Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.45
      1  1.45     rmind /*	$NetBSD: kern_mutex.c,v 1.45 2009/01/25 04:45:14 rmind Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.30        ad  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Kernel mutex implementation, modeled after those found in Solaris,
     34   1.2        ad  * a description of which can be found in:
     35   1.2        ad  *
     36   1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37   1.2        ad  *	    Richard McDougall.
     38   1.2        ad  */
     39   1.2        ad 
     40   1.2        ad #define	__MUTEX_PRIVATE
     41   1.2        ad 
     42   1.2        ad #include <sys/cdefs.h>
     43  1.45     rmind __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.45 2009/01/25 04:45:14 rmind Exp $");
     44   1.2        ad 
     45   1.2        ad #include <sys/param.h>
     46   1.2        ad #include <sys/proc.h>
     47   1.2        ad #include <sys/mutex.h>
     48   1.2        ad #include <sys/sched.h>
     49   1.2        ad #include <sys/sleepq.h>
     50   1.2        ad #include <sys/systm.h>
     51   1.2        ad #include <sys/lockdebug.h>
     52   1.2        ad #include <sys/kernel.h>
     53  1.24        ad #include <sys/atomic.h>
     54  1.24        ad #include <sys/intr.h>
     55  1.29   xtraeme #include <sys/lock.h>
     56  1.31        ad #include <sys/pool.h>
     57   1.2        ad 
     58   1.2        ad #include <dev/lockstat.h>
     59   1.2        ad 
     60  1.28        ad #include <machine/lock.h>
     61  1.28        ad 
     62  1.44  wrstuden #include "opt_sa.h"
     63  1.44  wrstuden 
     64   1.2        ad /*
     65   1.2        ad  * When not running a debug kernel, spin mutexes are not much
     66   1.2        ad  * more than an splraiseipl() and splx() pair.
     67   1.2        ad  */
     68   1.2        ad 
     69   1.2        ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     70   1.2        ad #define	FULL
     71   1.2        ad #endif
     72   1.2        ad 
     73   1.2        ad /*
     74   1.2        ad  * Debugging support.
     75   1.2        ad  */
     76   1.2        ad 
     77   1.2        ad #define	MUTEX_WANTLOCK(mtx)					\
     78  1.23      yamt     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     79  1.40        ad         (uintptr_t)__builtin_return_address(0), false, false)
     80   1.2        ad #define	MUTEX_LOCKED(mtx)					\
     81  1.42        ad     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     82   1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     83   1.2        ad #define	MUTEX_UNLOCKED(mtx)					\
     84  1.23      yamt     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     85   1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     86   1.2        ad #define	MUTEX_ABORT(mtx, msg)					\
     87  1.17        ad     mutex_abort(mtx, __func__, msg)
     88   1.2        ad 
     89   1.2        ad #if defined(LOCKDEBUG)
     90   1.2        ad 
     91   1.2        ad #define	MUTEX_DASSERT(mtx, cond)				\
     92   1.2        ad do {								\
     93   1.2        ad 	if (!(cond))						\
     94   1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     95   1.2        ad } while (/* CONSTCOND */ 0);
     96   1.2        ad 
     97   1.2        ad #else	/* LOCKDEBUG */
     98   1.2        ad 
     99   1.2        ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    100   1.2        ad 
    101   1.2        ad #endif /* LOCKDEBUG */
    102   1.2        ad 
    103   1.2        ad #if defined(DIAGNOSTIC)
    104   1.2        ad 
    105   1.2        ad #define	MUTEX_ASSERT(mtx, cond)					\
    106   1.2        ad do {								\
    107   1.2        ad 	if (!(cond))						\
    108   1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    109   1.2        ad } while (/* CONSTCOND */ 0)
    110   1.2        ad 
    111   1.2        ad #else	/* DIAGNOSTIC */
    112   1.2        ad 
    113   1.2        ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    114   1.2        ad 
    115   1.2        ad #endif	/* DIAGNOSTIC */
    116   1.2        ad 
    117   1.2        ad /*
    118   1.2        ad  * Spin mutex SPL save / restore.
    119   1.2        ad  */
    120  1.12      matt #ifndef MUTEX_COUNT_BIAS
    121  1.12      matt #define	MUTEX_COUNT_BIAS	0
    122  1.12      matt #endif
    123   1.2        ad 
    124   1.2        ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    125   1.2        ad do {									\
    126  1.36        ad 	struct cpu_info *x__ci;						\
    127   1.2        ad 	int x__cnt, s;							\
    128  1.36        ad 	s = splraiseipl(mtx->mtx_ipl);					\
    129  1.36        ad 	x__ci = curcpu();						\
    130   1.2        ad 	x__cnt = x__ci->ci_mtx_count--;					\
    131  1.37        ad 	__insn_barrier();						\
    132  1.12      matt 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    133   1.2        ad 		x__ci->ci_mtx_oldspl = (s);				\
    134   1.2        ad } while (/* CONSTCOND */ 0)
    135   1.2        ad 
    136   1.2        ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    137   1.2        ad do {									\
    138   1.2        ad 	struct cpu_info *x__ci = curcpu();				\
    139   1.2        ad 	int s = x__ci->ci_mtx_oldspl;					\
    140   1.2        ad 	__insn_barrier();						\
    141  1.12      matt 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    142   1.2        ad 		splx(s);						\
    143   1.2        ad } while (/* CONSTCOND */ 0)
    144   1.2        ad 
    145   1.2        ad /*
    146   1.2        ad  * For architectures that provide 'simple' mutexes: they provide a
    147   1.2        ad  * CAS function that is either MP-safe, or does not need to be MP
    148   1.2        ad  * safe.  Adaptive mutexes on these architectures do not require an
    149   1.2        ad  * additional interlock.
    150   1.2        ad  */
    151   1.2        ad 
    152   1.2        ad #ifdef __HAVE_SIMPLE_MUTEXES
    153   1.2        ad 
    154   1.2        ad #define	MUTEX_OWNER(owner)						\
    155   1.2        ad 	(owner & MUTEX_THREAD)
    156   1.2        ad #define	MUTEX_HAS_WAITERS(mtx)						\
    157   1.2        ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    158   1.2        ad 
    159  1.23      yamt #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    160   1.2        ad do {									\
    161  1.23      yamt 	if (dodebug)							\
    162  1.23      yamt 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    163   1.2        ad } while (/* CONSTCOND */ 0);
    164   1.2        ad 
    165  1.23      yamt #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    166   1.2        ad do {									\
    167   1.2        ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    168  1.23      yamt 	if (dodebug)							\
    169  1.23      yamt 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    170   1.2        ad 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    171   1.2        ad 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    172   1.2        ad } while (/* CONSTCOND */ 0)
    173   1.2        ad 
    174   1.2        ad #define	MUTEX_DESTROY(mtx)						\
    175   1.2        ad do {									\
    176   1.2        ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    177   1.2        ad } while (/* CONSTCOND */ 0);
    178   1.2        ad 
    179   1.2        ad #define	MUTEX_SPIN_P(mtx)		\
    180   1.2        ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    181   1.2        ad #define	MUTEX_ADAPTIVE_P(mtx)		\
    182   1.2        ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    183   1.2        ad 
    184  1.23      yamt #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    185  1.23      yamt #if defined(LOCKDEBUG)
    186  1.23      yamt #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    187  1.23      yamt #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    188  1.23      yamt #else /* defined(LOCKDEBUG) */
    189  1.23      yamt #define	MUTEX_OWNED(owner)		((owner) != 0)
    190  1.23      yamt #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    191  1.23      yamt #endif /* defined(LOCKDEBUG) */
    192   1.2        ad 
    193   1.2        ad static inline int
    194   1.2        ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    195   1.2        ad {
    196   1.2        ad 	int rv;
    197  1.23      yamt 	uintptr_t old = 0;
    198  1.23      yamt 	uintptr_t new = curthread;
    199  1.23      yamt 
    200  1.23      yamt 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    201  1.23      yamt 	MUTEX_INHERITDEBUG(new, old);
    202  1.23      yamt 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    203   1.7     itohy 	MUTEX_RECEIVE(mtx);
    204   1.2        ad 	return rv;
    205   1.2        ad }
    206   1.2        ad 
    207   1.2        ad static inline int
    208   1.2        ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    209   1.2        ad {
    210   1.2        ad 	int rv;
    211   1.2        ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    212   1.7     itohy 	MUTEX_RECEIVE(mtx);
    213   1.2        ad 	return rv;
    214   1.2        ad }
    215   1.2        ad 
    216   1.2        ad static inline void
    217   1.2        ad MUTEX_RELEASE(kmutex_t *mtx)
    218   1.2        ad {
    219  1.23      yamt 	uintptr_t new;
    220  1.23      yamt 
    221   1.7     itohy 	MUTEX_GIVE(mtx);
    222  1.23      yamt 	new = 0;
    223  1.23      yamt 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    224  1.23      yamt 	mtx->mtx_owner = new;
    225   1.2        ad }
    226   1.4        ad 
    227   1.4        ad static inline void
    228   1.4        ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    229   1.4        ad {
    230   1.4        ad 	/* nothing */
    231   1.4        ad }
    232   1.2        ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    233   1.2        ad 
    234   1.2        ad /*
    235   1.2        ad  * Patch in stubs via strong alias where they are not available.
    236   1.2        ad  */
    237   1.2        ad 
    238   1.2        ad #if defined(LOCKDEBUG)
    239   1.2        ad #undef	__HAVE_MUTEX_STUBS
    240   1.2        ad #undef	__HAVE_SPIN_MUTEX_STUBS
    241   1.2        ad #endif
    242   1.2        ad 
    243   1.2        ad #ifndef __HAVE_MUTEX_STUBS
    244   1.8     itohy __strong_alias(mutex_enter,mutex_vector_enter);
    245   1.8     itohy __strong_alias(mutex_exit,mutex_vector_exit);
    246   1.2        ad #endif
    247   1.2        ad 
    248   1.2        ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    249   1.8     itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    250   1.8     itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    251   1.2        ad #endif
    252   1.2        ad 
    253   1.2        ad void	mutex_abort(kmutex_t *, const char *, const char *);
    254   1.2        ad void	mutex_dump(volatile void *);
    255   1.2        ad int	mutex_onproc(uintptr_t, struct cpu_info **);
    256   1.2        ad 
    257   1.2        ad lockops_t mutex_spin_lockops = {
    258   1.2        ad 	"Mutex",
    259  1.42        ad 	LOCKOPS_SPIN,
    260   1.2        ad 	mutex_dump
    261   1.2        ad };
    262   1.2        ad 
    263   1.2        ad lockops_t mutex_adaptive_lockops = {
    264   1.2        ad 	"Mutex",
    265  1.42        ad 	LOCKOPS_SLEEP,
    266   1.2        ad 	mutex_dump
    267   1.2        ad };
    268   1.2        ad 
    269   1.5      yamt syncobj_t mutex_syncobj = {
    270   1.5      yamt 	SOBJ_SLEEPQ_SORTED,
    271   1.5      yamt 	turnstile_unsleep,
    272   1.5      yamt 	turnstile_changepri,
    273   1.5      yamt 	sleepq_lendpri,
    274  1.27        ad 	(void *)mutex_owner,
    275   1.5      yamt };
    276   1.5      yamt 
    277  1.31        ad /* Mutex cache */
    278  1.31        ad #define	MUTEX_OBJ_MAGIC	0x5aa3c85d
    279  1.31        ad struct kmutexobj {
    280  1.31        ad 	kmutex_t	mo_lock;
    281  1.31        ad 	u_int		mo_magic;
    282  1.31        ad 	u_int		mo_refcnt;
    283  1.31        ad };
    284  1.31        ad 
    285  1.31        ad static int	mutex_obj_ctor(void *, void *, int);
    286  1.31        ad 
    287  1.31        ad static pool_cache_t	mutex_obj_cache;
    288  1.31        ad 
    289   1.2        ad /*
    290   1.2        ad  * mutex_dump:
    291   1.2        ad  *
    292   1.2        ad  *	Dump the contents of a mutex structure.
    293   1.2        ad  */
    294   1.2        ad void
    295   1.2        ad mutex_dump(volatile void *cookie)
    296   1.2        ad {
    297   1.2        ad 	volatile kmutex_t *mtx = cookie;
    298   1.2        ad 
    299   1.2        ad 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    300   1.2        ad 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    301   1.2        ad 	    MUTEX_SPIN_P(mtx));
    302   1.2        ad }
    303   1.2        ad 
    304   1.2        ad /*
    305   1.2        ad  * mutex_abort:
    306   1.2        ad  *
    307   1.3        ad  *	Dump information about an error and panic the system.  This
    308   1.3        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    309   1.3        ad  *	we ask the compiler to not inline it.
    310   1.2        ad  */
    311  1.43        ad void __noinline
    312   1.2        ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    313   1.2        ad {
    314   1.2        ad 
    315  1.23      yamt 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    316   1.3        ad 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    317   1.2        ad }
    318   1.2        ad 
    319   1.2        ad /*
    320   1.2        ad  * mutex_init:
    321   1.2        ad  *
    322   1.2        ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    323   1.2        ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    324   1.2        ad  *	CPU time.  We can't easily provide a type of mutex that always
    325   1.2        ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    326   1.2        ad  *	mutexes unlocked.
    327   1.2        ad  */
    328   1.2        ad void
    329   1.2        ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    330   1.2        ad {
    331  1.23      yamt 	bool dodebug;
    332   1.2        ad 
    333   1.2        ad 	memset(mtx, 0, sizeof(*mtx));
    334   1.2        ad 
    335  1.15        ad 	switch (type) {
    336  1.15        ad 	case MUTEX_ADAPTIVE:
    337  1.15        ad 		KASSERT(ipl == IPL_NONE);
    338  1.15        ad 		break;
    339  1.22        ad 	case MUTEX_DEFAULT:
    340  1.15        ad 	case MUTEX_DRIVER:
    341  1.26        ad 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    342  1.26        ad 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    343  1.26        ad 		    ipl == IPL_SOFTSERIAL) {
    344  1.22        ad 			type = MUTEX_ADAPTIVE;
    345  1.26        ad 		} else {
    346  1.22        ad 			type = MUTEX_SPIN;
    347  1.22        ad 		}
    348  1.15        ad 		break;
    349  1.15        ad 	default:
    350  1.15        ad 		break;
    351  1.15        ad 	}
    352   1.2        ad 
    353   1.2        ad 	switch (type) {
    354  1.11        ad 	case MUTEX_NODEBUG:
    355  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    356  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    357  1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    358  1.11        ad 		break;
    359   1.2        ad 	case MUTEX_ADAPTIVE:
    360  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    361  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    362  1.23      yamt 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    363   1.2        ad 		break;
    364   1.2        ad 	case MUTEX_SPIN:
    365  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    366  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    367  1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    368   1.2        ad 		break;
    369   1.2        ad 	default:
    370   1.2        ad 		panic("mutex_init: impossible type");
    371   1.2        ad 		break;
    372   1.2        ad 	}
    373   1.2        ad }
    374   1.2        ad 
    375   1.2        ad /*
    376   1.2        ad  * mutex_destroy:
    377   1.2        ad  *
    378   1.2        ad  *	Tear down a mutex.
    379   1.2        ad  */
    380   1.2        ad void
    381   1.2        ad mutex_destroy(kmutex_t *mtx)
    382   1.2        ad {
    383   1.2        ad 
    384   1.2        ad 	if (MUTEX_ADAPTIVE_P(mtx)) {
    385   1.2        ad 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    386   1.2        ad 		    !MUTEX_HAS_WAITERS(mtx));
    387   1.2        ad 	} else {
    388  1.16     skrll 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    389   1.2        ad 	}
    390   1.2        ad 
    391  1.23      yamt 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    392   1.2        ad 	MUTEX_DESTROY(mtx);
    393   1.2        ad }
    394   1.2        ad 
    395   1.2        ad /*
    396   1.2        ad  * mutex_onproc:
    397   1.2        ad  *
    398   1.2        ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    399   1.2        ad  *	system.  If the target is waiting on the kernel big lock, then we
    400  1.15        ad  *	must release it.  This is necessary to avoid deadlock.
    401   1.2        ad  *
    402   1.2        ad  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    403   1.2        ad  *	don't have full control over the timing of our execution, and so the
    404   1.2        ad  *	pointer could be completely invalid by the time we dereference it.
    405   1.2        ad  */
    406   1.2        ad #ifdef MULTIPROCESSOR
    407   1.2        ad int
    408   1.2        ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    409   1.2        ad {
    410   1.2        ad 	CPU_INFO_ITERATOR cii;
    411   1.2        ad 	struct cpu_info *ci;
    412   1.2        ad 	struct lwp *l;
    413   1.2        ad 
    414   1.2        ad 	if (!MUTEX_OWNED(owner))
    415   1.2        ad 		return 0;
    416   1.2        ad 	l = (struct lwp *)MUTEX_OWNER(owner);
    417   1.2        ad 
    418  1.15        ad 	/* See if the target is running on a CPU somewhere. */
    419  1.10        ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    420  1.15        ad 		goto run;
    421  1.15        ad 	for (CPU_INFO_FOREACH(cii, ci))
    422  1.15        ad 		if (ci->ci_curlwp == l)
    423  1.15        ad 			goto run;
    424   1.2        ad 
    425  1.15        ad 	/* No: it may be safe to block now. */
    426   1.2        ad 	*cip = NULL;
    427   1.2        ad 	return 0;
    428  1.15        ad 
    429  1.15        ad  run:
    430  1.15        ad  	/* Target is running; do we need to block? */
    431  1.15        ad  	*cip = ci;
    432  1.15        ad 	return ci->ci_biglock_wanted != l;
    433   1.2        ad }
    434  1.15        ad #endif	/* MULTIPROCESSOR */
    435   1.2        ad 
    436   1.2        ad /*
    437   1.2        ad  * mutex_vector_enter:
    438   1.2        ad  *
    439  1.45     rmind  *	Support routine for mutex_enter() that must handle all cases.  In
    440   1.2        ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    441   1.2        ad  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    442   1.2        ad  *	not available, then it is also aliased directly here.
    443   1.2        ad  */
    444   1.2        ad void
    445   1.2        ad mutex_vector_enter(kmutex_t *mtx)
    446   1.2        ad {
    447   1.2        ad 	uintptr_t owner, curthread;
    448   1.2        ad 	turnstile_t *ts;
    449   1.2        ad #ifdef MULTIPROCESSOR
    450   1.2        ad 	struct cpu_info *ci = NULL;
    451   1.2        ad 	u_int count;
    452   1.2        ad #endif
    453  1.44  wrstuden #ifdef KERN_SA
    454  1.44  wrstuden 	int f;
    455  1.44  wrstuden #endif
    456   1.2        ad 	LOCKSTAT_COUNTER(spincnt);
    457   1.2        ad 	LOCKSTAT_COUNTER(slpcnt);
    458   1.2        ad 	LOCKSTAT_TIMER(spintime);
    459   1.2        ad 	LOCKSTAT_TIMER(slptime);
    460   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    461   1.2        ad 
    462   1.2        ad 	/*
    463   1.2        ad 	 * Handle spin mutexes.
    464   1.2        ad 	 */
    465   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    466   1.2        ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    467   1.2        ad 		u_int spins = 0;
    468   1.2        ad #endif
    469   1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    470   1.2        ad 		MUTEX_WANTLOCK(mtx);
    471   1.2        ad #ifdef FULL
    472   1.2        ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    473   1.2        ad 			MUTEX_LOCKED(mtx);
    474   1.2        ad 			return;
    475   1.2        ad 		}
    476   1.2        ad #if !defined(MULTIPROCESSOR)
    477   1.2        ad 		MUTEX_ABORT(mtx, "locking against myself");
    478   1.2        ad #else /* !MULTIPROCESSOR */
    479   1.2        ad 
    480   1.2        ad 		LOCKSTAT_ENTER(lsflag);
    481   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    482   1.2        ad 		count = SPINLOCK_BACKOFF_MIN;
    483   1.2        ad 
    484   1.2        ad 		/*
    485   1.2        ad 		 * Spin testing the lock word and do exponential backoff
    486   1.2        ad 		 * to reduce cache line ping-ponging between CPUs.
    487   1.2        ad 		 */
    488   1.2        ad 		do {
    489   1.2        ad 			if (panicstr != NULL)
    490   1.2        ad 				break;
    491  1.16     skrll 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    492   1.2        ad 				SPINLOCK_BACKOFF(count);
    493   1.2        ad #ifdef LOCKDEBUG
    494   1.2        ad 				if (SPINLOCK_SPINOUT(spins))
    495   1.2        ad 					MUTEX_ABORT(mtx, "spinout");
    496   1.2        ad #endif	/* LOCKDEBUG */
    497   1.2        ad 			}
    498   1.2        ad 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    499   1.2        ad 
    500   1.2        ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    501   1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    502   1.2        ad 			LOCKSTAT_EVENT(lsflag, mtx,
    503   1.2        ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    504   1.2        ad 		}
    505   1.2        ad 		LOCKSTAT_EXIT(lsflag);
    506   1.2        ad #endif	/* !MULTIPROCESSOR */
    507   1.2        ad #endif	/* FULL */
    508   1.2        ad 		MUTEX_LOCKED(mtx);
    509   1.2        ad 		return;
    510   1.2        ad 	}
    511   1.2        ad 
    512   1.2        ad 	curthread = (uintptr_t)curlwp;
    513   1.2        ad 
    514   1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    515   1.2        ad 	MUTEX_ASSERT(mtx, curthread != 0);
    516   1.2        ad 	MUTEX_WANTLOCK(mtx);
    517   1.2        ad 
    518   1.2        ad 	if (panicstr == NULL) {
    519   1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    520   1.2        ad 	}
    521   1.2        ad 
    522   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    523   1.2        ad 
    524   1.2        ad 	/*
    525   1.2        ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    526   1.2        ad 	 * determine that the owner is not running on a processor,
    527   1.2        ad 	 * then we stop spinning, and sleep instead.
    528   1.2        ad 	 */
    529  1.34        ad 	for (owner = mtx->mtx_owner;;) {
    530   1.2        ad 		if (!MUTEX_OWNED(owner)) {
    531   1.2        ad 			/*
    532   1.2        ad 			 * Mutex owner clear could mean two things:
    533   1.2        ad 			 *
    534   1.2        ad 			 *	* The mutex has been released.
    535   1.2        ad 			 *	* The owner field hasn't been set yet.
    536   1.2        ad 			 *
    537   1.2        ad 			 * Try to acquire it again.  If that fails,
    538   1.2        ad 			 * we'll just loop again.
    539   1.2        ad 			 */
    540   1.2        ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    541   1.2        ad 				break;
    542  1.34        ad 			owner = mtx->mtx_owner;
    543   1.2        ad 			continue;
    544   1.2        ad 		}
    545   1.2        ad 
    546  1.45     rmind 		if (__predict_false(panicstr != NULL))
    547   1.2        ad 			return;
    548  1.45     rmind 		if (__predict_false(MUTEX_OWNER(owner) == curthread))
    549   1.2        ad 			MUTEX_ABORT(mtx, "locking against myself");
    550   1.2        ad 
    551   1.2        ad #ifdef MULTIPROCESSOR
    552   1.2        ad 		/*
    553   1.2        ad 		 * Check to see if the owner is running on a processor.
    554   1.2        ad 		 * If so, then we should just spin, as the owner will
    555   1.2        ad 		 * likely release the lock very soon.
    556   1.2        ad 		 */
    557   1.2        ad 		if (mutex_onproc(owner, &ci)) {
    558   1.2        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    559   1.2        ad 			count = SPINLOCK_BACKOFF_MIN;
    560   1.2        ad 			for (;;) {
    561  1.34        ad 				SPINLOCK_BACKOFF(count);
    562   1.2        ad 				owner = mtx->mtx_owner;
    563   1.2        ad 				if (!mutex_onproc(owner, &ci))
    564   1.2        ad 					break;
    565   1.2        ad 			}
    566   1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    567   1.2        ad 			LOCKSTAT_COUNT(spincnt, 1);
    568   1.2        ad 			if (!MUTEX_OWNED(owner))
    569   1.2        ad 				continue;
    570   1.2        ad 		}
    571   1.2        ad #endif
    572   1.2        ad 
    573   1.2        ad 		ts = turnstile_lookup(mtx);
    574   1.2        ad 
    575   1.2        ad 		/*
    576   1.2        ad 		 * Once we have the turnstile chain interlock, mark the
    577   1.2        ad 		 * mutex has having waiters.  If that fails, spin again:
    578   1.2        ad 		 * chances are that the mutex has been released.
    579   1.2        ad 		 */
    580   1.2        ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    581   1.2        ad 			turnstile_exit(mtx);
    582  1.34        ad 			owner = mtx->mtx_owner;
    583   1.2        ad 			continue;
    584   1.2        ad 		}
    585   1.2        ad 
    586   1.2        ad #ifdef MULTIPROCESSOR
    587   1.2        ad 		/*
    588   1.2        ad 		 * mutex_exit() is permitted to release the mutex without
    589   1.2        ad 		 * any interlocking instructions, and the following can
    590   1.2        ad 		 * occur as a result:
    591   1.2        ad 		 *
    592   1.2        ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    593   1.2        ad 		 * ---------------------------- ----------------------------
    594   1.2        ad 		 *		..		    acquire cache line
    595   1.2        ad 		 *		..                   test for waiters
    596   1.2        ad 		 *	acquire cache line    <-      lose cache line
    597   1.2        ad 		 *	 lock cache line	           ..
    598   1.2        ad 		 *     verify mutex is held                ..
    599   1.2        ad 		 *	    set waiters  	           ..
    600   1.2        ad 		 *	 unlock cache line		   ..
    601   1.2        ad 		 *	  lose cache line     ->    acquire cache line
    602   1.2        ad 		 *		..	          clear lock word, waiters
    603   1.2        ad 		 *	  return success
    604   1.2        ad 		 *
    605   1.2        ad 		 * There is a another race that can occur: a third CPU could
    606   1.2        ad 		 * acquire the mutex as soon as it is released.  Since
    607   1.2        ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    608   1.2        ad 		 * something that we need to worry about too much.  What we
    609   1.2        ad 		 * do need to ensure is that the waiters bit gets set.
    610   1.2        ad 		 *
    611   1.2        ad 		 * To allow the unlocked release, we need to make some
    612   1.2        ad 		 * assumptions here:
    613   1.2        ad 		 *
    614   1.2        ad 		 * o Release is the only non-atomic/unlocked operation
    615   1.2        ad 		 *   that can be performed on the mutex.  (It must still
    616   1.2        ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    617   1.2        ad 		 *   or preempted).
    618   1.2        ad 		 *
    619   1.2        ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    620  1.21     pooka 		 *   be in progress on one CPU in the system - guaranteed
    621   1.2        ad 		 *   by the turnstile chain lock.
    622   1.2        ad 		 *
    623   1.2        ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    624   1.2        ad 		 *   and release can modify a mutex with a non-zero
    625   1.2        ad 		 *   owner field.
    626   1.2        ad 		 *
    627   1.2        ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    628   1.2        ad 		 *   is an unbuffered write that is immediately visible
    629   1.2        ad 		 *   to all other processors in the system.
    630   1.2        ad 		 *
    631   1.2        ad 		 * o If the holding LWP switches away, it posts a store
    632   1.2        ad 		 *   fence before changing curlwp, ensuring that any
    633   1.2        ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    634   1.2        ad 		 *   completes before the modification of curlwp becomes
    635   1.2        ad 		 *   visible to this CPU.
    636   1.2        ad 		 *
    637  1.14      yamt 		 * o mi_switch() posts a store fence before setting curlwp
    638   1.2        ad 		 *   and before resuming execution of an LWP.
    639   1.2        ad 		 *
    640   1.2        ad 		 * o _kernel_lock() posts a store fence before setting
    641   1.2        ad 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    642   1.2        ad 		 *   This ensures that any overwrite of the mutex waiters
    643   1.2        ad 		 *   flag by mutex_exit() completes before the modification
    644   1.2        ad 		 *   of ci_biglock_wanted becomes visible.
    645   1.2        ad 		 *
    646   1.2        ad 		 * We now post a read memory barrier (after setting the
    647   1.2        ad 		 * waiters field) and check the lock holder's status again.
    648   1.2        ad 		 * Some of the possible outcomes (not an exhaustive list):
    649   1.2        ad 		 *
    650   1.2        ad 		 * 1. The onproc check returns true: the holding LWP is
    651   1.2        ad 		 *    running again.  The lock may be released soon and
    652   1.2        ad 		 *    we should spin.  Importantly, we can't trust the
    653   1.2        ad 		 *    value of the waiters flag.
    654   1.2        ad 		 *
    655   1.2        ad 		 * 2. The onproc check returns false: the holding LWP is
    656  1.39      yamt 		 *    not running.  We now have the opportunity to check
    657   1.2        ad 		 *    if mutex_exit() has blatted the modifications made
    658   1.2        ad 		 *    by MUTEX_SET_WAITERS().
    659   1.2        ad 		 *
    660   1.2        ad 		 * 3. The onproc check returns false: the holding LWP may
    661   1.2        ad 		 *    or may not be running.  It has context switched at
    662   1.2        ad 		 *    some point during our check.  Again, we have the
    663   1.2        ad 		 *    chance to see if the waiters bit is still set or
    664   1.2        ad 		 *    has been overwritten.
    665   1.2        ad 		 *
    666   1.2        ad 		 * 4. The onproc check returns false: the holding LWP is
    667   1.2        ad 		 *    running on a CPU, but wants the big lock.  It's OK
    668   1.2        ad 		 *    to check the waiters field in this case.
    669   1.2        ad 		 *
    670   1.2        ad 		 * 5. The has-waiters check fails: the mutex has been
    671   1.2        ad 		 *    released, the waiters flag cleared and another LWP
    672   1.2        ad 		 *    now owns the mutex.
    673   1.2        ad 		 *
    674   1.2        ad 		 * 6. The has-waiters check fails: the mutex has been
    675   1.2        ad 		 *    released.
    676   1.2        ad 		 *
    677   1.2        ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    678   1.2        ad 		 * as we might never be awoken.
    679   1.2        ad 		 */
    680  1.24        ad 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    681  1.24        ad 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    682   1.2        ad 			turnstile_exit(mtx);
    683  1.34        ad 			owner = mtx->mtx_owner;
    684   1.2        ad 			continue;
    685   1.2        ad 		}
    686   1.2        ad #endif	/* MULTIPROCESSOR */
    687   1.2        ad 
    688  1.44  wrstuden #ifdef KERN_SA
    689  1.44  wrstuden 		/*
    690  1.44  wrstuden 		 * Sleeping for a mutex should not generate an upcall.
    691  1.44  wrstuden 		 * So set LP_SA_NOBLOCK to indicate this.
    692  1.44  wrstuden 		 * f indicates if we should clear LP_SA_NOBLOCK when done.
    693  1.44  wrstuden 		 */
    694  1.44  wrstuden 		f = ~curlwp->l_pflag & LP_SA_NOBLOCK;
    695  1.44  wrstuden 		curlwp->l_pflag |= LP_SA_NOBLOCK;
    696  1.44  wrstuden #endif /* KERN_SA */
    697  1.44  wrstuden 
    698   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    699   1.2        ad 
    700   1.5      yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    701   1.2        ad 
    702   1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    703   1.2        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    704  1.34        ad 
    705  1.44  wrstuden #ifdef KERN_SA
    706  1.44  wrstuden 		curlwp->l_pflag ^= f;
    707  1.44  wrstuden #endif /* KERN_SA */
    708  1.44  wrstuden 
    709  1.34        ad 		owner = mtx->mtx_owner;
    710   1.2        ad 	}
    711   1.2        ad 
    712   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    713   1.2        ad 	    slpcnt, slptime);
    714   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    715   1.2        ad 	    spincnt, spintime);
    716   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    717   1.2        ad 
    718   1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    719   1.2        ad 	MUTEX_LOCKED(mtx);
    720   1.2        ad }
    721   1.2        ad 
    722   1.2        ad /*
    723   1.2        ad  * mutex_vector_exit:
    724   1.2        ad  *
    725   1.2        ad  *	Support routine for mutex_exit() that handles all cases.
    726   1.2        ad  */
    727   1.2        ad void
    728   1.2        ad mutex_vector_exit(kmutex_t *mtx)
    729   1.2        ad {
    730   1.2        ad 	turnstile_t *ts;
    731   1.2        ad 	uintptr_t curthread;
    732   1.2        ad 
    733   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    734   1.2        ad #ifdef FULL
    735  1.33        ad 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    736  1.33        ad 			if (panicstr != NULL)
    737  1.33        ad 				return;
    738   1.2        ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    739  1.33        ad 		}
    740   1.2        ad 		MUTEX_UNLOCKED(mtx);
    741   1.2        ad 		__cpu_simple_unlock(&mtx->mtx_lock);
    742   1.2        ad #endif
    743   1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    744   1.2        ad 		return;
    745   1.2        ad 	}
    746   1.2        ad 
    747  1.11        ad 	if (__predict_false((uintptr_t)panicstr | cold)) {
    748   1.2        ad 		MUTEX_UNLOCKED(mtx);
    749   1.2        ad 		MUTEX_RELEASE(mtx);
    750   1.2        ad 		return;
    751   1.2        ad 	}
    752   1.2        ad 
    753   1.2        ad 	curthread = (uintptr_t)curlwp;
    754   1.2        ad 	MUTEX_DASSERT(mtx, curthread != 0);
    755   1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    756   1.2        ad 	MUTEX_UNLOCKED(mtx);
    757   1.2        ad 
    758  1.15        ad #ifdef LOCKDEBUG
    759  1.15        ad 	/*
    760  1.15        ad 	 * Avoid having to take the turnstile chain lock every time
    761  1.15        ad 	 * around.  Raise the priority level to splhigh() in order
    762  1.15        ad 	 * to disable preemption and so make the following atomic.
    763  1.15        ad 	 */
    764  1.15        ad 	{
    765  1.15        ad 		int s = splhigh();
    766  1.15        ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    767  1.15        ad 			MUTEX_RELEASE(mtx);
    768  1.15        ad 			splx(s);
    769  1.15        ad 			return;
    770  1.15        ad 		}
    771  1.15        ad 		splx(s);
    772  1.15        ad 	}
    773  1.15        ad #endif
    774  1.15        ad 
    775   1.2        ad 	/*
    776   1.2        ad 	 * Get this lock's turnstile.  This gets the interlock on
    777   1.2        ad 	 * the sleep queue.  Once we have that, we can clear the
    778   1.2        ad 	 * lock.  If there was no turnstile for the lock, there
    779   1.2        ad 	 * were no waiters remaining.
    780   1.2        ad 	 */
    781   1.2        ad 	ts = turnstile_lookup(mtx);
    782   1.2        ad 
    783   1.2        ad 	if (ts == NULL) {
    784   1.2        ad 		MUTEX_RELEASE(mtx);
    785   1.2        ad 		turnstile_exit(mtx);
    786   1.2        ad 	} else {
    787   1.2        ad 		MUTEX_RELEASE(mtx);
    788   1.2        ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    789   1.2        ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    790   1.2        ad 	}
    791   1.2        ad }
    792   1.2        ad 
    793   1.4        ad #ifndef __HAVE_SIMPLE_MUTEXES
    794   1.4        ad /*
    795   1.4        ad  * mutex_wakeup:
    796   1.4        ad  *
    797   1.4        ad  *	Support routine for mutex_exit() that wakes up all waiters.
    798   1.4        ad  *	We assume that the mutex has been released, but it need not
    799   1.4        ad  *	be.
    800   1.4        ad  */
    801   1.4        ad void
    802   1.4        ad mutex_wakeup(kmutex_t *mtx)
    803   1.4        ad {
    804   1.4        ad 	turnstile_t *ts;
    805   1.4        ad 
    806   1.4        ad 	ts = turnstile_lookup(mtx);
    807   1.4        ad 	if (ts == NULL) {
    808   1.4        ad 		turnstile_exit(mtx);
    809   1.4        ad 		return;
    810   1.4        ad 	}
    811   1.4        ad 	MUTEX_CLEAR_WAITERS(mtx);
    812   1.4        ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    813   1.4        ad }
    814   1.4        ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    815   1.4        ad 
    816   1.2        ad /*
    817   1.2        ad  * mutex_owned:
    818   1.2        ad  *
    819   1.3        ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    820   1.3        ad  *	holds the mutex.
    821   1.2        ad  */
    822   1.2        ad int
    823   1.2        ad mutex_owned(kmutex_t *mtx)
    824   1.2        ad {
    825   1.2        ad 
    826  1.35        ad 	if (mtx == NULL)
    827  1.35        ad 		return 0;
    828   1.2        ad 	if (MUTEX_ADAPTIVE_P(mtx))
    829   1.2        ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    830   1.2        ad #ifdef FULL
    831  1.16     skrll 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    832   1.2        ad #else
    833   1.2        ad 	return 1;
    834   1.2        ad #endif
    835   1.2        ad }
    836   1.2        ad 
    837   1.2        ad /*
    838   1.2        ad  * mutex_owner:
    839   1.2        ad  *
    840   1.6        ad  *	Return the current owner of an adaptive mutex.  Used for
    841   1.6        ad  *	priority inheritance.
    842   1.2        ad  */
    843  1.27        ad lwp_t *
    844  1.27        ad mutex_owner(kmutex_t *mtx)
    845   1.2        ad {
    846   1.2        ad 
    847   1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    848   1.2        ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    849   1.2        ad }
    850   1.2        ad 
    851   1.2        ad /*
    852   1.2        ad  * mutex_tryenter:
    853   1.2        ad  *
    854   1.2        ad  *	Try to acquire the mutex; return non-zero if we did.
    855   1.2        ad  */
    856   1.2        ad int
    857   1.2        ad mutex_tryenter(kmutex_t *mtx)
    858   1.2        ad {
    859   1.2        ad 	uintptr_t curthread;
    860   1.2        ad 
    861   1.2        ad 	/*
    862   1.2        ad 	 * Handle spin mutexes.
    863   1.2        ad 	 */
    864   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    865   1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    866   1.2        ad #ifdef FULL
    867   1.2        ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    868   1.4        ad 			MUTEX_WANTLOCK(mtx);
    869   1.2        ad 			MUTEX_LOCKED(mtx);
    870   1.2        ad 			return 1;
    871   1.2        ad 		}
    872   1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    873   1.2        ad #else
    874   1.4        ad 		MUTEX_WANTLOCK(mtx);
    875   1.2        ad 		MUTEX_LOCKED(mtx);
    876   1.2        ad 		return 1;
    877   1.2        ad #endif
    878   1.2        ad 	} else {
    879   1.2        ad 		curthread = (uintptr_t)curlwp;
    880   1.2        ad 		MUTEX_ASSERT(mtx, curthread != 0);
    881   1.2        ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    882   1.4        ad 			MUTEX_WANTLOCK(mtx);
    883   1.2        ad 			MUTEX_LOCKED(mtx);
    884   1.2        ad 			MUTEX_DASSERT(mtx,
    885   1.2        ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    886   1.2        ad 			return 1;
    887   1.2        ad 		}
    888   1.2        ad 	}
    889   1.2        ad 
    890   1.2        ad 	return 0;
    891   1.2        ad }
    892   1.2        ad 
    893   1.2        ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    894   1.2        ad /*
    895   1.2        ad  * mutex_spin_retry:
    896   1.2        ad  *
    897   1.2        ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    898   1.2        ad  *	has already raised the SPL, and adjusted counters.
    899   1.2        ad  */
    900   1.2        ad void
    901   1.2        ad mutex_spin_retry(kmutex_t *mtx)
    902   1.2        ad {
    903   1.2        ad #ifdef MULTIPROCESSOR
    904   1.2        ad 	u_int count;
    905   1.2        ad 	LOCKSTAT_TIMER(spintime);
    906   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    907   1.2        ad #ifdef LOCKDEBUG
    908   1.2        ad 	u_int spins = 0;
    909   1.2        ad #endif	/* LOCKDEBUG */
    910   1.2        ad 
    911   1.2        ad 	MUTEX_WANTLOCK(mtx);
    912   1.2        ad 
    913   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    914   1.2        ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    915   1.2        ad 	count = SPINLOCK_BACKOFF_MIN;
    916   1.2        ad 
    917   1.2        ad 	/*
    918   1.2        ad 	 * Spin testing the lock word and do exponential backoff
    919   1.2        ad 	 * to reduce cache line ping-ponging between CPUs.
    920   1.2        ad 	 */
    921   1.2        ad 	do {
    922   1.2        ad 		if (panicstr != NULL)
    923   1.2        ad 			break;
    924  1.16     skrll 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    925   1.2        ad 			SPINLOCK_BACKOFF(count);
    926   1.2        ad #ifdef LOCKDEBUG
    927   1.2        ad 			if (SPINLOCK_SPINOUT(spins))
    928   1.2        ad 				MUTEX_ABORT(mtx, "spinout");
    929   1.2        ad #endif	/* LOCKDEBUG */
    930   1.2        ad 		}
    931   1.2        ad 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    932   1.2        ad 
    933   1.2        ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    934   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    935   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    936   1.2        ad 
    937   1.2        ad 	MUTEX_LOCKED(mtx);
    938   1.2        ad #else	/* MULTIPROCESSOR */
    939   1.2        ad 	MUTEX_ABORT(mtx, "locking against myself");
    940   1.2        ad #endif	/* MULTIPROCESSOR */
    941   1.2        ad }
    942   1.2        ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    943  1.31        ad 
    944  1.31        ad /*
    945  1.31        ad  * mutex_obj_init:
    946  1.31        ad  *
    947  1.31        ad  *	Initialize the mutex object store.
    948  1.31        ad  */
    949  1.31        ad void
    950  1.31        ad mutex_obj_init(void)
    951  1.31        ad {
    952  1.31        ad 
    953  1.31        ad 	mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
    954  1.31        ad 	    coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
    955  1.31        ad 	    NULL, NULL);
    956  1.31        ad }
    957  1.31        ad 
    958  1.31        ad /*
    959  1.31        ad  * mutex_obj_ctor:
    960  1.31        ad  *
    961  1.31        ad  *	Initialize a new lock for the cache.
    962  1.31        ad  */
    963  1.31        ad static int
    964  1.31        ad mutex_obj_ctor(void *arg, void *obj, int flags)
    965  1.31        ad {
    966  1.31        ad 	struct kmutexobj * mo = obj;
    967  1.31        ad 
    968  1.31        ad 	mo->mo_magic = MUTEX_OBJ_MAGIC;
    969  1.31        ad 
    970  1.31        ad 	return 0;
    971  1.31        ad }
    972  1.31        ad 
    973  1.31        ad /*
    974  1.31        ad  * mutex_obj_alloc:
    975  1.31        ad  *
    976  1.31        ad  *	Allocate a single lock object.
    977  1.31        ad  */
    978  1.31        ad kmutex_t *
    979  1.31        ad mutex_obj_alloc(kmutex_type_t type, int ipl)
    980  1.31        ad {
    981  1.31        ad 	struct kmutexobj *mo;
    982  1.31        ad 
    983  1.31        ad 	mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
    984  1.31        ad 	mutex_init(&mo->mo_lock, type, ipl);
    985  1.31        ad 	mo->mo_refcnt = 1;
    986  1.31        ad 
    987  1.31        ad 	return (kmutex_t *)mo;
    988  1.31        ad }
    989  1.31        ad 
    990  1.31        ad /*
    991  1.31        ad  * mutex_obj_hold:
    992  1.31        ad  *
    993  1.31        ad  *	Add a single reference to a lock object.  A reference to the object
    994  1.31        ad  *	must already be held, and must be held across this call.
    995  1.31        ad  */
    996  1.31        ad void
    997  1.31        ad mutex_obj_hold(kmutex_t *lock)
    998  1.31        ad {
    999  1.31        ad 	struct kmutexobj *mo = (struct kmutexobj *)lock;
   1000  1.31        ad 
   1001  1.31        ad 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
   1002  1.31        ad 	KASSERT(mo->mo_refcnt > 0);
   1003  1.31        ad 
   1004  1.31        ad 	atomic_inc_uint(&mo->mo_refcnt);
   1005  1.31        ad }
   1006  1.31        ad 
   1007  1.31        ad /*
   1008  1.31        ad  * mutex_obj_free:
   1009  1.31        ad  *
   1010  1.31        ad  *	Drop a reference from a lock object.  If the last reference is being
   1011  1.31        ad  *	dropped, free the object and return true.  Otherwise, return false.
   1012  1.31        ad  */
   1013  1.31        ad bool
   1014  1.31        ad mutex_obj_free(kmutex_t *lock)
   1015  1.31        ad {
   1016  1.31        ad 	struct kmutexobj *mo = (struct kmutexobj *)lock;
   1017  1.31        ad 
   1018  1.31        ad 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
   1019  1.31        ad 	KASSERT(mo->mo_refcnt > 0);
   1020  1.31        ad 
   1021  1.31        ad 	if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
   1022  1.31        ad 		return false;
   1023  1.31        ad 	}
   1024  1.31        ad 	mutex_destroy(&mo->mo_lock);
   1025  1.31        ad 	pool_cache_put(mutex_obj_cache, mo);
   1026  1.31        ad 	return true;
   1027  1.31        ad }
   1028