ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    593   1.2       ad 		 * ---------------------------- ----------------------------
    594   1.2       ad 		 *		..		    acquire cache line
    595   1.2       ad 		 *		..                   test for waiters
    596   1.2       ad 		 *	acquire cache line    <-      lose cache line
    597   1.2       ad 		 *	 lock cache line	           ..
    598   1.2       ad 		 *     verify mutex is held                ..
    599   1.2       ad 		 *	    set waiters  	           ..
    600   1.2       ad 		 *	 unlock cache line		   ..
    601   1.2       ad 		 *	  lose cache line     ->    acquire cache line
    602   1.2       ad 		 *		..	          clear lock word, waiters
    603   1.2       ad 		 *	  return success
    604   1.2       ad 		 *
    605   1.2       ad 		 * There is a another race that can occur: a third CPU could
    606   1.2       ad 		 * acquire the mutex as soon as it is released.  Since
    607   1.2       ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    608   1.2       ad 		 * something that we need to worry about too much.  What we
    609   1.2       ad 		 * do need to ensure is that the waiters bit gets set.
    610   1.2       ad 		 *
    611   1.2       ad 		 * To allow the unlocked release, we need to make some
    612   1.2       ad 		 * assumptions here:
    613   1.2       ad 		 *
    614   1.2       ad 		 * o Release is the only non-atomic/unlocked operation
    615   1.2       ad 		 *   that can be performed on the mutex.  (It must still
    616   1.2       ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    617   1.2       ad 		 *   or preempted).
    618   1.2       ad 		 *
    619   1.2       ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    620  1.21    pooka 		 *   be in progress on one CPU in the system - guaranteed
    621   1.2       ad 		 *   by the turnstile chain lock.
    622   1.2       ad 		 *
    623   1.2       ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    624   1.2       ad 		 *   and release can modify a mutex with a non-zero
    625   1.2       ad 		 *   owner field.
    626   1.2       ad 		 *
    627   1.2       ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    628   1.2       ad 		 *   is an unbuffered write that is immediately visible
    629   1.2       ad 		 *   to all other processors in the system.
    630   1.2       ad 		 *
    631   1.2       ad 		 * o If the holding LWP switches away, it posts a store
    632   1.2       ad 		 *   fence before changing curlwp, ensuring that any
    633   1.2       ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    634   1.2       ad 		 *   completes before the modification of curlwp becomes
    635   1.2       ad 		 *   visible to this CPU.
    636   1.2       ad 		 *
    637  1.14     yamt 		 * o mi_switch() posts a store fence before setting curlwp
    638   1.2       ad 		 *   and before resuming execution of an LWP.
    639   1.2       ad 		 *
    640   1.2       ad 		 * o _kernel_lock() posts a store fence before setting
    641   1.2       ad 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    642   1.2       ad 		 *   This ensures that any overwrite of the mutex waiters
    643   1.2       ad 		 *   flag by mutex_exit() completes before the modification
    644   1.2       ad 		 *   of ci_biglock_wanted becomes visible.
    645   1.2       ad 		 *
    646   1.2       ad 		 * We now post a read memory barrier (after setting the
    647   1.2       ad 		 * waiters field) and check the lock holder's status again.
    648   1.2       ad 		 * Some of the possible outcomes (not an exhaustive list):
    649   1.2       ad 		 *
    650   1.2       ad 		 * 1. The onproc check returns true: the holding LWP is
    651   1.2       ad 		 *    running again.  The lock may be released soon and
    652   1.2       ad 		 *    we should spin.  Importantly, we can't trust the
    653   1.2       ad 		 *    value of the waiters flag.
    654   1.2       ad 		 *
    655   1.2       ad 		 * 2. The onproc check returns false: the holding LWP is
    656  1.39     yamt 		 *    not running.  We now have the opportunity to check
    657   1.2       ad 		 *    if mutex_exit() has blatted the modifications made
    658   1.2       ad 		 *    by MUTEX_SET_WAITERS().
    659   1.2       ad 		 *
    660   1.2       ad 		 * 3. The onproc check returns false: the holding LWP may
    661   1.2       ad 		 *    or may not be running.  It has context switched at
    662   1.2       ad 		 *    some point during our check.  Again, we have the
    663   1.2       ad 		 *    chance to see if the waiters bit is still set or
    664   1.2       ad 		 *    has been overwritten.
    665   1.2       ad 		 *
    666   1.2       ad 		 * 4. The onproc check returns false: the holding LWP is
    667   1.2       ad 		 *    running on a CPU, but wants the big lock.  It's OK
    668   1.2       ad 		 *    to check the waiters field in this case.
    669   1.2       ad 		 *
    670   1.2       ad 		 * 5. The has-waiters check fails: the mutex has been
    671   1.2       ad 		 *    released, the waiters flag cleared and another LWP
    672   1.2       ad 		 *    now owns the mutex.
    673   1.2       ad 		 *
    674   1.2       ad 		 * 6. The has-waiters check fails: the mutex has been
    675   1.2       ad 		 *    released.
    676   1.2       ad 		 *
    677   1.2       ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    678   1.2       ad 		 * as we might never be awoken.
    679   1.2       ad 		 */
    680  1.24       ad 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    681  1.24       ad 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    682   1.2       ad 			turnstile_exit(mtx);
    683  1.34       ad 			owner = mtx->mtx_owner;
    684   1.2       ad 			continue;
    685   1.2       ad 		}
    686   1.2       ad #endif	/* MULTIPROCESSOR */
    687   1.2       ad 
    688   1.2       ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    689   1.2       ad 
    690   1.5     yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    691   1.2       ad 
    692   1.2       ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    693   1.2       ad 		LOCKSTAT_COUNT(slpcnt, 1);
    694  1.34       ad 
    695  1.34       ad 		owner = mtx->mtx_owner;
    696   1.2       ad 	}
    697   1.2       ad 
    698   1.2       ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    699   1.2       ad 	    slpcnt, slptime);
    700   1.2       ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    701   1.2       ad 	    spincnt, spintime);
    702   1.2       ad 	LOCKSTAT_EXIT(lsflag);
    703   1.2       ad 
    704   1.2       ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    705   1.2       ad 	MUTEX_LOCKED(mtx);
    706   1.2       ad }
    707   1.2       ad 
    708   1.2       ad /*
    709   1.2       ad  * mutex_vector_exit:
    710   1.2       ad  *
    711   1.2       ad  *	Support routine for mutex_exit() that handles all cases.
    712   1.2       ad  */
    713   1.2       ad void
    714   1.2       ad mutex_vector_exit(kmutex_t *mtx)
    715   1.2       ad {
    716   1.2       ad 	turnstile_t *ts;
    717   1.2       ad 	uintptr_t curthread;
    718   1.2       ad 
    719   1.2       ad 	if (MUTEX_SPIN_P(mtx)) {
    720   1.2       ad #ifdef FULL
    721  1.33       ad 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    722  1.33       ad 			if (panicstr != NULL)
    723  1.33       ad 				return;
    724   1.2       ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    725  1.33       ad 		}
    726   1.2       ad 		MUTEX_UNLOCKED(mtx);
    727   1.2       ad 		__cpu_simple_unlock(&mtx->mtx_lock);
    728   1.2       ad #endif
    729   1.2       ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    730   1.2       ad 		return;
    731   1.2       ad 	}
    732   1.2       ad 
    733  1.11       ad 	if (__predict_false((uintptr_t)panicstr | cold)) {
    734   1.2       ad 		MUTEX_UNLOCKED(mtx);
    735   1.2       ad 		MUTEX_RELEASE(mtx);
    736   1.2       ad 		return;
    737   1.2       ad 	}
    738   1.2       ad 
    739   1.2       ad 	curthread = (uintptr_t)curlwp;
    740   1.2       ad 	MUTEX_DASSERT(mtx, curthread != 0);
    741   1.2       ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    742   1.2       ad 	MUTEX_UNLOCKED(mtx);
    743   1.2       ad 
    744  1.15       ad #ifdef LOCKDEBUG
    745  1.15       ad 	/*
    746  1.15       ad 	 * Avoid having to take the turnstile chain lock every time
    747  1.15       ad 	 * around.  Raise the priority level to splhigh() in order
    748  1.15       ad 	 * to disable preemption and so make the following atomic.
    749  1.15       ad 	 */
    750  1.15       ad 	{
    751  1.15       ad 		int s = splhigh();
    752  1.15       ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    753  1.15       ad 			MUTEX_RELEASE(mtx);
    754  1.15       ad 			splx(s);
    755  1.15       ad 			return;
    756  1.15       ad 		}
    757  1.15       ad 		splx(s);
    758  1.15       ad 	}
    759  1.15       ad #endif
    760  1.15       ad 
    761   1.2       ad 	/*
    762   1.2       ad 	 * Get this lock's turnstile.  This gets the interlock on
    763   1.2       ad 	 * the sleep queue.  Once we have that, we can clear the
    764   1.2       ad 	 * lock.  If there was no turnstile for the lock, there
    765   1.2       ad 	 * were no waiters remaining.
    766   1.2       ad 	 */
    767   1.2       ad 	ts = turnstile_lookup(mtx);
    768   1.2       ad 
    769   1.2       ad 	if (ts == NULL) {
    770   1.2       ad 		MUTEX_RELEASE(mtx);
    771   1.2       ad 		turnstile_exit(mtx);
    772   1.2       ad 	} else {
    773   1.2       ad 		MUTEX_RELEASE(mtx);
    774   1.2       ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    775   1.2       ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    776   1.2       ad 	}
    777   1.2       ad }
    778   1.2       ad 
    779   1.4       ad #ifndef __HAVE_SIMPLE_MUTEXES
    780   1.4       ad /*
    781   1.4       ad  * mutex_wakeup:
    782   1.4       ad  *
    783   1.4       ad  *	Support routine for mutex_exit() that wakes up all waiters.
    784   1.4       ad  *	We assume that the mutex has been released, but it need not
    785   1.4       ad  *	be.
    786   1.4       ad  */
    787   1.4       ad void
    788   1.4       ad mutex_wakeup(kmutex_t *mtx)
    789   1.4       ad {
    790   1.4       ad 	turnstile_t *ts;
    791   1.4       ad 
    792   1.4       ad 	ts = turnstile_lookup(mtx);
    793   1.4       ad 	if (ts == NULL) {
    794   1.4       ad 		turnstile_exit(mtx);
    795   1.4       ad 		return;
    796   1.4       ad 	}
    797   1.4       ad 	MUTEX_CLEAR_WAITERS(mtx);
    798   1.4       ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    799   1.4       ad }
    800   1.4       ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    801   1.4       ad 
    802   1.2       ad /*
    803   1.2       ad  * mutex_owned:
    804   1.2       ad  *
    805   1.3       ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    806   1.3       ad  *	holds the mutex.
    807   1.2       ad  */
    808   1.2       ad int
    809   1.2       ad mutex_owned(kmutex_t *mtx)
    810   1.2       ad {
    811   1.2       ad 
    812  1.35       ad 	if (mtx == NULL)
    813  1.35       ad 		return 0;
    814   1.2       ad 	if (MUTEX_ADAPTIVE_P(mtx))
    815   1.2       ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    816   1.2       ad #ifdef FULL
    817  1.16    skrll 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    818   1.2       ad #else
    819   1.2       ad 	return 1;
    820   1.2       ad #endif
    821   1.2       ad }
    822   1.2       ad 
    823   1.2       ad /*
    824   1.2       ad  * mutex_owner:
    825   1.2       ad  *
    826   1.6       ad  *	Return the current owner of an adaptive mutex.  Used for
    827   1.6       ad  *	priority inheritance.
    828   1.2       ad  */
    829  1.27       ad lwp_t *
    830  1.27       ad mutex_owner(kmutex_t *mtx)
    831   1.2       ad {
    832   1.2       ad 
    833   1.2       ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    834   1.2       ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    835   1.2       ad }
    836   1.2       ad 
    837   1.2       ad /*
    838   1.2       ad  * mutex_tryenter:
    839   1.2       ad  *
    840   1.2       ad  *	Try to acquire the mutex; return non-zero if we did.
    841   1.2       ad  */
    842   1.2       ad int
    843   1.2       ad mutex_tryenter(kmutex_t *mtx)
    844   1.2       ad {
    845   1.2       ad 	uintptr_t curthread;
    846   1.2       ad 
    847   1.2       ad 	/*
    848   1.2       ad 	 * Handle spin mutexes.
    849   1.2       ad 	 */
    850   1.2       ad 	if (MUTEX_SPIN_P(mtx)) {
    851   1.2       ad 		MUTEX_SPIN_SPLRAISE(mtx);
    852   1.2       ad #ifdef FULL
    853   1.2       ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    854   1.4       ad 			MUTEX_WANTLOCK(mtx);
    855   1.2       ad 			MUTEX_LOCKED(mtx);
    856   1.2       ad 			return 1;
    857   1.2       ad 		}
    858   1.2       ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    859   1.2       ad #else
    860   1.4       ad 		MUTEX_WANTLOCK(mtx);
    861   1.2       ad 		MUTEX_LOCKED(mtx);
    862   1.2       ad 		return 1;
    863   1.2       ad #endif
    864   1.2       ad 	} else {
    865   1.2       ad 		curthread = (uintptr_t)curlwp;
    866   1.2       ad 		MUTEX_ASSERT(mtx, curthread != 0);
    867   1.2       ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    868   1.4       ad 			MUTEX_WANTLOCK(mtx);
    869   1.2       ad 			MUTEX_LOCKED(mtx);
    870   1.2       ad 			MUTEX_DASSERT(mtx,
    871   1.2       ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    872   1.2       ad 			return 1;
    873   1.2       ad 		}
    874   1.2       ad 	}
    875   1.2       ad 
    876   1.2       ad 	return 0;
    877   1.2       ad }
    878   1.2       ad 
    879   1.2       ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    880   1.2       ad /*
    881   1.2       ad  * mutex_spin_retry:
    882   1.2       ad  *
    883   1.2       ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    884   1.2       ad  *	has already raised the SPL, and adjusted counters.
    885   1.2       ad  */
    886   1.2       ad void
    887   1.2       ad mutex_spin_retry(kmutex_t *mtx)
    888   1.2       ad {
    889   1.2       ad #ifdef MULTIPROCESSOR
    890   1.2       ad 	u_int count;
    891   1.2       ad 	LOCKSTAT_TIMER(spintime);
    892   1.2       ad 	LOCKSTAT_FLAG(lsflag);
    893   1.2       ad #ifdef LOCKDEBUG
    894   1.2       ad 	u_int spins = 0;
    895   1.2       ad #endif	/* LOCKDEBUG */
    896   1.2       ad 
    897   1.2       ad 	MUTEX_WANTLOCK(mtx);
    898   1.2       ad 
    899   1.2       ad 	LOCKSTAT_ENTER(lsflag);
    900   1.2       ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    901   1.2       ad 	count = SPINLOCK_BACKOFF_MIN;
    902   1.2       ad 
    903   1.2       ad 	/*
    904   1.2       ad 	 * Spin testing the lock word and do exponential backoff
    905   1.2       ad 	 * to reduce cache line ping-ponging between CPUs.
    906   1.2       ad 	 */
    907   1.2       ad 	do {
    908   1.2       ad 		if (panicstr != NULL)
    909   1.2       ad 			break;
    910  1.16    skrll 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    911   1.2       ad 			SPINLOCK_BACKOFF(count);
    912   1.2       ad #ifdef LOCKDEBUG
    913   1.2       ad 			if (SPINLOCK_SPINOUT(spins))
    914   1.2       ad 				MUTEX_ABORT(mtx, "spinout");
    915   1.2       ad #endif	/* LOCKDEBUG */
    916   1.2       ad 		}
    917   1.2       ad 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    918   1.2       ad 
    919   1.2       ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    920   1.2       ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    921   1.2       ad 	LOCKSTAT_EXIT(lsflag);
    922   1.2       ad 
    923   1.2       ad 	MUTEX_LOCKED(mtx);
    924   1.2       ad #else	/* MULTIPROCESSOR */
    925   1.2       ad 	MUTEX_ABORT(mtx, "locking against myself");
    926   1.2       ad #endif	/* MULTIPROCESSOR */
    927   1.2       ad }
    928   1.2       ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    929  1.31       ad 
    930  1.31       ad /*
    931  1.31       ad  * mutex_obj_init:
    932  1.31       ad  *
    933  1.31       ad  *	Initialize the mutex object store.
    934  1.31       ad  */
    935  1.31       ad void
    936  1.31       ad mutex_obj_init(void)
    937  1.31       ad {
    938  1.31       ad 
    939  1.31       ad 	mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
    940  1.31       ad 	    coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
    941  1.31       ad 	    NULL, NULL);
    942  1.31       ad }
    943  1.31       ad 
    944  1.31       ad /*
    945  1.31       ad  * mutex_obj_ctor:
    946  1.31       ad  *
    947  1.31       ad  *	Initialize a new lock for the cache.
    948  1.31       ad  */
    949  1.31       ad static int
    950  1.31       ad mutex_obj_ctor(void *arg, void *obj, int flags)
    951  1.31       ad {
    952  1.31       ad 	struct kmutexobj * mo = obj;
    953  1.31       ad 
    954  1.31       ad 	mo->mo_magic = MUTEX_OBJ_MAGIC;
    955  1.31       ad 
    956  1.31       ad 	return 0;
    957  1.31       ad }
    958  1.31       ad 
    959  1.31       ad /*
    960  1.31       ad  * mutex_obj_alloc:
    961  1.31       ad  *
    962  1.31       ad  *	Allocate a single lock object.
    963  1.31       ad  */
    964  1.31       ad kmutex_t *
    965  1.31       ad mutex_obj_alloc(kmutex_type_t type, int ipl)
    966  1.31       ad {
    967  1.31       ad 	struct kmutexobj *mo;
    968  1.31       ad 
    969  1.31       ad 	mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
    970  1.31       ad 	mutex_init(&mo->mo_lock, type, ipl);
    971  1.31       ad 	mo->mo_refcnt = 1;
    972  1.31       ad 
    973  1.31       ad 	return (kmutex_t *)mo;
    974  1.31       ad }
    975  1.31       ad 
    976  1.31       ad /*
    977  1.31       ad  * mutex_obj_hold:
    978  1.31       ad  *
    979  1.31       ad  *	Add a single reference to a lock object.  A reference to the object
    980  1.31       ad  *	must already be held, and must be held across this call.
    981  1.31       ad  */
    982  1.31       ad void
    983  1.31       ad mutex_obj_hold(kmutex_t *lock)
    984  1.31       ad {
    985  1.31       ad 	struct kmutexobj *mo = (struct kmutexobj *)lock;
    986  1.31       ad 
    987  1.31       ad 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
    988  1.31       ad 	KASSERT(mo->mo_refcnt > 0);
    989  1.31       ad 
    990  1.31       ad 	atomic_inc_uint(&mo->mo_refcnt);
    991  1.31       ad }
    992  1.31       ad 
    993  1.31       ad /*
    994  1.31       ad  * mutex_obj_free:
    995  1.31       ad  *
    996  1.31       ad  *	Drop a reference from a lock object.  If the last reference is being
    997  1.31       ad  *	dropped, free the object and return true.  Otherwise, return false.
    998  1.31       ad  */
    999  1.31       ad bool
   1000  1.31       ad mutex_obj_free(kmutex_t *lock)
   1001  1.31       ad {
   1002  1.31       ad 	struct kmutexobj *mo = (struct kmutexobj *)lock;
   1003  1.31       ad 
   1004  1.31       ad 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
   1005  1.31       ad 	KASSERT(mo->mo_refcnt > 0);
   1006  1.31       ad 
   1007  1.31       ad 	if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
   1008  1.31       ad 		return false;
   1009  1.31       ad 	}
   1010  1.31       ad 	mutex_destroy(&mo->mo_lock);
   1011  1.31       ad 	pool_cache_put(mutex_obj_cache, mo);
   1012  1.31       ad 	return true;
   1013  1.31       ad }
   1014