kern_mutex.c revision 1.46 1 1.46 pooka /* $NetBSD: kern_mutex.c,v 1.46 2009/11/04 13:29:45 pooka Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.30 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
34 1.2 ad * a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.2 ad #define __MUTEX_PRIVATE
41 1.2 ad
42 1.2 ad #include <sys/cdefs.h>
43 1.46 pooka __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.46 2009/11/04 13:29:45 pooka Exp $");
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.46 pooka #include <sys/atomic.h>
47 1.2 ad #include <sys/proc.h>
48 1.2 ad #include <sys/mutex.h>
49 1.2 ad #include <sys/sched.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/systm.h>
52 1.2 ad #include <sys/lockdebug.h>
53 1.2 ad #include <sys/kernel.h>
54 1.24 ad #include <sys/intr.h>
55 1.29 xtraeme #include <sys/lock.h>
56 1.2 ad
57 1.2 ad #include <dev/lockstat.h>
58 1.2 ad
59 1.28 ad #include <machine/lock.h>
60 1.28 ad
61 1.44 wrstuden #include "opt_sa.h"
62 1.44 wrstuden
63 1.2 ad /*
64 1.2 ad * When not running a debug kernel, spin mutexes are not much
65 1.2 ad * more than an splraiseipl() and splx() pair.
66 1.2 ad */
67 1.2 ad
68 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
69 1.2 ad #define FULL
70 1.2 ad #endif
71 1.2 ad
72 1.2 ad /*
73 1.2 ad * Debugging support.
74 1.2 ad */
75 1.2 ad
76 1.2 ad #define MUTEX_WANTLOCK(mtx) \
77 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
78 1.40 ad (uintptr_t)__builtin_return_address(0), false, false)
79 1.2 ad #define MUTEX_LOCKED(mtx) \
80 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
81 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
82 1.2 ad #define MUTEX_UNLOCKED(mtx) \
83 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
84 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
85 1.2 ad #define MUTEX_ABORT(mtx, msg) \
86 1.17 ad mutex_abort(mtx, __func__, msg)
87 1.2 ad
88 1.2 ad #if defined(LOCKDEBUG)
89 1.2 ad
90 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
91 1.2 ad do { \
92 1.2 ad if (!(cond)) \
93 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
94 1.2 ad } while (/* CONSTCOND */ 0);
95 1.2 ad
96 1.2 ad #else /* LOCKDEBUG */
97 1.2 ad
98 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
99 1.2 ad
100 1.2 ad #endif /* LOCKDEBUG */
101 1.2 ad
102 1.2 ad #if defined(DIAGNOSTIC)
103 1.2 ad
104 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
105 1.2 ad do { \
106 1.2 ad if (!(cond)) \
107 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
108 1.2 ad } while (/* CONSTCOND */ 0)
109 1.2 ad
110 1.2 ad #else /* DIAGNOSTIC */
111 1.2 ad
112 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
113 1.2 ad
114 1.2 ad #endif /* DIAGNOSTIC */
115 1.2 ad
116 1.2 ad /*
117 1.2 ad * Spin mutex SPL save / restore.
118 1.2 ad */
119 1.12 matt #ifndef MUTEX_COUNT_BIAS
120 1.12 matt #define MUTEX_COUNT_BIAS 0
121 1.12 matt #endif
122 1.2 ad
123 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
124 1.2 ad do { \
125 1.36 ad struct cpu_info *x__ci; \
126 1.2 ad int x__cnt, s; \
127 1.36 ad s = splraiseipl(mtx->mtx_ipl); \
128 1.36 ad x__ci = curcpu(); \
129 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
130 1.37 ad __insn_barrier(); \
131 1.12 matt if (x__cnt == MUTEX_COUNT_BIAS) \
132 1.2 ad x__ci->ci_mtx_oldspl = (s); \
133 1.2 ad } while (/* CONSTCOND */ 0)
134 1.2 ad
135 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
136 1.2 ad do { \
137 1.2 ad struct cpu_info *x__ci = curcpu(); \
138 1.2 ad int s = x__ci->ci_mtx_oldspl; \
139 1.2 ad __insn_barrier(); \
140 1.12 matt if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
141 1.2 ad splx(s); \
142 1.2 ad } while (/* CONSTCOND */ 0)
143 1.2 ad
144 1.2 ad /*
145 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
146 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
147 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
148 1.2 ad * additional interlock.
149 1.2 ad */
150 1.2 ad
151 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
152 1.2 ad
153 1.2 ad #define MUTEX_OWNER(owner) \
154 1.2 ad (owner & MUTEX_THREAD)
155 1.2 ad #define MUTEX_HAS_WAITERS(mtx) \
156 1.2 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
157 1.2 ad
158 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
159 1.2 ad do { \
160 1.23 yamt if (dodebug) \
161 1.23 yamt (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
162 1.2 ad } while (/* CONSTCOND */ 0);
163 1.2 ad
164 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
165 1.2 ad do { \
166 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
167 1.23 yamt if (dodebug) \
168 1.23 yamt (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
169 1.2 ad (mtx)->mtx_ipl = makeiplcookie((ipl)); \
170 1.2 ad __cpu_simple_lock_init(&(mtx)->mtx_lock); \
171 1.2 ad } while (/* CONSTCOND */ 0)
172 1.2 ad
173 1.2 ad #define MUTEX_DESTROY(mtx) \
174 1.2 ad do { \
175 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
176 1.2 ad } while (/* CONSTCOND */ 0);
177 1.2 ad
178 1.2 ad #define MUTEX_SPIN_P(mtx) \
179 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
180 1.2 ad #define MUTEX_ADAPTIVE_P(mtx) \
181 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
182 1.2 ad
183 1.23 yamt #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
184 1.23 yamt #if defined(LOCKDEBUG)
185 1.23 yamt #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
186 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
187 1.23 yamt #else /* defined(LOCKDEBUG) */
188 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
189 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) /* nothing */
190 1.23 yamt #endif /* defined(LOCKDEBUG) */
191 1.2 ad
192 1.2 ad static inline int
193 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
194 1.2 ad {
195 1.2 ad int rv;
196 1.23 yamt uintptr_t old = 0;
197 1.23 yamt uintptr_t new = curthread;
198 1.23 yamt
199 1.23 yamt MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
200 1.23 yamt MUTEX_INHERITDEBUG(new, old);
201 1.23 yamt rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
202 1.7 itohy MUTEX_RECEIVE(mtx);
203 1.2 ad return rv;
204 1.2 ad }
205 1.2 ad
206 1.2 ad static inline int
207 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
208 1.2 ad {
209 1.2 ad int rv;
210 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
211 1.7 itohy MUTEX_RECEIVE(mtx);
212 1.2 ad return rv;
213 1.2 ad }
214 1.2 ad
215 1.2 ad static inline void
216 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
217 1.2 ad {
218 1.23 yamt uintptr_t new;
219 1.23 yamt
220 1.7 itohy MUTEX_GIVE(mtx);
221 1.23 yamt new = 0;
222 1.23 yamt MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
223 1.23 yamt mtx->mtx_owner = new;
224 1.2 ad }
225 1.4 ad
226 1.4 ad static inline void
227 1.4 ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
228 1.4 ad {
229 1.4 ad /* nothing */
230 1.4 ad }
231 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
232 1.2 ad
233 1.2 ad /*
234 1.2 ad * Patch in stubs via strong alias where they are not available.
235 1.2 ad */
236 1.2 ad
237 1.2 ad #if defined(LOCKDEBUG)
238 1.2 ad #undef __HAVE_MUTEX_STUBS
239 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
240 1.2 ad #endif
241 1.2 ad
242 1.2 ad #ifndef __HAVE_MUTEX_STUBS
243 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
244 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
245 1.2 ad #endif
246 1.2 ad
247 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
248 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
249 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
250 1.2 ad #endif
251 1.2 ad
252 1.2 ad void mutex_abort(kmutex_t *, const char *, const char *);
253 1.2 ad void mutex_dump(volatile void *);
254 1.2 ad int mutex_onproc(uintptr_t, struct cpu_info **);
255 1.2 ad
256 1.2 ad lockops_t mutex_spin_lockops = {
257 1.2 ad "Mutex",
258 1.42 ad LOCKOPS_SPIN,
259 1.2 ad mutex_dump
260 1.2 ad };
261 1.2 ad
262 1.2 ad lockops_t mutex_adaptive_lockops = {
263 1.2 ad "Mutex",
264 1.42 ad LOCKOPS_SLEEP,
265 1.2 ad mutex_dump
266 1.2 ad };
267 1.2 ad
268 1.5 yamt syncobj_t mutex_syncobj = {
269 1.5 yamt SOBJ_SLEEPQ_SORTED,
270 1.5 yamt turnstile_unsleep,
271 1.5 yamt turnstile_changepri,
272 1.5 yamt sleepq_lendpri,
273 1.27 ad (void *)mutex_owner,
274 1.5 yamt };
275 1.5 yamt
276 1.2 ad /*
277 1.2 ad * mutex_dump:
278 1.2 ad *
279 1.2 ad * Dump the contents of a mutex structure.
280 1.2 ad */
281 1.2 ad void
282 1.2 ad mutex_dump(volatile void *cookie)
283 1.2 ad {
284 1.2 ad volatile kmutex_t *mtx = cookie;
285 1.2 ad
286 1.2 ad printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
287 1.2 ad (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
288 1.2 ad MUTEX_SPIN_P(mtx));
289 1.2 ad }
290 1.2 ad
291 1.2 ad /*
292 1.2 ad * mutex_abort:
293 1.2 ad *
294 1.3 ad * Dump information about an error and panic the system. This
295 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
296 1.3 ad * we ask the compiler to not inline it.
297 1.2 ad */
298 1.43 ad void __noinline
299 1.2 ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
300 1.2 ad {
301 1.2 ad
302 1.23 yamt LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
303 1.3 ad &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
304 1.2 ad }
305 1.2 ad
306 1.2 ad /*
307 1.2 ad * mutex_init:
308 1.2 ad *
309 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
310 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
311 1.2 ad * CPU time. We can't easily provide a type of mutex that always
312 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
313 1.2 ad * mutexes unlocked.
314 1.2 ad */
315 1.2 ad void
316 1.2 ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
317 1.2 ad {
318 1.23 yamt bool dodebug;
319 1.2 ad
320 1.2 ad memset(mtx, 0, sizeof(*mtx));
321 1.2 ad
322 1.15 ad switch (type) {
323 1.15 ad case MUTEX_ADAPTIVE:
324 1.15 ad KASSERT(ipl == IPL_NONE);
325 1.15 ad break;
326 1.22 ad case MUTEX_DEFAULT:
327 1.15 ad case MUTEX_DRIVER:
328 1.26 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
329 1.26 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
330 1.26 ad ipl == IPL_SOFTSERIAL) {
331 1.22 ad type = MUTEX_ADAPTIVE;
332 1.26 ad } else {
333 1.22 ad type = MUTEX_SPIN;
334 1.22 ad }
335 1.15 ad break;
336 1.15 ad default:
337 1.15 ad break;
338 1.15 ad }
339 1.2 ad
340 1.2 ad switch (type) {
341 1.11 ad case MUTEX_NODEBUG:
342 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
343 1.19 ad (uintptr_t)__builtin_return_address(0));
344 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
345 1.11 ad break;
346 1.2 ad case MUTEX_ADAPTIVE:
347 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
348 1.19 ad (uintptr_t)__builtin_return_address(0));
349 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
350 1.2 ad break;
351 1.2 ad case MUTEX_SPIN:
352 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
353 1.19 ad (uintptr_t)__builtin_return_address(0));
354 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
355 1.2 ad break;
356 1.2 ad default:
357 1.2 ad panic("mutex_init: impossible type");
358 1.2 ad break;
359 1.2 ad }
360 1.2 ad }
361 1.2 ad
362 1.2 ad /*
363 1.2 ad * mutex_destroy:
364 1.2 ad *
365 1.2 ad * Tear down a mutex.
366 1.2 ad */
367 1.2 ad void
368 1.2 ad mutex_destroy(kmutex_t *mtx)
369 1.2 ad {
370 1.2 ad
371 1.2 ad if (MUTEX_ADAPTIVE_P(mtx)) {
372 1.2 ad MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
373 1.2 ad !MUTEX_HAS_WAITERS(mtx));
374 1.2 ad } else {
375 1.16 skrll MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
376 1.2 ad }
377 1.2 ad
378 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
379 1.2 ad MUTEX_DESTROY(mtx);
380 1.2 ad }
381 1.2 ad
382 1.2 ad /*
383 1.2 ad * mutex_onproc:
384 1.2 ad *
385 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
386 1.2 ad * system. If the target is waiting on the kernel big lock, then we
387 1.15 ad * must release it. This is necessary to avoid deadlock.
388 1.2 ad *
389 1.2 ad * Note that we can't use the mutex owner field as an LWP pointer. We
390 1.2 ad * don't have full control over the timing of our execution, and so the
391 1.2 ad * pointer could be completely invalid by the time we dereference it.
392 1.2 ad */
393 1.2 ad #ifdef MULTIPROCESSOR
394 1.2 ad int
395 1.2 ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
396 1.2 ad {
397 1.2 ad CPU_INFO_ITERATOR cii;
398 1.2 ad struct cpu_info *ci;
399 1.2 ad struct lwp *l;
400 1.2 ad
401 1.2 ad if (!MUTEX_OWNED(owner))
402 1.2 ad return 0;
403 1.2 ad l = (struct lwp *)MUTEX_OWNER(owner);
404 1.2 ad
405 1.15 ad /* See if the target is running on a CPU somewhere. */
406 1.10 ad if ((ci = *cip) != NULL && ci->ci_curlwp == l)
407 1.15 ad goto run;
408 1.15 ad for (CPU_INFO_FOREACH(cii, ci))
409 1.15 ad if (ci->ci_curlwp == l)
410 1.15 ad goto run;
411 1.2 ad
412 1.15 ad /* No: it may be safe to block now. */
413 1.2 ad *cip = NULL;
414 1.2 ad return 0;
415 1.15 ad
416 1.15 ad run:
417 1.15 ad /* Target is running; do we need to block? */
418 1.15 ad *cip = ci;
419 1.15 ad return ci->ci_biglock_wanted != l;
420 1.2 ad }
421 1.15 ad #endif /* MULTIPROCESSOR */
422 1.2 ad
423 1.2 ad /*
424 1.2 ad * mutex_vector_enter:
425 1.2 ad *
426 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In
427 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
428 1.2 ad * fast-path stubs are available. If an mutex_spin_enter() stub is
429 1.2 ad * not available, then it is also aliased directly here.
430 1.2 ad */
431 1.2 ad void
432 1.2 ad mutex_vector_enter(kmutex_t *mtx)
433 1.2 ad {
434 1.2 ad uintptr_t owner, curthread;
435 1.2 ad turnstile_t *ts;
436 1.2 ad #ifdef MULTIPROCESSOR
437 1.2 ad struct cpu_info *ci = NULL;
438 1.2 ad u_int count;
439 1.2 ad #endif
440 1.44 wrstuden #ifdef KERN_SA
441 1.44 wrstuden int f;
442 1.44 wrstuden #endif
443 1.2 ad LOCKSTAT_COUNTER(spincnt);
444 1.2 ad LOCKSTAT_COUNTER(slpcnt);
445 1.2 ad LOCKSTAT_TIMER(spintime);
446 1.2 ad LOCKSTAT_TIMER(slptime);
447 1.2 ad LOCKSTAT_FLAG(lsflag);
448 1.2 ad
449 1.2 ad /*
450 1.2 ad * Handle spin mutexes.
451 1.2 ad */
452 1.2 ad if (MUTEX_SPIN_P(mtx)) {
453 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
454 1.2 ad u_int spins = 0;
455 1.2 ad #endif
456 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
457 1.2 ad MUTEX_WANTLOCK(mtx);
458 1.2 ad #ifdef FULL
459 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
460 1.2 ad MUTEX_LOCKED(mtx);
461 1.2 ad return;
462 1.2 ad }
463 1.2 ad #if !defined(MULTIPROCESSOR)
464 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
465 1.2 ad #else /* !MULTIPROCESSOR */
466 1.2 ad
467 1.2 ad LOCKSTAT_ENTER(lsflag);
468 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
469 1.2 ad count = SPINLOCK_BACKOFF_MIN;
470 1.2 ad
471 1.2 ad /*
472 1.2 ad * Spin testing the lock word and do exponential backoff
473 1.2 ad * to reduce cache line ping-ponging between CPUs.
474 1.2 ad */
475 1.2 ad do {
476 1.2 ad if (panicstr != NULL)
477 1.2 ad break;
478 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
479 1.2 ad SPINLOCK_BACKOFF(count);
480 1.2 ad #ifdef LOCKDEBUG
481 1.2 ad if (SPINLOCK_SPINOUT(spins))
482 1.2 ad MUTEX_ABORT(mtx, "spinout");
483 1.2 ad #endif /* LOCKDEBUG */
484 1.2 ad }
485 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
486 1.2 ad
487 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
488 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
489 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
490 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
491 1.2 ad }
492 1.2 ad LOCKSTAT_EXIT(lsflag);
493 1.2 ad #endif /* !MULTIPROCESSOR */
494 1.2 ad #endif /* FULL */
495 1.2 ad MUTEX_LOCKED(mtx);
496 1.2 ad return;
497 1.2 ad }
498 1.2 ad
499 1.2 ad curthread = (uintptr_t)curlwp;
500 1.2 ad
501 1.2 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
502 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
503 1.2 ad MUTEX_WANTLOCK(mtx);
504 1.2 ad
505 1.2 ad if (panicstr == NULL) {
506 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
507 1.2 ad }
508 1.2 ad
509 1.2 ad LOCKSTAT_ENTER(lsflag);
510 1.2 ad
511 1.2 ad /*
512 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
513 1.2 ad * determine that the owner is not running on a processor,
514 1.2 ad * then we stop spinning, and sleep instead.
515 1.2 ad */
516 1.34 ad for (owner = mtx->mtx_owner;;) {
517 1.2 ad if (!MUTEX_OWNED(owner)) {
518 1.2 ad /*
519 1.2 ad * Mutex owner clear could mean two things:
520 1.2 ad *
521 1.2 ad * * The mutex has been released.
522 1.2 ad * * The owner field hasn't been set yet.
523 1.2 ad *
524 1.2 ad * Try to acquire it again. If that fails,
525 1.2 ad * we'll just loop again.
526 1.2 ad */
527 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
528 1.2 ad break;
529 1.34 ad owner = mtx->mtx_owner;
530 1.2 ad continue;
531 1.2 ad }
532 1.2 ad
533 1.45 rmind if (__predict_false(panicstr != NULL))
534 1.2 ad return;
535 1.45 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread))
536 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
537 1.2 ad
538 1.2 ad #ifdef MULTIPROCESSOR
539 1.2 ad /*
540 1.2 ad * Check to see if the owner is running on a processor.
541 1.2 ad * If so, then we should just spin, as the owner will
542 1.2 ad * likely release the lock very soon.
543 1.2 ad */
544 1.2 ad if (mutex_onproc(owner, &ci)) {
545 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
546 1.2 ad count = SPINLOCK_BACKOFF_MIN;
547 1.2 ad for (;;) {
548 1.34 ad SPINLOCK_BACKOFF(count);
549 1.2 ad owner = mtx->mtx_owner;
550 1.2 ad if (!mutex_onproc(owner, &ci))
551 1.2 ad break;
552 1.2 ad }
553 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
554 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
555 1.2 ad if (!MUTEX_OWNED(owner))
556 1.2 ad continue;
557 1.2 ad }
558 1.2 ad #endif
559 1.2 ad
560 1.2 ad ts = turnstile_lookup(mtx);
561 1.2 ad
562 1.2 ad /*
563 1.2 ad * Once we have the turnstile chain interlock, mark the
564 1.2 ad * mutex has having waiters. If that fails, spin again:
565 1.2 ad * chances are that the mutex has been released.
566 1.2 ad */
567 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
568 1.2 ad turnstile_exit(mtx);
569 1.34 ad owner = mtx->mtx_owner;
570 1.2 ad continue;
571 1.2 ad }
572 1.2 ad
573 1.2 ad #ifdef MULTIPROCESSOR
574 1.2 ad /*
575 1.2 ad * mutex_exit() is permitted to release the mutex without
576 1.2 ad * any interlocking instructions, and the following can
577 1.2 ad * occur as a result:
578 1.2 ad *
579 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
580 1.2 ad * ---------------------------- ----------------------------
581 1.2 ad * .. acquire cache line
582 1.2 ad * .. test for waiters
583 1.2 ad * acquire cache line <- lose cache line
584 1.2 ad * lock cache line ..
585 1.2 ad * verify mutex is held ..
586 1.2 ad * set waiters ..
587 1.2 ad * unlock cache line ..
588 1.2 ad * lose cache line -> acquire cache line
589 1.2 ad * .. clear lock word, waiters
590 1.2 ad * return success
591 1.2 ad *
592 1.2 ad * There is a another race that can occur: a third CPU could
593 1.2 ad * acquire the mutex as soon as it is released. Since
594 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
595 1.2 ad * something that we need to worry about too much. What we
596 1.2 ad * do need to ensure is that the waiters bit gets set.
597 1.2 ad *
598 1.2 ad * To allow the unlocked release, we need to make some
599 1.2 ad * assumptions here:
600 1.2 ad *
601 1.2 ad * o Release is the only non-atomic/unlocked operation
602 1.2 ad * that can be performed on the mutex. (It must still
603 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
604 1.2 ad * or preempted).
605 1.2 ad *
606 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
607 1.21 pooka * be in progress on one CPU in the system - guaranteed
608 1.2 ad * by the turnstile chain lock.
609 1.2 ad *
610 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
611 1.2 ad * and release can modify a mutex with a non-zero
612 1.2 ad * owner field.
613 1.2 ad *
614 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
615 1.2 ad * is an unbuffered write that is immediately visible
616 1.2 ad * to all other processors in the system.
617 1.2 ad *
618 1.2 ad * o If the holding LWP switches away, it posts a store
619 1.2 ad * fence before changing curlwp, ensuring that any
620 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
621 1.2 ad * completes before the modification of curlwp becomes
622 1.2 ad * visible to this CPU.
623 1.2 ad *
624 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
625 1.2 ad * and before resuming execution of an LWP.
626 1.2 ad *
627 1.2 ad * o _kernel_lock() posts a store fence before setting
628 1.2 ad * curcpu()->ci_biglock_wanted, and after clearing it.
629 1.2 ad * This ensures that any overwrite of the mutex waiters
630 1.2 ad * flag by mutex_exit() completes before the modification
631 1.2 ad * of ci_biglock_wanted becomes visible.
632 1.2 ad *
633 1.2 ad * We now post a read memory barrier (after setting the
634 1.2 ad * waiters field) and check the lock holder's status again.
635 1.2 ad * Some of the possible outcomes (not an exhaustive list):
636 1.2 ad *
637 1.2 ad * 1. The onproc check returns true: the holding LWP is
638 1.2 ad * running again. The lock may be released soon and
639 1.2 ad * we should spin. Importantly, we can't trust the
640 1.2 ad * value of the waiters flag.
641 1.2 ad *
642 1.2 ad * 2. The onproc check returns false: the holding LWP is
643 1.39 yamt * not running. We now have the opportunity to check
644 1.2 ad * if mutex_exit() has blatted the modifications made
645 1.2 ad * by MUTEX_SET_WAITERS().
646 1.2 ad *
647 1.2 ad * 3. The onproc check returns false: the holding LWP may
648 1.2 ad * or may not be running. It has context switched at
649 1.2 ad * some point during our check. Again, we have the
650 1.2 ad * chance to see if the waiters bit is still set or
651 1.2 ad * has been overwritten.
652 1.2 ad *
653 1.2 ad * 4. The onproc check returns false: the holding LWP is
654 1.2 ad * running on a CPU, but wants the big lock. It's OK
655 1.2 ad * to check the waiters field in this case.
656 1.2 ad *
657 1.2 ad * 5. The has-waiters check fails: the mutex has been
658 1.2 ad * released, the waiters flag cleared and another LWP
659 1.2 ad * now owns the mutex.
660 1.2 ad *
661 1.2 ad * 6. The has-waiters check fails: the mutex has been
662 1.2 ad * released.
663 1.2 ad *
664 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
665 1.2 ad * as we might never be awoken.
666 1.2 ad */
667 1.24 ad if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
668 1.24 ad (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
669 1.2 ad turnstile_exit(mtx);
670 1.34 ad owner = mtx->mtx_owner;
671 1.2 ad continue;
672 1.2 ad }
673 1.2 ad #endif /* MULTIPROCESSOR */
674 1.2 ad
675 1.44 wrstuden #ifdef KERN_SA
676 1.44 wrstuden /*
677 1.44 wrstuden * Sleeping for a mutex should not generate an upcall.
678 1.44 wrstuden * So set LP_SA_NOBLOCK to indicate this.
679 1.44 wrstuden * f indicates if we should clear LP_SA_NOBLOCK when done.
680 1.44 wrstuden */
681 1.44 wrstuden f = ~curlwp->l_pflag & LP_SA_NOBLOCK;
682 1.44 wrstuden curlwp->l_pflag |= LP_SA_NOBLOCK;
683 1.44 wrstuden #endif /* KERN_SA */
684 1.44 wrstuden
685 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
686 1.2 ad
687 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
688 1.2 ad
689 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
690 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
691 1.34 ad
692 1.44 wrstuden #ifdef KERN_SA
693 1.44 wrstuden curlwp->l_pflag ^= f;
694 1.44 wrstuden #endif /* KERN_SA */
695 1.44 wrstuden
696 1.34 ad owner = mtx->mtx_owner;
697 1.2 ad }
698 1.2 ad
699 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
700 1.2 ad slpcnt, slptime);
701 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
702 1.2 ad spincnt, spintime);
703 1.2 ad LOCKSTAT_EXIT(lsflag);
704 1.2 ad
705 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
706 1.2 ad MUTEX_LOCKED(mtx);
707 1.2 ad }
708 1.2 ad
709 1.2 ad /*
710 1.2 ad * mutex_vector_exit:
711 1.2 ad *
712 1.2 ad * Support routine for mutex_exit() that handles all cases.
713 1.2 ad */
714 1.2 ad void
715 1.2 ad mutex_vector_exit(kmutex_t *mtx)
716 1.2 ad {
717 1.2 ad turnstile_t *ts;
718 1.2 ad uintptr_t curthread;
719 1.2 ad
720 1.2 ad if (MUTEX_SPIN_P(mtx)) {
721 1.2 ad #ifdef FULL
722 1.33 ad if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
723 1.33 ad if (panicstr != NULL)
724 1.33 ad return;
725 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
726 1.33 ad }
727 1.2 ad MUTEX_UNLOCKED(mtx);
728 1.2 ad __cpu_simple_unlock(&mtx->mtx_lock);
729 1.2 ad #endif
730 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
731 1.2 ad return;
732 1.2 ad }
733 1.2 ad
734 1.11 ad if (__predict_false((uintptr_t)panicstr | cold)) {
735 1.2 ad MUTEX_UNLOCKED(mtx);
736 1.2 ad MUTEX_RELEASE(mtx);
737 1.2 ad return;
738 1.2 ad }
739 1.2 ad
740 1.2 ad curthread = (uintptr_t)curlwp;
741 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
742 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
743 1.2 ad MUTEX_UNLOCKED(mtx);
744 1.2 ad
745 1.15 ad #ifdef LOCKDEBUG
746 1.15 ad /*
747 1.15 ad * Avoid having to take the turnstile chain lock every time
748 1.15 ad * around. Raise the priority level to splhigh() in order
749 1.15 ad * to disable preemption and so make the following atomic.
750 1.15 ad */
751 1.15 ad {
752 1.15 ad int s = splhigh();
753 1.15 ad if (!MUTEX_HAS_WAITERS(mtx)) {
754 1.15 ad MUTEX_RELEASE(mtx);
755 1.15 ad splx(s);
756 1.15 ad return;
757 1.15 ad }
758 1.15 ad splx(s);
759 1.15 ad }
760 1.15 ad #endif
761 1.15 ad
762 1.2 ad /*
763 1.2 ad * Get this lock's turnstile. This gets the interlock on
764 1.2 ad * the sleep queue. Once we have that, we can clear the
765 1.2 ad * lock. If there was no turnstile for the lock, there
766 1.2 ad * were no waiters remaining.
767 1.2 ad */
768 1.2 ad ts = turnstile_lookup(mtx);
769 1.2 ad
770 1.2 ad if (ts == NULL) {
771 1.2 ad MUTEX_RELEASE(mtx);
772 1.2 ad turnstile_exit(mtx);
773 1.2 ad } else {
774 1.2 ad MUTEX_RELEASE(mtx);
775 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
776 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
777 1.2 ad }
778 1.2 ad }
779 1.2 ad
780 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
781 1.4 ad /*
782 1.4 ad * mutex_wakeup:
783 1.4 ad *
784 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
785 1.4 ad * We assume that the mutex has been released, but it need not
786 1.4 ad * be.
787 1.4 ad */
788 1.4 ad void
789 1.4 ad mutex_wakeup(kmutex_t *mtx)
790 1.4 ad {
791 1.4 ad turnstile_t *ts;
792 1.4 ad
793 1.4 ad ts = turnstile_lookup(mtx);
794 1.4 ad if (ts == NULL) {
795 1.4 ad turnstile_exit(mtx);
796 1.4 ad return;
797 1.4 ad }
798 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
799 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
800 1.4 ad }
801 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
802 1.4 ad
803 1.2 ad /*
804 1.2 ad * mutex_owned:
805 1.2 ad *
806 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
807 1.3 ad * holds the mutex.
808 1.2 ad */
809 1.2 ad int
810 1.2 ad mutex_owned(kmutex_t *mtx)
811 1.2 ad {
812 1.2 ad
813 1.35 ad if (mtx == NULL)
814 1.35 ad return 0;
815 1.2 ad if (MUTEX_ADAPTIVE_P(mtx))
816 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
817 1.2 ad #ifdef FULL
818 1.16 skrll return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
819 1.2 ad #else
820 1.2 ad return 1;
821 1.2 ad #endif
822 1.2 ad }
823 1.2 ad
824 1.2 ad /*
825 1.2 ad * mutex_owner:
826 1.2 ad *
827 1.6 ad * Return the current owner of an adaptive mutex. Used for
828 1.6 ad * priority inheritance.
829 1.2 ad */
830 1.27 ad lwp_t *
831 1.27 ad mutex_owner(kmutex_t *mtx)
832 1.2 ad {
833 1.2 ad
834 1.2 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
835 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
836 1.2 ad }
837 1.2 ad
838 1.2 ad /*
839 1.2 ad * mutex_tryenter:
840 1.2 ad *
841 1.2 ad * Try to acquire the mutex; return non-zero if we did.
842 1.2 ad */
843 1.2 ad int
844 1.2 ad mutex_tryenter(kmutex_t *mtx)
845 1.2 ad {
846 1.2 ad uintptr_t curthread;
847 1.2 ad
848 1.2 ad /*
849 1.2 ad * Handle spin mutexes.
850 1.2 ad */
851 1.2 ad if (MUTEX_SPIN_P(mtx)) {
852 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
853 1.2 ad #ifdef FULL
854 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
855 1.4 ad MUTEX_WANTLOCK(mtx);
856 1.2 ad MUTEX_LOCKED(mtx);
857 1.2 ad return 1;
858 1.2 ad }
859 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
860 1.2 ad #else
861 1.4 ad MUTEX_WANTLOCK(mtx);
862 1.2 ad MUTEX_LOCKED(mtx);
863 1.2 ad return 1;
864 1.2 ad #endif
865 1.2 ad } else {
866 1.2 ad curthread = (uintptr_t)curlwp;
867 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
868 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
869 1.4 ad MUTEX_WANTLOCK(mtx);
870 1.2 ad MUTEX_LOCKED(mtx);
871 1.2 ad MUTEX_DASSERT(mtx,
872 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
873 1.2 ad return 1;
874 1.2 ad }
875 1.2 ad }
876 1.2 ad
877 1.2 ad return 0;
878 1.2 ad }
879 1.2 ad
880 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
881 1.2 ad /*
882 1.2 ad * mutex_spin_retry:
883 1.2 ad *
884 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
885 1.2 ad * has already raised the SPL, and adjusted counters.
886 1.2 ad */
887 1.2 ad void
888 1.2 ad mutex_spin_retry(kmutex_t *mtx)
889 1.2 ad {
890 1.2 ad #ifdef MULTIPROCESSOR
891 1.2 ad u_int count;
892 1.2 ad LOCKSTAT_TIMER(spintime);
893 1.2 ad LOCKSTAT_FLAG(lsflag);
894 1.2 ad #ifdef LOCKDEBUG
895 1.2 ad u_int spins = 0;
896 1.2 ad #endif /* LOCKDEBUG */
897 1.2 ad
898 1.2 ad MUTEX_WANTLOCK(mtx);
899 1.2 ad
900 1.2 ad LOCKSTAT_ENTER(lsflag);
901 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
902 1.2 ad count = SPINLOCK_BACKOFF_MIN;
903 1.2 ad
904 1.2 ad /*
905 1.2 ad * Spin testing the lock word and do exponential backoff
906 1.2 ad * to reduce cache line ping-ponging between CPUs.
907 1.2 ad */
908 1.2 ad do {
909 1.2 ad if (panicstr != NULL)
910 1.2 ad break;
911 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
912 1.2 ad SPINLOCK_BACKOFF(count);
913 1.2 ad #ifdef LOCKDEBUG
914 1.2 ad if (SPINLOCK_SPINOUT(spins))
915 1.2 ad MUTEX_ABORT(mtx, "spinout");
916 1.2 ad #endif /* LOCKDEBUG */
917 1.2 ad }
918 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
919 1.2 ad
920 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
921 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
922 1.2 ad LOCKSTAT_EXIT(lsflag);
923 1.2 ad
924 1.2 ad MUTEX_LOCKED(mtx);
925 1.2 ad #else /* MULTIPROCESSOR */
926 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
927 1.2 ad #endif /* MULTIPROCESSOR */
928 1.2 ad }
929 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
930