Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.49
      1  1.49     skrll /*	$NetBSD: kern_mutex.c,v 1.49 2010/02/08 09:54:27 skrll Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.30        ad  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Kernel mutex implementation, modeled after those found in Solaris,
     34   1.2        ad  * a description of which can be found in:
     35   1.2        ad  *
     36   1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37   1.2        ad  *	    Richard McDougall.
     38   1.2        ad  */
     39   1.2        ad 
     40   1.2        ad #define	__MUTEX_PRIVATE
     41   1.2        ad 
     42   1.2        ad #include <sys/cdefs.h>
     43  1.49     skrll __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.49 2010/02/08 09:54:27 skrll Exp $");
     44   1.2        ad 
     45   1.2        ad #include <sys/param.h>
     46  1.46     pooka #include <sys/atomic.h>
     47   1.2        ad #include <sys/proc.h>
     48   1.2        ad #include <sys/mutex.h>
     49   1.2        ad #include <sys/sched.h>
     50   1.2        ad #include <sys/sleepq.h>
     51   1.2        ad #include <sys/systm.h>
     52   1.2        ad #include <sys/lockdebug.h>
     53   1.2        ad #include <sys/kernel.h>
     54  1.24        ad #include <sys/intr.h>
     55  1.29   xtraeme #include <sys/lock.h>
     56   1.2        ad 
     57   1.2        ad #include <dev/lockstat.h>
     58   1.2        ad 
     59  1.28        ad #include <machine/lock.h>
     60  1.28        ad 
     61  1.44  wrstuden #include "opt_sa.h"
     62  1.44  wrstuden 
     63   1.2        ad /*
     64   1.2        ad  * When not running a debug kernel, spin mutexes are not much
     65   1.2        ad  * more than an splraiseipl() and splx() pair.
     66   1.2        ad  */
     67   1.2        ad 
     68   1.2        ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     69   1.2        ad #define	FULL
     70   1.2        ad #endif
     71   1.2        ad 
     72   1.2        ad /*
     73   1.2        ad  * Debugging support.
     74   1.2        ad  */
     75   1.2        ad 
     76   1.2        ad #define	MUTEX_WANTLOCK(mtx)					\
     77  1.23      yamt     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     78  1.40        ad         (uintptr_t)__builtin_return_address(0), false, false)
     79   1.2        ad #define	MUTEX_LOCKED(mtx)					\
     80  1.42        ad     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     81   1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     82   1.2        ad #define	MUTEX_UNLOCKED(mtx)					\
     83  1.23      yamt     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     84   1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     85   1.2        ad #define	MUTEX_ABORT(mtx, msg)					\
     86  1.17        ad     mutex_abort(mtx, __func__, msg)
     87   1.2        ad 
     88   1.2        ad #if defined(LOCKDEBUG)
     89   1.2        ad 
     90   1.2        ad #define	MUTEX_DASSERT(mtx, cond)				\
     91   1.2        ad do {								\
     92   1.2        ad 	if (!(cond))						\
     93   1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     94   1.2        ad } while (/* CONSTCOND */ 0);
     95   1.2        ad 
     96   1.2        ad #else	/* LOCKDEBUG */
     97   1.2        ad 
     98   1.2        ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
     99   1.2        ad 
    100   1.2        ad #endif /* LOCKDEBUG */
    101   1.2        ad 
    102   1.2        ad #if defined(DIAGNOSTIC)
    103   1.2        ad 
    104   1.2        ad #define	MUTEX_ASSERT(mtx, cond)					\
    105   1.2        ad do {								\
    106   1.2        ad 	if (!(cond))						\
    107   1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    108   1.2        ad } while (/* CONSTCOND */ 0)
    109   1.2        ad 
    110   1.2        ad #else	/* DIAGNOSTIC */
    111   1.2        ad 
    112   1.2        ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    113   1.2        ad 
    114   1.2        ad #endif	/* DIAGNOSTIC */
    115   1.2        ad 
    116   1.2        ad /*
    117   1.2        ad  * Spin mutex SPL save / restore.
    118   1.2        ad  */
    119  1.12      matt #ifndef MUTEX_COUNT_BIAS
    120  1.12      matt #define	MUTEX_COUNT_BIAS	0
    121  1.12      matt #endif
    122   1.2        ad 
    123   1.2        ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    124   1.2        ad do {									\
    125  1.36        ad 	struct cpu_info *x__ci;						\
    126   1.2        ad 	int x__cnt, s;							\
    127  1.36        ad 	s = splraiseipl(mtx->mtx_ipl);					\
    128  1.36        ad 	x__ci = curcpu();						\
    129   1.2        ad 	x__cnt = x__ci->ci_mtx_count--;					\
    130  1.37        ad 	__insn_barrier();						\
    131  1.12      matt 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    132   1.2        ad 		x__ci->ci_mtx_oldspl = (s);				\
    133   1.2        ad } while (/* CONSTCOND */ 0)
    134   1.2        ad 
    135   1.2        ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    136   1.2        ad do {									\
    137   1.2        ad 	struct cpu_info *x__ci = curcpu();				\
    138   1.2        ad 	int s = x__ci->ci_mtx_oldspl;					\
    139   1.2        ad 	__insn_barrier();						\
    140  1.12      matt 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    141   1.2        ad 		splx(s);						\
    142   1.2        ad } while (/* CONSTCOND */ 0)
    143   1.2        ad 
    144   1.2        ad /*
    145   1.2        ad  * For architectures that provide 'simple' mutexes: they provide a
    146   1.2        ad  * CAS function that is either MP-safe, or does not need to be MP
    147   1.2        ad  * safe.  Adaptive mutexes on these architectures do not require an
    148   1.2        ad  * additional interlock.
    149   1.2        ad  */
    150   1.2        ad 
    151   1.2        ad #ifdef __HAVE_SIMPLE_MUTEXES
    152   1.2        ad 
    153   1.2        ad #define	MUTEX_OWNER(owner)						\
    154   1.2        ad 	(owner & MUTEX_THREAD)
    155   1.2        ad #define	MUTEX_HAS_WAITERS(mtx)						\
    156   1.2        ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    157   1.2        ad 
    158  1.23      yamt #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    159  1.49     skrll 	if (!dodebug)							\
    160  1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    161   1.2        ad do {									\
    162   1.2        ad } while (/* CONSTCOND */ 0);
    163   1.2        ad 
    164  1.23      yamt #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    165   1.2        ad do {									\
    166   1.2        ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    167  1.49     skrll 	if (!dodebug)							\
    168  1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    169   1.2        ad 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    170   1.2        ad 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    171   1.2        ad } while (/* CONSTCOND */ 0)
    172   1.2        ad 
    173   1.2        ad #define	MUTEX_DESTROY(mtx)						\
    174   1.2        ad do {									\
    175   1.2        ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    176   1.2        ad } while (/* CONSTCOND */ 0);
    177   1.2        ad 
    178   1.2        ad #define	MUTEX_SPIN_P(mtx)		\
    179   1.2        ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    180   1.2        ad #define	MUTEX_ADAPTIVE_P(mtx)		\
    181   1.2        ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    182   1.2        ad 
    183  1.49     skrll #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    184  1.23      yamt #if defined(LOCKDEBUG)
    185  1.49     skrll #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    186  1.49     skrll #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_NODEBUG
    187  1.23      yamt #else /* defined(LOCKDEBUG) */
    188  1.23      yamt #define	MUTEX_OWNED(owner)		((owner) != 0)
    189  1.23      yamt #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    190  1.23      yamt #endif /* defined(LOCKDEBUG) */
    191   1.2        ad 
    192   1.2        ad static inline int
    193   1.2        ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    194   1.2        ad {
    195   1.2        ad 	int rv;
    196  1.23      yamt 	uintptr_t old = 0;
    197  1.23      yamt 	uintptr_t new = curthread;
    198  1.23      yamt 
    199  1.23      yamt 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    200  1.23      yamt 	MUTEX_INHERITDEBUG(new, old);
    201  1.23      yamt 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    202   1.7     itohy 	MUTEX_RECEIVE(mtx);
    203   1.2        ad 	return rv;
    204   1.2        ad }
    205   1.2        ad 
    206   1.2        ad static inline int
    207   1.2        ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    208   1.2        ad {
    209   1.2        ad 	int rv;
    210   1.2        ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    211   1.7     itohy 	MUTEX_RECEIVE(mtx);
    212   1.2        ad 	return rv;
    213   1.2        ad }
    214   1.2        ad 
    215   1.2        ad static inline void
    216   1.2        ad MUTEX_RELEASE(kmutex_t *mtx)
    217   1.2        ad {
    218  1.23      yamt 	uintptr_t new;
    219  1.23      yamt 
    220   1.7     itohy 	MUTEX_GIVE(mtx);
    221  1.23      yamt 	new = 0;
    222  1.23      yamt 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    223  1.23      yamt 	mtx->mtx_owner = new;
    224   1.2        ad }
    225   1.4        ad 
    226   1.4        ad static inline void
    227   1.4        ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    228   1.4        ad {
    229   1.4        ad 	/* nothing */
    230   1.4        ad }
    231   1.2        ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    232   1.2        ad 
    233   1.2        ad /*
    234   1.2        ad  * Patch in stubs via strong alias where they are not available.
    235   1.2        ad  */
    236   1.2        ad 
    237   1.2        ad #if defined(LOCKDEBUG)
    238   1.2        ad #undef	__HAVE_MUTEX_STUBS
    239   1.2        ad #undef	__HAVE_SPIN_MUTEX_STUBS
    240   1.2        ad #endif
    241   1.2        ad 
    242   1.2        ad #ifndef __HAVE_MUTEX_STUBS
    243   1.8     itohy __strong_alias(mutex_enter,mutex_vector_enter);
    244   1.8     itohy __strong_alias(mutex_exit,mutex_vector_exit);
    245   1.2        ad #endif
    246   1.2        ad 
    247   1.2        ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    248   1.8     itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    249   1.8     itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    250   1.2        ad #endif
    251   1.2        ad 
    252   1.2        ad void	mutex_abort(kmutex_t *, const char *, const char *);
    253   1.2        ad void	mutex_dump(volatile void *);
    254   1.2        ad int	mutex_onproc(uintptr_t, struct cpu_info **);
    255   1.2        ad 
    256   1.2        ad lockops_t mutex_spin_lockops = {
    257   1.2        ad 	"Mutex",
    258  1.42        ad 	LOCKOPS_SPIN,
    259   1.2        ad 	mutex_dump
    260   1.2        ad };
    261   1.2        ad 
    262   1.2        ad lockops_t mutex_adaptive_lockops = {
    263   1.2        ad 	"Mutex",
    264  1.42        ad 	LOCKOPS_SLEEP,
    265   1.2        ad 	mutex_dump
    266   1.2        ad };
    267   1.2        ad 
    268   1.5      yamt syncobj_t mutex_syncobj = {
    269   1.5      yamt 	SOBJ_SLEEPQ_SORTED,
    270   1.5      yamt 	turnstile_unsleep,
    271   1.5      yamt 	turnstile_changepri,
    272   1.5      yamt 	sleepq_lendpri,
    273  1.27        ad 	(void *)mutex_owner,
    274   1.5      yamt };
    275   1.5      yamt 
    276   1.2        ad /*
    277   1.2        ad  * mutex_dump:
    278   1.2        ad  *
    279   1.2        ad  *	Dump the contents of a mutex structure.
    280   1.2        ad  */
    281   1.2        ad void
    282   1.2        ad mutex_dump(volatile void *cookie)
    283   1.2        ad {
    284   1.2        ad 	volatile kmutex_t *mtx = cookie;
    285   1.2        ad 
    286   1.2        ad 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    287   1.2        ad 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    288   1.2        ad 	    MUTEX_SPIN_P(mtx));
    289   1.2        ad }
    290   1.2        ad 
    291   1.2        ad /*
    292   1.2        ad  * mutex_abort:
    293   1.2        ad  *
    294   1.3        ad  *	Dump information about an error and panic the system.  This
    295   1.3        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    296   1.3        ad  *	we ask the compiler to not inline it.
    297   1.2        ad  */
    298  1.43        ad void __noinline
    299   1.2        ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    300   1.2        ad {
    301   1.2        ad 
    302  1.23      yamt 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    303   1.3        ad 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    304   1.2        ad }
    305   1.2        ad 
    306   1.2        ad /*
    307   1.2        ad  * mutex_init:
    308   1.2        ad  *
    309   1.2        ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    310   1.2        ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    311   1.2        ad  *	CPU time.  We can't easily provide a type of mutex that always
    312   1.2        ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    313   1.2        ad  *	mutexes unlocked.
    314   1.2        ad  */
    315   1.2        ad void
    316   1.2        ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    317   1.2        ad {
    318  1.23      yamt 	bool dodebug;
    319   1.2        ad 
    320   1.2        ad 	memset(mtx, 0, sizeof(*mtx));
    321   1.2        ad 
    322  1.15        ad 	switch (type) {
    323  1.15        ad 	case MUTEX_ADAPTIVE:
    324  1.15        ad 		KASSERT(ipl == IPL_NONE);
    325  1.15        ad 		break;
    326  1.22        ad 	case MUTEX_DEFAULT:
    327  1.15        ad 	case MUTEX_DRIVER:
    328  1.26        ad 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    329  1.26        ad 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    330  1.26        ad 		    ipl == IPL_SOFTSERIAL) {
    331  1.22        ad 			type = MUTEX_ADAPTIVE;
    332  1.26        ad 		} else {
    333  1.22        ad 			type = MUTEX_SPIN;
    334  1.22        ad 		}
    335  1.15        ad 		break;
    336  1.15        ad 	default:
    337  1.15        ad 		break;
    338  1.15        ad 	}
    339   1.2        ad 
    340   1.2        ad 	switch (type) {
    341  1.11        ad 	case MUTEX_NODEBUG:
    342  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    343  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    344  1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    345  1.11        ad 		break;
    346   1.2        ad 	case MUTEX_ADAPTIVE:
    347  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    348  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    349  1.23      yamt 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    350   1.2        ad 		break;
    351   1.2        ad 	case MUTEX_SPIN:
    352  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    353  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    354  1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    355   1.2        ad 		break;
    356   1.2        ad 	default:
    357   1.2        ad 		panic("mutex_init: impossible type");
    358   1.2        ad 		break;
    359   1.2        ad 	}
    360   1.2        ad }
    361   1.2        ad 
    362   1.2        ad /*
    363   1.2        ad  * mutex_destroy:
    364   1.2        ad  *
    365   1.2        ad  *	Tear down a mutex.
    366   1.2        ad  */
    367   1.2        ad void
    368   1.2        ad mutex_destroy(kmutex_t *mtx)
    369   1.2        ad {
    370   1.2        ad 
    371   1.2        ad 	if (MUTEX_ADAPTIVE_P(mtx)) {
    372   1.2        ad 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    373   1.2        ad 		    !MUTEX_HAS_WAITERS(mtx));
    374   1.2        ad 	} else {
    375  1.16     skrll 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    376   1.2        ad 	}
    377   1.2        ad 
    378  1.23      yamt 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    379   1.2        ad 	MUTEX_DESTROY(mtx);
    380   1.2        ad }
    381   1.2        ad 
    382   1.2        ad /*
    383   1.2        ad  * mutex_onproc:
    384   1.2        ad  *
    385   1.2        ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    386   1.2        ad  *	system.  If the target is waiting on the kernel big lock, then we
    387  1.15        ad  *	must release it.  This is necessary to avoid deadlock.
    388   1.2        ad  *
    389   1.2        ad  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    390   1.2        ad  *	don't have full control over the timing of our execution, and so the
    391   1.2        ad  *	pointer could be completely invalid by the time we dereference it.
    392   1.2        ad  */
    393   1.2        ad #ifdef MULTIPROCESSOR
    394   1.2        ad int
    395   1.2        ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    396   1.2        ad {
    397   1.2        ad 	CPU_INFO_ITERATOR cii;
    398   1.2        ad 	struct cpu_info *ci;
    399   1.2        ad 	struct lwp *l;
    400   1.2        ad 
    401   1.2        ad 	if (!MUTEX_OWNED(owner))
    402   1.2        ad 		return 0;
    403   1.2        ad 	l = (struct lwp *)MUTEX_OWNER(owner);
    404   1.2        ad 
    405  1.15        ad 	/* See if the target is running on a CPU somewhere. */
    406  1.10        ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    407  1.15        ad 		goto run;
    408  1.15        ad 	for (CPU_INFO_FOREACH(cii, ci))
    409  1.15        ad 		if (ci->ci_curlwp == l)
    410  1.15        ad 			goto run;
    411   1.2        ad 
    412  1.15        ad 	/* No: it may be safe to block now. */
    413   1.2        ad 	*cip = NULL;
    414   1.2        ad 	return 0;
    415  1.15        ad 
    416  1.15        ad  run:
    417  1.15        ad  	/* Target is running; do we need to block? */
    418  1.15        ad  	*cip = ci;
    419  1.15        ad 	return ci->ci_biglock_wanted != l;
    420   1.2        ad }
    421  1.15        ad #endif	/* MULTIPROCESSOR */
    422   1.2        ad 
    423   1.2        ad /*
    424   1.2        ad  * mutex_vector_enter:
    425   1.2        ad  *
    426  1.45     rmind  *	Support routine for mutex_enter() that must handle all cases.  In
    427   1.2        ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    428   1.2        ad  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    429   1.2        ad  *	not available, then it is also aliased directly here.
    430   1.2        ad  */
    431   1.2        ad void
    432   1.2        ad mutex_vector_enter(kmutex_t *mtx)
    433   1.2        ad {
    434   1.2        ad 	uintptr_t owner, curthread;
    435   1.2        ad 	turnstile_t *ts;
    436   1.2        ad #ifdef MULTIPROCESSOR
    437   1.2        ad 	struct cpu_info *ci = NULL;
    438   1.2        ad 	u_int count;
    439   1.2        ad #endif
    440  1.44  wrstuden #ifdef KERN_SA
    441  1.44  wrstuden 	int f;
    442  1.44  wrstuden #endif
    443   1.2        ad 	LOCKSTAT_COUNTER(spincnt);
    444   1.2        ad 	LOCKSTAT_COUNTER(slpcnt);
    445   1.2        ad 	LOCKSTAT_TIMER(spintime);
    446   1.2        ad 	LOCKSTAT_TIMER(slptime);
    447   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    448   1.2        ad 
    449   1.2        ad 	/*
    450   1.2        ad 	 * Handle spin mutexes.
    451   1.2        ad 	 */
    452   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    453   1.2        ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    454   1.2        ad 		u_int spins = 0;
    455   1.2        ad #endif
    456   1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    457   1.2        ad 		MUTEX_WANTLOCK(mtx);
    458   1.2        ad #ifdef FULL
    459   1.2        ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    460   1.2        ad 			MUTEX_LOCKED(mtx);
    461   1.2        ad 			return;
    462   1.2        ad 		}
    463   1.2        ad #if !defined(MULTIPROCESSOR)
    464   1.2        ad 		MUTEX_ABORT(mtx, "locking against myself");
    465   1.2        ad #else /* !MULTIPROCESSOR */
    466   1.2        ad 
    467   1.2        ad 		LOCKSTAT_ENTER(lsflag);
    468   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    469   1.2        ad 		count = SPINLOCK_BACKOFF_MIN;
    470   1.2        ad 
    471   1.2        ad 		/*
    472   1.2        ad 		 * Spin testing the lock word and do exponential backoff
    473   1.2        ad 		 * to reduce cache line ping-ponging between CPUs.
    474   1.2        ad 		 */
    475   1.2        ad 		do {
    476   1.2        ad 			if (panicstr != NULL)
    477   1.2        ad 				break;
    478  1.16     skrll 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    479   1.2        ad 				SPINLOCK_BACKOFF(count);
    480   1.2        ad #ifdef LOCKDEBUG
    481   1.2        ad 				if (SPINLOCK_SPINOUT(spins))
    482   1.2        ad 					MUTEX_ABORT(mtx, "spinout");
    483   1.2        ad #endif	/* LOCKDEBUG */
    484   1.2        ad 			}
    485   1.2        ad 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    486   1.2        ad 
    487   1.2        ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    488   1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    489   1.2        ad 			LOCKSTAT_EVENT(lsflag, mtx,
    490   1.2        ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    491   1.2        ad 		}
    492   1.2        ad 		LOCKSTAT_EXIT(lsflag);
    493   1.2        ad #endif	/* !MULTIPROCESSOR */
    494   1.2        ad #endif	/* FULL */
    495   1.2        ad 		MUTEX_LOCKED(mtx);
    496   1.2        ad 		return;
    497   1.2        ad 	}
    498   1.2        ad 
    499   1.2        ad 	curthread = (uintptr_t)curlwp;
    500   1.2        ad 
    501   1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    502   1.2        ad 	MUTEX_ASSERT(mtx, curthread != 0);
    503   1.2        ad 	MUTEX_WANTLOCK(mtx);
    504   1.2        ad 
    505   1.2        ad 	if (panicstr == NULL) {
    506   1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    507   1.2        ad 	}
    508   1.2        ad 
    509   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    510   1.2        ad 
    511   1.2        ad 	/*
    512   1.2        ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    513   1.2        ad 	 * determine that the owner is not running on a processor,
    514   1.2        ad 	 * then we stop spinning, and sleep instead.
    515   1.2        ad 	 */
    516  1.34        ad 	for (owner = mtx->mtx_owner;;) {
    517   1.2        ad 		if (!MUTEX_OWNED(owner)) {
    518   1.2        ad 			/*
    519   1.2        ad 			 * Mutex owner clear could mean two things:
    520   1.2        ad 			 *
    521   1.2        ad 			 *	* The mutex has been released.
    522   1.2        ad 			 *	* The owner field hasn't been set yet.
    523   1.2        ad 			 *
    524   1.2        ad 			 * Try to acquire it again.  If that fails,
    525   1.2        ad 			 * we'll just loop again.
    526   1.2        ad 			 */
    527   1.2        ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    528   1.2        ad 				break;
    529  1.34        ad 			owner = mtx->mtx_owner;
    530   1.2        ad 			continue;
    531   1.2        ad 		}
    532   1.2        ad 
    533  1.45     rmind 		if (__predict_false(panicstr != NULL))
    534   1.2        ad 			return;
    535  1.45     rmind 		if (__predict_false(MUTEX_OWNER(owner) == curthread))
    536   1.2        ad 			MUTEX_ABORT(mtx, "locking against myself");
    537   1.2        ad 
    538   1.2        ad #ifdef MULTIPROCESSOR
    539   1.2        ad 		/*
    540   1.2        ad 		 * Check to see if the owner is running on a processor.
    541   1.2        ad 		 * If so, then we should just spin, as the owner will
    542   1.2        ad 		 * likely release the lock very soon.
    543   1.2        ad 		 */
    544   1.2        ad 		if (mutex_onproc(owner, &ci)) {
    545   1.2        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    546   1.2        ad 			count = SPINLOCK_BACKOFF_MIN;
    547   1.2        ad 			for (;;) {
    548  1.34        ad 				SPINLOCK_BACKOFF(count);
    549   1.2        ad 				owner = mtx->mtx_owner;
    550   1.2        ad 				if (!mutex_onproc(owner, &ci))
    551   1.2        ad 					break;
    552   1.2        ad 			}
    553   1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    554   1.2        ad 			LOCKSTAT_COUNT(spincnt, 1);
    555   1.2        ad 			if (!MUTEX_OWNED(owner))
    556   1.2        ad 				continue;
    557   1.2        ad 		}
    558   1.2        ad #endif
    559   1.2        ad 
    560   1.2        ad 		ts = turnstile_lookup(mtx);
    561   1.2        ad 
    562   1.2        ad 		/*
    563   1.2        ad 		 * Once we have the turnstile chain interlock, mark the
    564   1.2        ad 		 * mutex has having waiters.  If that fails, spin again:
    565   1.2        ad 		 * chances are that the mutex has been released.
    566   1.2        ad 		 */
    567   1.2        ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    568   1.2        ad 			turnstile_exit(mtx);
    569  1.34        ad 			owner = mtx->mtx_owner;
    570   1.2        ad 			continue;
    571   1.2        ad 		}
    572   1.2        ad 
    573   1.2        ad #ifdef MULTIPROCESSOR
    574   1.2        ad 		/*
    575   1.2        ad 		 * mutex_exit() is permitted to release the mutex without
    576   1.2        ad 		 * any interlocking instructions, and the following can
    577   1.2        ad 		 * occur as a result:
    578   1.2        ad 		 *
    579   1.2        ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    580   1.2        ad 		 * ---------------------------- ----------------------------
    581   1.2        ad 		 *		..		    acquire cache line
    582   1.2        ad 		 *		..                   test for waiters
    583   1.2        ad 		 *	acquire cache line    <-      lose cache line
    584   1.2        ad 		 *	 lock cache line	           ..
    585   1.2        ad 		 *     verify mutex is held                ..
    586   1.2        ad 		 *	    set waiters  	           ..
    587   1.2        ad 		 *	 unlock cache line		   ..
    588   1.2        ad 		 *	  lose cache line     ->    acquire cache line
    589   1.2        ad 		 *		..	          clear lock word, waiters
    590   1.2        ad 		 *	  return success
    591   1.2        ad 		 *
    592   1.2        ad 		 * There is a another race that can occur: a third CPU could
    593   1.2        ad 		 * acquire the mutex as soon as it is released.  Since
    594   1.2        ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    595   1.2        ad 		 * something that we need to worry about too much.  What we
    596   1.2        ad 		 * do need to ensure is that the waiters bit gets set.
    597   1.2        ad 		 *
    598   1.2        ad 		 * To allow the unlocked release, we need to make some
    599   1.2        ad 		 * assumptions here:
    600   1.2        ad 		 *
    601   1.2        ad 		 * o Release is the only non-atomic/unlocked operation
    602   1.2        ad 		 *   that can be performed on the mutex.  (It must still
    603   1.2        ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    604   1.2        ad 		 *   or preempted).
    605   1.2        ad 		 *
    606   1.2        ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    607  1.21     pooka 		 *   be in progress on one CPU in the system - guaranteed
    608   1.2        ad 		 *   by the turnstile chain lock.
    609   1.2        ad 		 *
    610   1.2        ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    611   1.2        ad 		 *   and release can modify a mutex with a non-zero
    612   1.2        ad 		 *   owner field.
    613   1.2        ad 		 *
    614   1.2        ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    615   1.2        ad 		 *   is an unbuffered write that is immediately visible
    616   1.2        ad 		 *   to all other processors in the system.
    617   1.2        ad 		 *
    618   1.2        ad 		 * o If the holding LWP switches away, it posts a store
    619   1.2        ad 		 *   fence before changing curlwp, ensuring that any
    620   1.2        ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    621   1.2        ad 		 *   completes before the modification of curlwp becomes
    622   1.2        ad 		 *   visible to this CPU.
    623   1.2        ad 		 *
    624  1.14      yamt 		 * o mi_switch() posts a store fence before setting curlwp
    625   1.2        ad 		 *   and before resuming execution of an LWP.
    626   1.2        ad 		 *
    627   1.2        ad 		 * o _kernel_lock() posts a store fence before setting
    628   1.2        ad 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    629   1.2        ad 		 *   This ensures that any overwrite of the mutex waiters
    630   1.2        ad 		 *   flag by mutex_exit() completes before the modification
    631   1.2        ad 		 *   of ci_biglock_wanted becomes visible.
    632   1.2        ad 		 *
    633   1.2        ad 		 * We now post a read memory barrier (after setting the
    634   1.2        ad 		 * waiters field) and check the lock holder's status again.
    635   1.2        ad 		 * Some of the possible outcomes (not an exhaustive list):
    636   1.2        ad 		 *
    637   1.2        ad 		 * 1. The onproc check returns true: the holding LWP is
    638   1.2        ad 		 *    running again.  The lock may be released soon and
    639   1.2        ad 		 *    we should spin.  Importantly, we can't trust the
    640   1.2        ad 		 *    value of the waiters flag.
    641   1.2        ad 		 *
    642   1.2        ad 		 * 2. The onproc check returns false: the holding LWP is
    643  1.39      yamt 		 *    not running.  We now have the opportunity to check
    644   1.2        ad 		 *    if mutex_exit() has blatted the modifications made
    645   1.2        ad 		 *    by MUTEX_SET_WAITERS().
    646   1.2        ad 		 *
    647   1.2        ad 		 * 3. The onproc check returns false: the holding LWP may
    648   1.2        ad 		 *    or may not be running.  It has context switched at
    649   1.2        ad 		 *    some point during our check.  Again, we have the
    650   1.2        ad 		 *    chance to see if the waiters bit is still set or
    651   1.2        ad 		 *    has been overwritten.
    652   1.2        ad 		 *
    653   1.2        ad 		 * 4. The onproc check returns false: the holding LWP is
    654   1.2        ad 		 *    running on a CPU, but wants the big lock.  It's OK
    655   1.2        ad 		 *    to check the waiters field in this case.
    656   1.2        ad 		 *
    657   1.2        ad 		 * 5. The has-waiters check fails: the mutex has been
    658   1.2        ad 		 *    released, the waiters flag cleared and another LWP
    659   1.2        ad 		 *    now owns the mutex.
    660   1.2        ad 		 *
    661   1.2        ad 		 * 6. The has-waiters check fails: the mutex has been
    662   1.2        ad 		 *    released.
    663   1.2        ad 		 *
    664   1.2        ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    665   1.2        ad 		 * as we might never be awoken.
    666   1.2        ad 		 */
    667  1.24        ad 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    668  1.24        ad 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    669   1.2        ad 			turnstile_exit(mtx);
    670  1.34        ad 			owner = mtx->mtx_owner;
    671   1.2        ad 			continue;
    672   1.2        ad 		}
    673   1.2        ad #endif	/* MULTIPROCESSOR */
    674   1.2        ad 
    675  1.44  wrstuden #ifdef KERN_SA
    676  1.44  wrstuden 		/*
    677  1.44  wrstuden 		 * Sleeping for a mutex should not generate an upcall.
    678  1.44  wrstuden 		 * So set LP_SA_NOBLOCK to indicate this.
    679  1.44  wrstuden 		 * f indicates if we should clear LP_SA_NOBLOCK when done.
    680  1.44  wrstuden 		 */
    681  1.44  wrstuden 		f = ~curlwp->l_pflag & LP_SA_NOBLOCK;
    682  1.44  wrstuden 		curlwp->l_pflag |= LP_SA_NOBLOCK;
    683  1.44  wrstuden #endif /* KERN_SA */
    684  1.44  wrstuden 
    685   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    686   1.2        ad 
    687   1.5      yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    688   1.2        ad 
    689   1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    690   1.2        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    691  1.34        ad 
    692  1.44  wrstuden #ifdef KERN_SA
    693  1.44  wrstuden 		curlwp->l_pflag ^= f;
    694  1.44  wrstuden #endif /* KERN_SA */
    695  1.44  wrstuden 
    696  1.34        ad 		owner = mtx->mtx_owner;
    697   1.2        ad 	}
    698   1.2        ad 
    699   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    700   1.2        ad 	    slpcnt, slptime);
    701   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    702   1.2        ad 	    spincnt, spintime);
    703   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    704   1.2        ad 
    705   1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    706   1.2        ad 	MUTEX_LOCKED(mtx);
    707   1.2        ad }
    708   1.2        ad 
    709   1.2        ad /*
    710   1.2        ad  * mutex_vector_exit:
    711   1.2        ad  *
    712   1.2        ad  *	Support routine for mutex_exit() that handles all cases.
    713   1.2        ad  */
    714   1.2        ad void
    715   1.2        ad mutex_vector_exit(kmutex_t *mtx)
    716   1.2        ad {
    717   1.2        ad 	turnstile_t *ts;
    718   1.2        ad 	uintptr_t curthread;
    719   1.2        ad 
    720   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    721   1.2        ad #ifdef FULL
    722  1.33        ad 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    723  1.33        ad 			if (panicstr != NULL)
    724  1.33        ad 				return;
    725   1.2        ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    726  1.33        ad 		}
    727   1.2        ad 		MUTEX_UNLOCKED(mtx);
    728   1.2        ad 		__cpu_simple_unlock(&mtx->mtx_lock);
    729   1.2        ad #endif
    730   1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    731   1.2        ad 		return;
    732   1.2        ad 	}
    733   1.2        ad 
    734  1.11        ad 	if (__predict_false((uintptr_t)panicstr | cold)) {
    735   1.2        ad 		MUTEX_UNLOCKED(mtx);
    736   1.2        ad 		MUTEX_RELEASE(mtx);
    737   1.2        ad 		return;
    738   1.2        ad 	}
    739   1.2        ad 
    740   1.2        ad 	curthread = (uintptr_t)curlwp;
    741   1.2        ad 	MUTEX_DASSERT(mtx, curthread != 0);
    742   1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    743   1.2        ad 	MUTEX_UNLOCKED(mtx);
    744   1.2        ad 
    745  1.15        ad #ifdef LOCKDEBUG
    746  1.15        ad 	/*
    747  1.15        ad 	 * Avoid having to take the turnstile chain lock every time
    748  1.15        ad 	 * around.  Raise the priority level to splhigh() in order
    749  1.15        ad 	 * to disable preemption and so make the following atomic.
    750  1.15        ad 	 */
    751  1.15        ad 	{
    752  1.15        ad 		int s = splhigh();
    753  1.15        ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    754  1.15        ad 			MUTEX_RELEASE(mtx);
    755  1.15        ad 			splx(s);
    756  1.15        ad 			return;
    757  1.15        ad 		}
    758  1.15        ad 		splx(s);
    759  1.15        ad 	}
    760  1.15        ad #endif
    761  1.15        ad 
    762   1.2        ad 	/*
    763   1.2        ad 	 * Get this lock's turnstile.  This gets the interlock on
    764   1.2        ad 	 * the sleep queue.  Once we have that, we can clear the
    765   1.2        ad 	 * lock.  If there was no turnstile for the lock, there
    766   1.2        ad 	 * were no waiters remaining.
    767   1.2        ad 	 */
    768   1.2        ad 	ts = turnstile_lookup(mtx);
    769   1.2        ad 
    770   1.2        ad 	if (ts == NULL) {
    771   1.2        ad 		MUTEX_RELEASE(mtx);
    772   1.2        ad 		turnstile_exit(mtx);
    773   1.2        ad 	} else {
    774   1.2        ad 		MUTEX_RELEASE(mtx);
    775   1.2        ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    776   1.2        ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    777   1.2        ad 	}
    778   1.2        ad }
    779   1.2        ad 
    780   1.4        ad #ifndef __HAVE_SIMPLE_MUTEXES
    781   1.4        ad /*
    782   1.4        ad  * mutex_wakeup:
    783   1.4        ad  *
    784   1.4        ad  *	Support routine for mutex_exit() that wakes up all waiters.
    785   1.4        ad  *	We assume that the mutex has been released, but it need not
    786   1.4        ad  *	be.
    787   1.4        ad  */
    788   1.4        ad void
    789   1.4        ad mutex_wakeup(kmutex_t *mtx)
    790   1.4        ad {
    791   1.4        ad 	turnstile_t *ts;
    792   1.4        ad 
    793   1.4        ad 	ts = turnstile_lookup(mtx);
    794   1.4        ad 	if (ts == NULL) {
    795   1.4        ad 		turnstile_exit(mtx);
    796   1.4        ad 		return;
    797   1.4        ad 	}
    798   1.4        ad 	MUTEX_CLEAR_WAITERS(mtx);
    799   1.4        ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    800   1.4        ad }
    801   1.4        ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    802   1.4        ad 
    803   1.2        ad /*
    804   1.2        ad  * mutex_owned:
    805   1.2        ad  *
    806   1.3        ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    807   1.3        ad  *	holds the mutex.
    808   1.2        ad  */
    809   1.2        ad int
    810   1.2        ad mutex_owned(kmutex_t *mtx)
    811   1.2        ad {
    812   1.2        ad 
    813  1.35        ad 	if (mtx == NULL)
    814  1.35        ad 		return 0;
    815   1.2        ad 	if (MUTEX_ADAPTIVE_P(mtx))
    816   1.2        ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    817   1.2        ad #ifdef FULL
    818  1.16     skrll 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    819   1.2        ad #else
    820   1.2        ad 	return 1;
    821   1.2        ad #endif
    822   1.2        ad }
    823   1.2        ad 
    824   1.2        ad /*
    825   1.2        ad  * mutex_owner:
    826   1.2        ad  *
    827   1.6        ad  *	Return the current owner of an adaptive mutex.  Used for
    828   1.6        ad  *	priority inheritance.
    829   1.2        ad  */
    830  1.27        ad lwp_t *
    831  1.27        ad mutex_owner(kmutex_t *mtx)
    832   1.2        ad {
    833   1.2        ad 
    834   1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    835   1.2        ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    836   1.2        ad }
    837   1.2        ad 
    838   1.2        ad /*
    839   1.2        ad  * mutex_tryenter:
    840   1.2        ad  *
    841   1.2        ad  *	Try to acquire the mutex; return non-zero if we did.
    842   1.2        ad  */
    843   1.2        ad int
    844   1.2        ad mutex_tryenter(kmutex_t *mtx)
    845   1.2        ad {
    846   1.2        ad 	uintptr_t curthread;
    847   1.2        ad 
    848   1.2        ad 	/*
    849   1.2        ad 	 * Handle spin mutexes.
    850   1.2        ad 	 */
    851   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    852   1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    853   1.2        ad #ifdef FULL
    854   1.2        ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    855   1.4        ad 			MUTEX_WANTLOCK(mtx);
    856   1.2        ad 			MUTEX_LOCKED(mtx);
    857   1.2        ad 			return 1;
    858   1.2        ad 		}
    859   1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    860   1.2        ad #else
    861   1.4        ad 		MUTEX_WANTLOCK(mtx);
    862   1.2        ad 		MUTEX_LOCKED(mtx);
    863   1.2        ad 		return 1;
    864   1.2        ad #endif
    865   1.2        ad 	} else {
    866   1.2        ad 		curthread = (uintptr_t)curlwp;
    867   1.2        ad 		MUTEX_ASSERT(mtx, curthread != 0);
    868   1.2        ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    869   1.4        ad 			MUTEX_WANTLOCK(mtx);
    870   1.2        ad 			MUTEX_LOCKED(mtx);
    871   1.2        ad 			MUTEX_DASSERT(mtx,
    872   1.2        ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    873   1.2        ad 			return 1;
    874   1.2        ad 		}
    875   1.2        ad 	}
    876   1.2        ad 
    877   1.2        ad 	return 0;
    878   1.2        ad }
    879   1.2        ad 
    880   1.2        ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    881   1.2        ad /*
    882   1.2        ad  * mutex_spin_retry:
    883   1.2        ad  *
    884   1.2        ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    885   1.2        ad  *	has already raised the SPL, and adjusted counters.
    886   1.2        ad  */
    887   1.2        ad void
    888   1.2        ad mutex_spin_retry(kmutex_t *mtx)
    889   1.2        ad {
    890   1.2        ad #ifdef MULTIPROCESSOR
    891   1.2        ad 	u_int count;
    892   1.2        ad 	LOCKSTAT_TIMER(spintime);
    893   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    894   1.2        ad #ifdef LOCKDEBUG
    895   1.2        ad 	u_int spins = 0;
    896   1.2        ad #endif	/* LOCKDEBUG */
    897   1.2        ad 
    898   1.2        ad 	MUTEX_WANTLOCK(mtx);
    899   1.2        ad 
    900   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    901   1.2        ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    902   1.2        ad 	count = SPINLOCK_BACKOFF_MIN;
    903   1.2        ad 
    904   1.2        ad 	/*
    905   1.2        ad 	 * Spin testing the lock word and do exponential backoff
    906   1.2        ad 	 * to reduce cache line ping-ponging between CPUs.
    907   1.2        ad 	 */
    908   1.2        ad 	do {
    909   1.2        ad 		if (panicstr != NULL)
    910   1.2        ad 			break;
    911  1.16     skrll 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    912   1.2        ad 			SPINLOCK_BACKOFF(count);
    913   1.2        ad #ifdef LOCKDEBUG
    914   1.2        ad 			if (SPINLOCK_SPINOUT(spins))
    915   1.2        ad 				MUTEX_ABORT(mtx, "spinout");
    916   1.2        ad #endif	/* LOCKDEBUG */
    917   1.2        ad 		}
    918   1.2        ad 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    919   1.2        ad 
    920   1.2        ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    921   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    922   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    923   1.2        ad 
    924   1.2        ad 	MUTEX_LOCKED(mtx);
    925   1.2        ad #else	/* MULTIPROCESSOR */
    926   1.2        ad 	MUTEX_ABORT(mtx, "locking against myself");
    927   1.2        ad #endif	/* MULTIPROCESSOR */
    928   1.2        ad }
    929   1.2        ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    930