Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.5
      1  1.5  yamt /*	$NetBSD: kern_mutex.c,v 1.5 2007/02/26 09:20:53 yamt Exp $	*/
      2  1.2    ad 
      3  1.2    ad /*-
      4  1.2    ad  * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
      5  1.2    ad  * All rights reserved.
      6  1.2    ad  *
      7  1.2    ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.2    ad  * by Jason R. Thorpe and Andrew Doran.
      9  1.2    ad  *
     10  1.2    ad  * Redistribution and use in source and binary forms, with or without
     11  1.2    ad  * modification, are permitted provided that the following conditions
     12  1.2    ad  * are met:
     13  1.2    ad  * 1. Redistributions of source code must retain the above copyright
     14  1.2    ad  *    notice, this list of conditions and the following disclaimer.
     15  1.2    ad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.2    ad  *    notice, this list of conditions and the following disclaimer in the
     17  1.2    ad  *    documentation and/or other materials provided with the distribution.
     18  1.2    ad  * 3. All advertising materials mentioning features or use of this software
     19  1.2    ad  *    must display the following acknowledgement:
     20  1.2    ad  *	This product includes software developed by the NetBSD
     21  1.2    ad  *	Foundation, Inc. and its contributors.
     22  1.2    ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.2    ad  *    contributors may be used to endorse or promote products derived
     24  1.2    ad  *    from this software without specific prior written permission.
     25  1.2    ad  *
     26  1.2    ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.2    ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.2    ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.2    ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.2    ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.2    ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.2    ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.2    ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.2    ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.2    ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.2    ad  * POSSIBILITY OF SUCH DAMAGE.
     37  1.2    ad  */
     38  1.2    ad 
     39  1.2    ad /*
     40  1.2    ad  * Kernel mutex implementation, modeled after those found in Solaris,
     41  1.2    ad  * a description of which can be found in:
     42  1.2    ad  *
     43  1.2    ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44  1.2    ad  *	    Richard McDougall.
     45  1.2    ad  */
     46  1.2    ad 
     47  1.2    ad #include "opt_multiprocessor.h"
     48  1.2    ad 
     49  1.2    ad #define	__MUTEX_PRIVATE
     50  1.2    ad 
     51  1.2    ad #include <sys/cdefs.h>
     52  1.5  yamt __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.5 2007/02/26 09:20:53 yamt Exp $");
     53  1.2    ad 
     54  1.2    ad #include <sys/param.h>
     55  1.2    ad #include <sys/proc.h>
     56  1.2    ad #include <sys/mutex.h>
     57  1.2    ad #include <sys/sched.h>
     58  1.2    ad #include <sys/sleepq.h>
     59  1.2    ad #include <sys/systm.h>
     60  1.2    ad #include <sys/lockdebug.h>
     61  1.2    ad #include <sys/kernel.h>
     62  1.2    ad 
     63  1.2    ad #include <dev/lockstat.h>
     64  1.2    ad 
     65  1.2    ad #include <machine/intr.h>
     66  1.2    ad 
     67  1.2    ad /*
     68  1.2    ad  * When not running a debug kernel, spin mutexes are not much
     69  1.2    ad  * more than an splraiseipl() and splx() pair.
     70  1.2    ad  */
     71  1.2    ad 
     72  1.2    ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     73  1.2    ad #define	FULL
     74  1.2    ad #endif
     75  1.2    ad 
     76  1.2    ad /*
     77  1.2    ad  * Debugging support.
     78  1.2    ad  */
     79  1.2    ad 
     80  1.2    ad #define	MUTEX_WANTLOCK(mtx)					\
     81  1.2    ad     LOCKDEBUG_WANTLOCK(MUTEX_GETID(mtx),			\
     82  1.2    ad         (uintptr_t)__builtin_return_address(0), 0)
     83  1.2    ad #define	MUTEX_LOCKED(mtx)					\
     84  1.2    ad     LOCKDEBUG_LOCKED(MUTEX_GETID(mtx),				\
     85  1.2    ad         (uintptr_t)__builtin_return_address(0), 0)
     86  1.2    ad #define	MUTEX_UNLOCKED(mtx)					\
     87  1.2    ad     LOCKDEBUG_UNLOCKED(MUTEX_GETID(mtx),			\
     88  1.2    ad         (uintptr_t)__builtin_return_address(0), 0)
     89  1.2    ad #define	MUTEX_ABORT(mtx, msg)					\
     90  1.2    ad     mutex_abort(mtx, __FUNCTION__, msg)
     91  1.2    ad 
     92  1.2    ad #if defined(LOCKDEBUG)
     93  1.2    ad 
     94  1.2    ad #define	MUTEX_DASSERT(mtx, cond)				\
     95  1.2    ad do {								\
     96  1.2    ad 	if (!(cond))						\
     97  1.2    ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     98  1.2    ad } while (/* CONSTCOND */ 0);
     99  1.2    ad 
    100  1.2    ad #else	/* LOCKDEBUG */
    101  1.2    ad 
    102  1.2    ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    103  1.2    ad 
    104  1.2    ad #endif /* LOCKDEBUG */
    105  1.2    ad 
    106  1.2    ad #if defined(DIAGNOSTIC)
    107  1.2    ad 
    108  1.2    ad #define	MUTEX_ASSERT(mtx, cond)					\
    109  1.2    ad do {								\
    110  1.2    ad 	if (!(cond))						\
    111  1.2    ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    112  1.2    ad } while (/* CONSTCOND */ 0)
    113  1.2    ad 
    114  1.2    ad #else	/* DIAGNOSTIC */
    115  1.2    ad 
    116  1.2    ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    117  1.2    ad 
    118  1.2    ad #endif	/* DIAGNOSTIC */
    119  1.2    ad 
    120  1.2    ad /*
    121  1.2    ad  * Spin mutex SPL save / restore.
    122  1.2    ad  */
    123  1.2    ad 
    124  1.2    ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    125  1.2    ad do {									\
    126  1.2    ad 	struct cpu_info *x__ci = curcpu();				\
    127  1.2    ad 	int x__cnt, s;							\
    128  1.2    ad 	x__cnt = x__ci->ci_mtx_count--;					\
    129  1.2    ad 	s = splraiseipl(mtx->mtx_ipl);					\
    130  1.2    ad 	if (x__cnt == 0)						\
    131  1.2    ad 		x__ci->ci_mtx_oldspl = (s);				\
    132  1.2    ad } while (/* CONSTCOND */ 0)
    133  1.2    ad 
    134  1.2    ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    135  1.2    ad do {									\
    136  1.2    ad 	struct cpu_info *x__ci = curcpu();				\
    137  1.2    ad 	int s = x__ci->ci_mtx_oldspl;					\
    138  1.2    ad 	__insn_barrier();						\
    139  1.2    ad 	if (++(x__ci->ci_mtx_count) == 0)				\
    140  1.2    ad 		splx(s);						\
    141  1.2    ad } while (/* CONSTCOND */ 0)
    142  1.2    ad 
    143  1.2    ad /*
    144  1.2    ad  * For architectures that provide 'simple' mutexes: they provide a
    145  1.2    ad  * CAS function that is either MP-safe, or does not need to be MP
    146  1.2    ad  * safe.  Adaptive mutexes on these architectures do not require an
    147  1.2    ad  * additional interlock.
    148  1.2    ad  */
    149  1.2    ad 
    150  1.2    ad #ifdef __HAVE_SIMPLE_MUTEXES
    151  1.2    ad 
    152  1.2    ad #define	MUTEX_OWNER(owner)						\
    153  1.2    ad 	(owner & MUTEX_THREAD)
    154  1.2    ad #define	MUTEX_OWNED(owner)						\
    155  1.2    ad 	(owner != 0)
    156  1.2    ad #define	MUTEX_HAS_WAITERS(mtx)						\
    157  1.2    ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    158  1.2    ad 
    159  1.2    ad #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, id)				\
    160  1.2    ad do {									\
    161  1.2    ad 	(mtx)->mtx_id = (id);						\
    162  1.2    ad } while (/* CONSTCOND */ 0);
    163  1.2    ad 
    164  1.2    ad #define	MUTEX_INITIALIZE_SPIN(mtx, id, ipl)				\
    165  1.2    ad do {									\
    166  1.2    ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    167  1.2    ad 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    168  1.2    ad 	(mtx)->mtx_id = (id);						\
    169  1.2    ad 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    170  1.2    ad } while (/* CONSTCOND */ 0)
    171  1.2    ad 
    172  1.2    ad #define	MUTEX_DESTROY(mtx)						\
    173  1.2    ad do {									\
    174  1.2    ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    175  1.2    ad 	(mtx)->mtx_id = -1;						\
    176  1.2    ad } while (/* CONSTCOND */ 0);
    177  1.2    ad 
    178  1.2    ad #define	MUTEX_SPIN_P(mtx)		\
    179  1.2    ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    180  1.2    ad #define	MUTEX_ADAPTIVE_P(mtx)		\
    181  1.2    ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    182  1.2    ad 
    183  1.2    ad #define	MUTEX_GETID(mtx)		((mtx)->mtx_id)
    184  1.2    ad 
    185  1.2    ad static inline int
    186  1.2    ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    187  1.2    ad {
    188  1.2    ad 	int rv;
    189  1.2    ad 	rv = MUTEX_CAS(&mtx->mtx_owner, 0UL, curthread);
    190  1.2    ad 	MUTEX_RECEIVE();
    191  1.2    ad 	return rv;
    192  1.2    ad }
    193  1.2    ad 
    194  1.2    ad static inline int
    195  1.2    ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    196  1.2    ad {
    197  1.2    ad 	int rv;
    198  1.2    ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    199  1.2    ad 	MUTEX_RECEIVE();
    200  1.2    ad 	return rv;
    201  1.2    ad }
    202  1.2    ad 
    203  1.2    ad static inline void
    204  1.2    ad MUTEX_RELEASE(kmutex_t *mtx)
    205  1.2    ad {
    206  1.2    ad 	MUTEX_GIVE();
    207  1.2    ad 	mtx->mtx_owner = 0;
    208  1.2    ad }
    209  1.4    ad 
    210  1.4    ad static inline void
    211  1.4    ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    212  1.4    ad {
    213  1.4    ad 	/* nothing */
    214  1.4    ad }
    215  1.2    ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    216  1.2    ad 
    217  1.2    ad /*
    218  1.2    ad  * Patch in stubs via strong alias where they are not available.
    219  1.2    ad  */
    220  1.2    ad 
    221  1.2    ad #if defined(LOCKDEBUG)
    222  1.2    ad #undef	__HAVE_MUTEX_STUBS
    223  1.2    ad #undef	__HAVE_SPIN_MUTEX_STUBS
    224  1.2    ad #endif
    225  1.2    ad 
    226  1.2    ad #ifndef __HAVE_MUTEX_STUBS
    227  1.2    ad __strong_alias(mutex_enter, mutex_vector_enter);
    228  1.2    ad __strong_alias(mutex_exit, mutex_vector_exit);
    229  1.2    ad #endif
    230  1.2    ad 
    231  1.2    ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    232  1.2    ad __strong_alias(mutex_spin_enter, mutex_vector_enter);
    233  1.2    ad __strong_alias(mutex_spin_exit, mutex_vector_exit);
    234  1.2    ad #endif
    235  1.2    ad 
    236  1.2    ad void	mutex_abort(kmutex_t *, const char *, const char *);
    237  1.2    ad void	mutex_dump(volatile void *);
    238  1.2    ad int	mutex_onproc(uintptr_t, struct cpu_info **);
    239  1.5  yamt static struct lwp *mutex_getowner(wchan_t); /* XXX naming conflict */
    240  1.2    ad 
    241  1.2    ad lockops_t mutex_spin_lockops = {
    242  1.2    ad 	"Mutex",
    243  1.2    ad 	0,
    244  1.2    ad 	mutex_dump
    245  1.2    ad };
    246  1.2    ad 
    247  1.2    ad lockops_t mutex_adaptive_lockops = {
    248  1.2    ad 	"Mutex",
    249  1.2    ad 	1,
    250  1.2    ad 	mutex_dump
    251  1.2    ad };
    252  1.2    ad 
    253  1.5  yamt syncobj_t mutex_syncobj = {
    254  1.5  yamt 	SOBJ_SLEEPQ_SORTED,
    255  1.5  yamt 	turnstile_unsleep,
    256  1.5  yamt 	turnstile_changepri,
    257  1.5  yamt 	sleepq_lendpri,
    258  1.5  yamt 	mutex_getowner,
    259  1.5  yamt };
    260  1.5  yamt 
    261  1.2    ad /*
    262  1.2    ad  * mutex_dump:
    263  1.2    ad  *
    264  1.2    ad  *	Dump the contents of a mutex structure.
    265  1.2    ad  */
    266  1.2    ad void
    267  1.2    ad mutex_dump(volatile void *cookie)
    268  1.2    ad {
    269  1.2    ad 	volatile kmutex_t *mtx = cookie;
    270  1.2    ad 
    271  1.2    ad 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    272  1.2    ad 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    273  1.2    ad 	    MUTEX_SPIN_P(mtx));
    274  1.2    ad }
    275  1.2    ad 
    276  1.2    ad /*
    277  1.2    ad  * mutex_abort:
    278  1.2    ad  *
    279  1.3    ad  *	Dump information about an error and panic the system.  This
    280  1.3    ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    281  1.3    ad  *	we ask the compiler to not inline it.
    282  1.2    ad  */
    283  1.2    ad __attribute ((noinline)) __attribute ((noreturn)) void
    284  1.2    ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    285  1.2    ad {
    286  1.2    ad 
    287  1.2    ad 	LOCKDEBUG_ABORT(MUTEX_GETID(mtx), mtx, (MUTEX_SPIN_P(mtx) ?
    288  1.3    ad 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    289  1.2    ad 	/* NOTREACHED */
    290  1.2    ad }
    291  1.2    ad 
    292  1.2    ad /*
    293  1.2    ad  * mutex_init:
    294  1.2    ad  *
    295  1.2    ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    296  1.2    ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    297  1.2    ad  *	CPU time.  We can't easily provide a type of mutex that always
    298  1.2    ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    299  1.2    ad  *	mutexes unlocked.
    300  1.2    ad  */
    301  1.2    ad void
    302  1.2    ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    303  1.2    ad {
    304  1.2    ad 	u_int id;
    305  1.2    ad 
    306  1.2    ad 	memset(mtx, 0, sizeof(*mtx));
    307  1.2    ad 
    308  1.2    ad 	if (type == MUTEX_DRIVER)
    309  1.2    ad 		type = (ipl == IPL_NONE ? MUTEX_ADAPTIVE : MUTEX_SPIN);
    310  1.2    ad 
    311  1.2    ad 	switch (type) {
    312  1.2    ad 	case MUTEX_ADAPTIVE:
    313  1.2    ad 	case MUTEX_DEFAULT:
    314  1.2    ad 		KASSERT(ipl == IPL_NONE);
    315  1.2    ad 		id = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops);
    316  1.2    ad 		MUTEX_INITIALIZE_ADAPTIVE(mtx, id);
    317  1.2    ad 		break;
    318  1.2    ad 	case MUTEX_SPIN:
    319  1.2    ad 		id = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops);
    320  1.2    ad 		MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
    321  1.2    ad 		break;
    322  1.2    ad 	default:
    323  1.2    ad 		panic("mutex_init: impossible type");
    324  1.2    ad 		break;
    325  1.2    ad 	}
    326  1.2    ad }
    327  1.2    ad 
    328  1.2    ad /*
    329  1.2    ad  * mutex_destroy:
    330  1.2    ad  *
    331  1.2    ad  *	Tear down a mutex.
    332  1.2    ad  */
    333  1.2    ad void
    334  1.2    ad mutex_destroy(kmutex_t *mtx)
    335  1.2    ad {
    336  1.2    ad 
    337  1.2    ad 	if (MUTEX_ADAPTIVE_P(mtx)) {
    338  1.2    ad 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    339  1.2    ad 		    !MUTEX_HAS_WAITERS(mtx));
    340  1.2    ad 	} else {
    341  1.2    ad 		MUTEX_ASSERT(mtx, mtx->mtx_lock != __SIMPLELOCK_LOCKED);
    342  1.2    ad 	}
    343  1.2    ad 
    344  1.2    ad 	LOCKDEBUG_FREE(mtx, MUTEX_GETID(mtx));
    345  1.2    ad 	MUTEX_DESTROY(mtx);
    346  1.2    ad }
    347  1.2    ad 
    348  1.2    ad /*
    349  1.2    ad  * mutex_onproc:
    350  1.2    ad  *
    351  1.2    ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    352  1.2    ad  *	system.  If the target is waiting on the kernel big lock, then we
    353  1.2    ad  *	return false immediately.  This is necessary to avoid deadlock
    354  1.2    ad  *	against the big lock.
    355  1.2    ad  *
    356  1.2    ad  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    357  1.2    ad  *	don't have full control over the timing of our execution, and so the
    358  1.2    ad  *	pointer could be completely invalid by the time we dereference it.
    359  1.3    ad  *
    360  1.3    ad  *	XXX This should be optimised further to reduce potential cache line
    361  1.3    ad  *	ping-ponging and skewing of the spin time while busy waiting.
    362  1.2    ad  */
    363  1.2    ad #ifdef MULTIPROCESSOR
    364  1.2    ad int
    365  1.2    ad mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    366  1.2    ad {
    367  1.2    ad 	CPU_INFO_ITERATOR cii;
    368  1.2    ad 	struct cpu_info *ci;
    369  1.2    ad 	struct lwp *l;
    370  1.2    ad 
    371  1.2    ad 	if (!MUTEX_OWNED(owner))
    372  1.2    ad 		return 0;
    373  1.2    ad 	l = (struct lwp *)MUTEX_OWNER(owner);
    374  1.2    ad 
    375  1.2    ad 	if ((ci = *cip) != NULL && ci->ci_curlwp == l) {
    376  1.3    ad 		mb_read(); /* XXXSMP Very expensive, necessary? */
    377  1.2    ad 		return ci->ci_biglock_wanted != l;
    378  1.2    ad 	}
    379  1.2    ad 
    380  1.2    ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    381  1.2    ad 		if (ci->ci_curlwp == l) {
    382  1.2    ad 			*cip = ci;
    383  1.3    ad 			mb_read(); /* XXXSMP Very expensive, necessary? */
    384  1.2    ad 			return ci->ci_biglock_wanted != l;
    385  1.2    ad 		}
    386  1.2    ad 	}
    387  1.2    ad 
    388  1.2    ad 	*cip = NULL;
    389  1.2    ad 	return 0;
    390  1.2    ad }
    391  1.2    ad #endif
    392  1.2    ad 
    393  1.2    ad /*
    394  1.2    ad  * mutex_vector_enter:
    395  1.2    ad  *
    396  1.2    ad  *	Support routine for mutex_enter() that must handles all cases.  In
    397  1.2    ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    398  1.2    ad  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    399  1.2    ad  *	not available, then it is also aliased directly here.
    400  1.2    ad  */
    401  1.2    ad void
    402  1.2    ad mutex_vector_enter(kmutex_t *mtx)
    403  1.2    ad {
    404  1.2    ad 	uintptr_t owner, curthread;
    405  1.2    ad 	turnstile_t *ts;
    406  1.2    ad #ifdef MULTIPROCESSOR
    407  1.2    ad 	struct cpu_info *ci = NULL;
    408  1.2    ad 	u_int count;
    409  1.2    ad #endif
    410  1.2    ad 	LOCKSTAT_COUNTER(spincnt);
    411  1.2    ad 	LOCKSTAT_COUNTER(slpcnt);
    412  1.2    ad 	LOCKSTAT_TIMER(spintime);
    413  1.2    ad 	LOCKSTAT_TIMER(slptime);
    414  1.2    ad 	LOCKSTAT_FLAG(lsflag);
    415  1.2    ad 
    416  1.2    ad 	/*
    417  1.2    ad 	 * Handle spin mutexes.
    418  1.2    ad 	 */
    419  1.2    ad 	if (MUTEX_SPIN_P(mtx)) {
    420  1.2    ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    421  1.2    ad 		u_int spins = 0;
    422  1.2    ad #endif
    423  1.2    ad 		MUTEX_SPIN_SPLRAISE(mtx);
    424  1.2    ad 		MUTEX_WANTLOCK(mtx);
    425  1.2    ad #ifdef FULL
    426  1.2    ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    427  1.2    ad 			MUTEX_LOCKED(mtx);
    428  1.2    ad 			return;
    429  1.2    ad 		}
    430  1.2    ad #if !defined(MULTIPROCESSOR)
    431  1.2    ad 		MUTEX_ABORT(mtx, "locking against myself");
    432  1.2    ad #else /* !MULTIPROCESSOR */
    433  1.2    ad 
    434  1.2    ad 		LOCKSTAT_ENTER(lsflag);
    435  1.2    ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    436  1.2    ad 		count = SPINLOCK_BACKOFF_MIN;
    437  1.2    ad 
    438  1.2    ad 		/*
    439  1.2    ad 		 * Spin testing the lock word and do exponential backoff
    440  1.2    ad 		 * to reduce cache line ping-ponging between CPUs.
    441  1.2    ad 		 */
    442  1.2    ad 		do {
    443  1.2    ad 			if (panicstr != NULL)
    444  1.2    ad 				break;
    445  1.2    ad 			while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
    446  1.2    ad 				SPINLOCK_BACKOFF(count);
    447  1.2    ad #ifdef LOCKDEBUG
    448  1.2    ad 				if (SPINLOCK_SPINOUT(spins))
    449  1.2    ad 					MUTEX_ABORT(mtx, "spinout");
    450  1.2    ad #endif	/* LOCKDEBUG */
    451  1.2    ad 			}
    452  1.2    ad 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    453  1.2    ad 
    454  1.2    ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    455  1.2    ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    456  1.2    ad 			LOCKSTAT_EVENT(lsflag, mtx,
    457  1.2    ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    458  1.2    ad 		}
    459  1.2    ad 		LOCKSTAT_EXIT(lsflag);
    460  1.2    ad #endif	/* !MULTIPROCESSOR */
    461  1.2    ad #endif	/* FULL */
    462  1.2    ad 		MUTEX_LOCKED(mtx);
    463  1.2    ad 		return;
    464  1.2    ad 	}
    465  1.2    ad 
    466  1.2    ad 	curthread = (uintptr_t)curlwp;
    467  1.2    ad 
    468  1.2    ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    469  1.2    ad 	MUTEX_ASSERT(mtx, curthread != 0);
    470  1.2    ad 	MUTEX_WANTLOCK(mtx);
    471  1.2    ad 
    472  1.2    ad #ifdef LOCKDEBUG
    473  1.2    ad 	if (panicstr == NULL) {
    474  1.2    ad 		simple_lock_only_held(NULL, "mutex_enter");
    475  1.2    ad #ifdef MULTIPROCESSOR
    476  1.2    ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    477  1.2    ad #else
    478  1.2    ad 		LOCKDEBUG_BARRIER(NULL, 1);
    479  1.2    ad #endif
    480  1.2    ad 	}
    481  1.2    ad #endif
    482  1.2    ad 
    483  1.2    ad 	LOCKSTAT_ENTER(lsflag);
    484  1.2    ad 
    485  1.2    ad 	/*
    486  1.2    ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    487  1.2    ad 	 * determine that the owner is not running on a processor,
    488  1.2    ad 	 * then we stop spinning, and sleep instead.
    489  1.2    ad 	 */
    490  1.2    ad 	for (;;) {
    491  1.2    ad 		owner = mtx->mtx_owner;
    492  1.2    ad 		if (!MUTEX_OWNED(owner)) {
    493  1.2    ad 			/*
    494  1.2    ad 			 * Mutex owner clear could mean two things:
    495  1.2    ad 			 *
    496  1.2    ad 			 *	* The mutex has been released.
    497  1.2    ad 			 *	* The owner field hasn't been set yet.
    498  1.2    ad 			 *
    499  1.2    ad 			 * Try to acquire it again.  If that fails,
    500  1.2    ad 			 * we'll just loop again.
    501  1.2    ad 			 */
    502  1.2    ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    503  1.2    ad 				break;
    504  1.2    ad 			continue;
    505  1.2    ad 		}
    506  1.2    ad 
    507  1.2    ad 		if (panicstr != NULL)
    508  1.2    ad 			return;
    509  1.2    ad 		if (MUTEX_OWNER(owner) == curthread)
    510  1.2    ad 			MUTEX_ABORT(mtx, "locking against myself");
    511  1.2    ad 
    512  1.2    ad #ifdef MULTIPROCESSOR
    513  1.2    ad 		/*
    514  1.2    ad 		 * Check to see if the owner is running on a processor.
    515  1.2    ad 		 * If so, then we should just spin, as the owner will
    516  1.2    ad 		 * likely release the lock very soon.
    517  1.2    ad 		 */
    518  1.2    ad 		if (mutex_onproc(owner, &ci)) {
    519  1.2    ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    520  1.2    ad 			count = SPINLOCK_BACKOFF_MIN;
    521  1.2    ad 			for (;;) {
    522  1.2    ad 				owner = mtx->mtx_owner;
    523  1.2    ad 				if (!mutex_onproc(owner, &ci))
    524  1.2    ad 					break;
    525  1.2    ad 				SPINLOCK_BACKOFF(count);
    526  1.2    ad 			}
    527  1.2    ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    528  1.2    ad 			LOCKSTAT_COUNT(spincnt, 1);
    529  1.2    ad 			if (!MUTEX_OWNED(owner))
    530  1.2    ad 				continue;
    531  1.2    ad 		}
    532  1.2    ad #endif
    533  1.2    ad 
    534  1.2    ad 		ts = turnstile_lookup(mtx);
    535  1.2    ad 
    536  1.2    ad 		/*
    537  1.2    ad 		 * Once we have the turnstile chain interlock, mark the
    538  1.2    ad 		 * mutex has having waiters.  If that fails, spin again:
    539  1.2    ad 		 * chances are that the mutex has been released.
    540  1.2    ad 		 */
    541  1.2    ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    542  1.2    ad 			turnstile_exit(mtx);
    543  1.2    ad 			continue;
    544  1.2    ad 		}
    545  1.2    ad 
    546  1.2    ad #ifdef MULTIPROCESSOR
    547  1.2    ad 		/*
    548  1.2    ad 		 * mutex_exit() is permitted to release the mutex without
    549  1.2    ad 		 * any interlocking instructions, and the following can
    550  1.2    ad 		 * occur as a result:
    551  1.2    ad 		 *
    552  1.2    ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    553  1.2    ad 		 * ---------------------------- ----------------------------
    554  1.2    ad 		 *		..		    acquire cache line
    555  1.2    ad 		 *		..                   test for waiters
    556  1.2    ad 		 *	acquire cache line    <-      lose cache line
    557  1.2    ad 		 *	 lock cache line	           ..
    558  1.2    ad 		 *     verify mutex is held                ..
    559  1.2    ad 		 *	    set waiters  	           ..
    560  1.2    ad 		 *	 unlock cache line		   ..
    561  1.2    ad 		 *	  lose cache line     ->    acquire cache line
    562  1.2    ad 		 *		..	          clear lock word, waiters
    563  1.2    ad 		 *	  return success
    564  1.2    ad 		 *
    565  1.2    ad 		 * There is a another race that can occur: a third CPU could
    566  1.2    ad 		 * acquire the mutex as soon as it is released.  Since
    567  1.2    ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    568  1.2    ad 		 * something that we need to worry about too much.  What we
    569  1.2    ad 		 * do need to ensure is that the waiters bit gets set.
    570  1.2    ad 		 *
    571  1.2    ad 		 * To allow the unlocked release, we need to make some
    572  1.2    ad 		 * assumptions here:
    573  1.2    ad 		 *
    574  1.2    ad 		 * o Release is the only non-atomic/unlocked operation
    575  1.2    ad 		 *   that can be performed on the mutex.  (It must still
    576  1.2    ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    577  1.2    ad 		 *   or preempted).
    578  1.2    ad 		 *
    579  1.2    ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    580  1.2    ad 		 *   be in progress on one CPU in the system - guarenteed
    581  1.2    ad 		 *   by the turnstile chain lock.
    582  1.2    ad 		 *
    583  1.2    ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    584  1.2    ad 		 *   and release can modify a mutex with a non-zero
    585  1.2    ad 		 *   owner field.
    586  1.2    ad 		 *
    587  1.2    ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    588  1.2    ad 		 *   is an unbuffered write that is immediately visible
    589  1.2    ad 		 *   to all other processors in the system.
    590  1.2    ad 		 *
    591  1.2    ad 		 * o If the holding LWP switches away, it posts a store
    592  1.2    ad 		 *   fence before changing curlwp, ensuring that any
    593  1.2    ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    594  1.2    ad 		 *   completes before the modification of curlwp becomes
    595  1.2    ad 		 *   visible to this CPU.
    596  1.2    ad 		 *
    597  1.2    ad 		 * o cpu_switch() posts a store fence before setting curlwp
    598  1.2    ad 		 *   and before resuming execution of an LWP.
    599  1.2    ad 		 *
    600  1.2    ad 		 * o _kernel_lock() posts a store fence before setting
    601  1.2    ad 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    602  1.2    ad 		 *   This ensures that any overwrite of the mutex waiters
    603  1.2    ad 		 *   flag by mutex_exit() completes before the modification
    604  1.2    ad 		 *   of ci_biglock_wanted becomes visible.
    605  1.2    ad 		 *
    606  1.2    ad 		 * We now post a read memory barrier (after setting the
    607  1.2    ad 		 * waiters field) and check the lock holder's status again.
    608  1.2    ad 		 * Some of the possible outcomes (not an exhaustive list):
    609  1.2    ad 		 *
    610  1.2    ad 		 * 1. The onproc check returns true: the holding LWP is
    611  1.2    ad 		 *    running again.  The lock may be released soon and
    612  1.2    ad 		 *    we should spin.  Importantly, we can't trust the
    613  1.2    ad 		 *    value of the waiters flag.
    614  1.2    ad 		 *
    615  1.2    ad 		 * 2. The onproc check returns false: the holding LWP is
    616  1.2    ad 		 *    not running.  We now have the oppertunity to check
    617  1.2    ad 		 *    if mutex_exit() has blatted the modifications made
    618  1.2    ad 		 *    by MUTEX_SET_WAITERS().
    619  1.2    ad 		 *
    620  1.2    ad 		 * 3. The onproc check returns false: the holding LWP may
    621  1.2    ad 		 *    or may not be running.  It has context switched at
    622  1.2    ad 		 *    some point during our check.  Again, we have the
    623  1.2    ad 		 *    chance to see if the waiters bit is still set or
    624  1.2    ad 		 *    has been overwritten.
    625  1.2    ad 		 *
    626  1.2    ad 		 * 4. The onproc check returns false: the holding LWP is
    627  1.2    ad 		 *    running on a CPU, but wants the big lock.  It's OK
    628  1.2    ad 		 *    to check the waiters field in this case.
    629  1.2    ad 		 *
    630  1.2    ad 		 * 5. The has-waiters check fails: the mutex has been
    631  1.2    ad 		 *    released, the waiters flag cleared and another LWP
    632  1.2    ad 		 *    now owns the mutex.
    633  1.2    ad 		 *
    634  1.2    ad 		 * 6. The has-waiters check fails: the mutex has been
    635  1.2    ad 		 *    released.
    636  1.2    ad 		 *
    637  1.2    ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    638  1.2    ad 		 * as we might never be awoken.
    639  1.2    ad 		 */
    640  1.2    ad 		mb_read();
    641  1.2    ad 		if (mutex_onproc(owner, &ci) || !MUTEX_HAS_WAITERS(mtx)) {
    642  1.2    ad 			turnstile_exit(mtx);
    643  1.2    ad 			continue;
    644  1.2    ad 		}
    645  1.2    ad #endif	/* MULTIPROCESSOR */
    646  1.2    ad 
    647  1.2    ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    648  1.2    ad 
    649  1.5  yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    650  1.2    ad 
    651  1.2    ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    652  1.2    ad 		LOCKSTAT_COUNT(slpcnt, 1);
    653  1.2    ad 
    654  1.2    ad 		turnstile_unblock();
    655  1.2    ad 	}
    656  1.2    ad 
    657  1.2    ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    658  1.2    ad 	    slpcnt, slptime);
    659  1.2    ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    660  1.2    ad 	    spincnt, spintime);
    661  1.2    ad 	LOCKSTAT_EXIT(lsflag);
    662  1.2    ad 
    663  1.2    ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    664  1.2    ad 	MUTEX_LOCKED(mtx);
    665  1.2    ad }
    666  1.2    ad 
    667  1.2    ad /*
    668  1.2    ad  * mutex_vector_exit:
    669  1.2    ad  *
    670  1.2    ad  *	Support routine for mutex_exit() that handles all cases.
    671  1.2    ad  */
    672  1.2    ad void
    673  1.2    ad mutex_vector_exit(kmutex_t *mtx)
    674  1.2    ad {
    675  1.2    ad 	turnstile_t *ts;
    676  1.2    ad 	uintptr_t curthread;
    677  1.2    ad 
    678  1.2    ad 	if (MUTEX_SPIN_P(mtx)) {
    679  1.2    ad #ifdef FULL
    680  1.2    ad 		if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
    681  1.2    ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    682  1.2    ad 		MUTEX_UNLOCKED(mtx);
    683  1.2    ad 		__cpu_simple_unlock(&mtx->mtx_lock);
    684  1.2    ad #endif
    685  1.2    ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    686  1.2    ad 		return;
    687  1.2    ad 	}
    688  1.2    ad 
    689  1.2    ad 	if (__predict_false(panicstr != NULL) || __predict_false(cold)) {
    690  1.2    ad 		MUTEX_UNLOCKED(mtx);
    691  1.2    ad 		MUTEX_RELEASE(mtx);
    692  1.2    ad 		return;
    693  1.2    ad 	}
    694  1.2    ad 
    695  1.2    ad 	curthread = (uintptr_t)curlwp;
    696  1.2    ad 	MUTEX_DASSERT(mtx, curthread != 0);
    697  1.2    ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    698  1.2    ad 	MUTEX_UNLOCKED(mtx);
    699  1.2    ad 
    700  1.2    ad 	/*
    701  1.2    ad 	 * Get this lock's turnstile.  This gets the interlock on
    702  1.2    ad 	 * the sleep queue.  Once we have that, we can clear the
    703  1.2    ad 	 * lock.  If there was no turnstile for the lock, there
    704  1.2    ad 	 * were no waiters remaining.
    705  1.2    ad 	 */
    706  1.2    ad 	ts = turnstile_lookup(mtx);
    707  1.2    ad 
    708  1.2    ad 	if (ts == NULL) {
    709  1.2    ad 		MUTEX_RELEASE(mtx);
    710  1.2    ad 		turnstile_exit(mtx);
    711  1.2    ad 	} else {
    712  1.2    ad 		MUTEX_RELEASE(mtx);
    713  1.2    ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    714  1.2    ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    715  1.2    ad 	}
    716  1.2    ad }
    717  1.2    ad 
    718  1.4    ad #ifndef __HAVE_SIMPLE_MUTEXES
    719  1.4    ad /*
    720  1.4    ad  * mutex_wakeup:
    721  1.4    ad  *
    722  1.4    ad  *	Support routine for mutex_exit() that wakes up all waiters.
    723  1.4    ad  *	We assume that the mutex has been released, but it need not
    724  1.4    ad  *	be.
    725  1.4    ad  */
    726  1.4    ad void
    727  1.4    ad mutex_wakeup(kmutex_t *mtx)
    728  1.4    ad {
    729  1.4    ad 	turnstile_t *ts;
    730  1.4    ad 
    731  1.4    ad 	ts = turnstile_lookup(mtx);
    732  1.4    ad 	if (ts == NULL) {
    733  1.4    ad 		turnstile_exit(mtx);
    734  1.4    ad 		return;
    735  1.4    ad 	}
    736  1.4    ad 	MUTEX_CLEAR_WAITERS(mtx);
    737  1.4    ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    738  1.4    ad }
    739  1.4    ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    740  1.4    ad 
    741  1.2    ad /*
    742  1.2    ad  * mutex_owned:
    743  1.2    ad  *
    744  1.3    ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    745  1.3    ad  *	holds the mutex.
    746  1.2    ad  */
    747  1.2    ad int
    748  1.2    ad mutex_owned(kmutex_t *mtx)
    749  1.2    ad {
    750  1.2    ad 
    751  1.2    ad 	if (MUTEX_ADAPTIVE_P(mtx))
    752  1.2    ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    753  1.2    ad #ifdef FULL
    754  1.2    ad 	return mtx->mtx_lock == __SIMPLELOCK_LOCKED;
    755  1.2    ad #else
    756  1.2    ad 	return 1;
    757  1.2    ad #endif
    758  1.2    ad }
    759  1.2    ad 
    760  1.2    ad /*
    761  1.2    ad  * mutex_owner:
    762  1.2    ad  *
    763  1.2    ad  *	Return the current owner of an adaptive mutex.
    764  1.2    ad  */
    765  1.2    ad struct lwp *
    766  1.2    ad mutex_owner(kmutex_t *mtx)
    767  1.2    ad {
    768  1.2    ad 
    769  1.2    ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    770  1.2    ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    771  1.2    ad }
    772  1.2    ad 
    773  1.5  yamt static struct lwp *
    774  1.5  yamt mutex_getowner(wchan_t obj)
    775  1.5  yamt {
    776  1.5  yamt 	kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
    777  1.5  yamt 
    778  1.5  yamt 	return mutex_owner(mtx);
    779  1.5  yamt }
    780  1.5  yamt 
    781  1.2    ad /*
    782  1.2    ad  * mutex_tryenter:
    783  1.2    ad  *
    784  1.2    ad  *	Try to acquire the mutex; return non-zero if we did.
    785  1.2    ad  */
    786  1.2    ad int
    787  1.2    ad mutex_tryenter(kmutex_t *mtx)
    788  1.2    ad {
    789  1.2    ad 	uintptr_t curthread;
    790  1.2    ad 
    791  1.2    ad 	/*
    792  1.2    ad 	 * Handle spin mutexes.
    793  1.2    ad 	 */
    794  1.2    ad 	if (MUTEX_SPIN_P(mtx)) {
    795  1.2    ad 		MUTEX_SPIN_SPLRAISE(mtx);
    796  1.2    ad #ifdef FULL
    797  1.2    ad 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    798  1.4    ad 			MUTEX_WANTLOCK(mtx);
    799  1.2    ad 			MUTEX_LOCKED(mtx);
    800  1.2    ad 			return 1;
    801  1.2    ad 		}
    802  1.2    ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    803  1.2    ad #else
    804  1.4    ad 		MUTEX_WANTLOCK(mtx);
    805  1.2    ad 		MUTEX_LOCKED(mtx);
    806  1.2    ad 		return 1;
    807  1.2    ad #endif
    808  1.2    ad 	} else {
    809  1.2    ad 		curthread = (uintptr_t)curlwp;
    810  1.2    ad 		MUTEX_ASSERT(mtx, curthread != 0);
    811  1.2    ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    812  1.4    ad 			MUTEX_WANTLOCK(mtx);
    813  1.2    ad 			MUTEX_LOCKED(mtx);
    814  1.2    ad 			MUTEX_DASSERT(mtx,
    815  1.2    ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    816  1.2    ad 			return 1;
    817  1.2    ad 		}
    818  1.2    ad 	}
    819  1.2    ad 
    820  1.2    ad 	return 0;
    821  1.2    ad }
    822  1.2    ad 
    823  1.2    ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    824  1.2    ad /*
    825  1.2    ad  * mutex_spin_retry:
    826  1.2    ad  *
    827  1.2    ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    828  1.2    ad  *	has already raised the SPL, and adjusted counters.
    829  1.2    ad  */
    830  1.2    ad void
    831  1.2    ad mutex_spin_retry(kmutex_t *mtx)
    832  1.2    ad {
    833  1.2    ad #ifdef MULTIPROCESSOR
    834  1.2    ad 	u_int count;
    835  1.2    ad 	LOCKSTAT_TIMER(spintime);
    836  1.2    ad 	LOCKSTAT_FLAG(lsflag);
    837  1.2    ad #ifdef LOCKDEBUG
    838  1.2    ad 	u_int spins = 0;
    839  1.2    ad #endif	/* LOCKDEBUG */
    840  1.2    ad 
    841  1.2    ad 	MUTEX_WANTLOCK(mtx);
    842  1.2    ad 
    843  1.2    ad 	LOCKSTAT_ENTER(lsflag);
    844  1.2    ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    845  1.2    ad 	count = SPINLOCK_BACKOFF_MIN;
    846  1.2    ad 
    847  1.2    ad 	/*
    848  1.2    ad 	 * Spin testing the lock word and do exponential backoff
    849  1.2    ad 	 * to reduce cache line ping-ponging between CPUs.
    850  1.2    ad 	 */
    851  1.2    ad 	do {
    852  1.2    ad 		if (panicstr != NULL)
    853  1.2    ad 			break;
    854  1.2    ad 		while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
    855  1.2    ad 			SPINLOCK_BACKOFF(count);
    856  1.2    ad #ifdef LOCKDEBUG
    857  1.2    ad 			if (SPINLOCK_SPINOUT(spins))
    858  1.2    ad 				MUTEX_ABORT(mtx, "spinout");
    859  1.2    ad #endif	/* LOCKDEBUG */
    860  1.2    ad 		}
    861  1.2    ad 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    862  1.2    ad 
    863  1.2    ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    864  1.2    ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    865  1.2    ad 	LOCKSTAT_EXIT(lsflag);
    866  1.2    ad 
    867  1.2    ad 	MUTEX_LOCKED(mtx);
    868  1.2    ad #else	/* MULTIPROCESSOR */
    869  1.2    ad 	MUTEX_ABORT(mtx, "locking against myself");
    870  1.2    ad #endif	/* MULTIPROCESSOR */
    871  1.2    ad }
    872  1.2    ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    873  1.2    ad 
    874  1.2    ad /*
    875  1.2    ad  * sched_lock_idle:
    876  1.2    ad  *
    877  1.2    ad  *	XXX Ugly hack for cpu_switch().
    878  1.2    ad  */
    879  1.2    ad void
    880  1.2    ad sched_lock_idle(void)
    881  1.2    ad {
    882  1.2    ad #ifdef FULL
    883  1.2    ad 	kmutex_t *mtx = &sched_mutex;
    884  1.2    ad 
    885  1.2    ad 	curcpu()->ci_mtx_count--;
    886  1.2    ad 
    887  1.2    ad 	if (!__cpu_simple_lock_try(&mtx->mtx_lock)) {
    888  1.2    ad 		mutex_spin_retry(mtx);
    889  1.2    ad 		return;
    890  1.2    ad 	}
    891  1.2    ad 
    892  1.2    ad 	MUTEX_LOCKED(mtx);
    893  1.2    ad #else
    894  1.2    ad 	curcpu()->ci_mtx_count--;
    895  1.2    ad #endif	/* FULL */
    896  1.2    ad }
    897  1.2    ad 
    898  1.2    ad /*
    899  1.2    ad  * sched_unlock_idle:
    900  1.2    ad  *
    901  1.2    ad  *	XXX Ugly hack for cpu_switch().
    902  1.2    ad  */
    903  1.2    ad void
    904  1.2    ad sched_unlock_idle(void)
    905  1.2    ad {
    906  1.2    ad #ifdef FULL
    907  1.2    ad 	kmutex_t *mtx = &sched_mutex;
    908  1.2    ad 
    909  1.2    ad 	if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
    910  1.2    ad 		MUTEX_ABORT(mtx, "sched_unlock_idle");
    911  1.2    ad 
    912  1.2    ad 	MUTEX_UNLOCKED(mtx);
    913  1.2    ad 	__cpu_simple_unlock(&mtx->mtx_lock);
    914  1.2    ad #endif	/* FULL */
    915  1.2    ad 	curcpu()->ci_mtx_count++;
    916  1.2    ad }
    917