kern_mutex.c revision 1.51 1 1.51 rmind /* $NetBSD: kern_mutex.c,v 1.51 2011/04/11 19:11:08 rmind Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.30 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
34 1.2 ad * a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.2 ad #define __MUTEX_PRIVATE
41 1.2 ad
42 1.2 ad #include <sys/cdefs.h>
43 1.51 rmind __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.51 2011/04/11 19:11:08 rmind Exp $");
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.46 pooka #include <sys/atomic.h>
47 1.2 ad #include <sys/proc.h>
48 1.2 ad #include <sys/mutex.h>
49 1.2 ad #include <sys/sched.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/systm.h>
52 1.2 ad #include <sys/lockdebug.h>
53 1.2 ad #include <sys/kernel.h>
54 1.24 ad #include <sys/intr.h>
55 1.29 xtraeme #include <sys/lock.h>
56 1.50 rmind #include <sys/types.h>
57 1.2 ad
58 1.2 ad #include <dev/lockstat.h>
59 1.2 ad
60 1.28 ad #include <machine/lock.h>
61 1.28 ad
62 1.44 wrstuden #include "opt_sa.h"
63 1.44 wrstuden
64 1.2 ad /*
65 1.2 ad * When not running a debug kernel, spin mutexes are not much
66 1.2 ad * more than an splraiseipl() and splx() pair.
67 1.2 ad */
68 1.2 ad
69 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
70 1.2 ad #define FULL
71 1.2 ad #endif
72 1.2 ad
73 1.2 ad /*
74 1.2 ad * Debugging support.
75 1.2 ad */
76 1.2 ad
77 1.2 ad #define MUTEX_WANTLOCK(mtx) \
78 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
79 1.40 ad (uintptr_t)__builtin_return_address(0), false, false)
80 1.2 ad #define MUTEX_LOCKED(mtx) \
81 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
82 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
83 1.2 ad #define MUTEX_UNLOCKED(mtx) \
84 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
85 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
86 1.2 ad #define MUTEX_ABORT(mtx, msg) \
87 1.17 ad mutex_abort(mtx, __func__, msg)
88 1.2 ad
89 1.2 ad #if defined(LOCKDEBUG)
90 1.2 ad
91 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
92 1.2 ad do { \
93 1.2 ad if (!(cond)) \
94 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
95 1.2 ad } while (/* CONSTCOND */ 0);
96 1.2 ad
97 1.2 ad #else /* LOCKDEBUG */
98 1.2 ad
99 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
100 1.2 ad
101 1.2 ad #endif /* LOCKDEBUG */
102 1.2 ad
103 1.2 ad #if defined(DIAGNOSTIC)
104 1.2 ad
105 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
106 1.2 ad do { \
107 1.2 ad if (!(cond)) \
108 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
109 1.2 ad } while (/* CONSTCOND */ 0)
110 1.2 ad
111 1.2 ad #else /* DIAGNOSTIC */
112 1.2 ad
113 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
114 1.2 ad
115 1.2 ad #endif /* DIAGNOSTIC */
116 1.2 ad
117 1.2 ad /*
118 1.2 ad * Spin mutex SPL save / restore.
119 1.2 ad */
120 1.2 ad
121 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
122 1.2 ad do { \
123 1.36 ad struct cpu_info *x__ci; \
124 1.2 ad int x__cnt, s; \
125 1.36 ad s = splraiseipl(mtx->mtx_ipl); \
126 1.36 ad x__ci = curcpu(); \
127 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
128 1.37 ad __insn_barrier(); \
129 1.51 rmind if (x__cnt == 0) \
130 1.2 ad x__ci->ci_mtx_oldspl = (s); \
131 1.2 ad } while (/* CONSTCOND */ 0)
132 1.2 ad
133 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
134 1.2 ad do { \
135 1.2 ad struct cpu_info *x__ci = curcpu(); \
136 1.2 ad int s = x__ci->ci_mtx_oldspl; \
137 1.2 ad __insn_barrier(); \
138 1.51 rmind if (++(x__ci->ci_mtx_count) == 0) \
139 1.2 ad splx(s); \
140 1.2 ad } while (/* CONSTCOND */ 0)
141 1.2 ad
142 1.2 ad /*
143 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
144 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
145 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
146 1.2 ad * additional interlock.
147 1.2 ad */
148 1.2 ad
149 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
150 1.2 ad
151 1.2 ad #define MUTEX_OWNER(owner) \
152 1.2 ad (owner & MUTEX_THREAD)
153 1.2 ad #define MUTEX_HAS_WAITERS(mtx) \
154 1.2 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
155 1.2 ad
156 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
157 1.49 skrll if (!dodebug) \
158 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
159 1.2 ad do { \
160 1.2 ad } while (/* CONSTCOND */ 0);
161 1.2 ad
162 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
163 1.2 ad do { \
164 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
165 1.49 skrll if (!dodebug) \
166 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
167 1.2 ad (mtx)->mtx_ipl = makeiplcookie((ipl)); \
168 1.2 ad __cpu_simple_lock_init(&(mtx)->mtx_lock); \
169 1.2 ad } while (/* CONSTCOND */ 0)
170 1.2 ad
171 1.2 ad #define MUTEX_DESTROY(mtx) \
172 1.2 ad do { \
173 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
174 1.2 ad } while (/* CONSTCOND */ 0);
175 1.2 ad
176 1.2 ad #define MUTEX_SPIN_P(mtx) \
177 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
178 1.2 ad #define MUTEX_ADAPTIVE_P(mtx) \
179 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
180 1.2 ad
181 1.49 skrll #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
182 1.23 yamt #if defined(LOCKDEBUG)
183 1.49 skrll #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
184 1.49 skrll #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_NODEBUG
185 1.23 yamt #else /* defined(LOCKDEBUG) */
186 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
187 1.23 yamt #define MUTEX_INHERITDEBUG(new, old) /* nothing */
188 1.23 yamt #endif /* defined(LOCKDEBUG) */
189 1.2 ad
190 1.2 ad static inline int
191 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
192 1.2 ad {
193 1.2 ad int rv;
194 1.23 yamt uintptr_t old = 0;
195 1.23 yamt uintptr_t new = curthread;
196 1.23 yamt
197 1.23 yamt MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
198 1.23 yamt MUTEX_INHERITDEBUG(new, old);
199 1.23 yamt rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
200 1.7 itohy MUTEX_RECEIVE(mtx);
201 1.2 ad return rv;
202 1.2 ad }
203 1.2 ad
204 1.2 ad static inline int
205 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
206 1.2 ad {
207 1.2 ad int rv;
208 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
209 1.7 itohy MUTEX_RECEIVE(mtx);
210 1.2 ad return rv;
211 1.2 ad }
212 1.2 ad
213 1.2 ad static inline void
214 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
215 1.2 ad {
216 1.23 yamt uintptr_t new;
217 1.23 yamt
218 1.7 itohy MUTEX_GIVE(mtx);
219 1.23 yamt new = 0;
220 1.23 yamt MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
221 1.23 yamt mtx->mtx_owner = new;
222 1.2 ad }
223 1.4 ad
224 1.4 ad static inline void
225 1.4 ad MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
226 1.4 ad {
227 1.4 ad /* nothing */
228 1.4 ad }
229 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
230 1.2 ad
231 1.2 ad /*
232 1.2 ad * Patch in stubs via strong alias where they are not available.
233 1.2 ad */
234 1.2 ad
235 1.2 ad #if defined(LOCKDEBUG)
236 1.2 ad #undef __HAVE_MUTEX_STUBS
237 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
238 1.2 ad #endif
239 1.2 ad
240 1.2 ad #ifndef __HAVE_MUTEX_STUBS
241 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
242 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
243 1.2 ad #endif
244 1.2 ad
245 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
246 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
247 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
248 1.2 ad #endif
249 1.2 ad
250 1.50 rmind static void mutex_abort(kmutex_t *, const char *, const char *);
251 1.50 rmind static void mutex_dump(volatile void *);
252 1.2 ad
253 1.2 ad lockops_t mutex_spin_lockops = {
254 1.2 ad "Mutex",
255 1.42 ad LOCKOPS_SPIN,
256 1.2 ad mutex_dump
257 1.2 ad };
258 1.2 ad
259 1.2 ad lockops_t mutex_adaptive_lockops = {
260 1.2 ad "Mutex",
261 1.42 ad LOCKOPS_SLEEP,
262 1.2 ad mutex_dump
263 1.2 ad };
264 1.2 ad
265 1.5 yamt syncobj_t mutex_syncobj = {
266 1.5 yamt SOBJ_SLEEPQ_SORTED,
267 1.5 yamt turnstile_unsleep,
268 1.5 yamt turnstile_changepri,
269 1.5 yamt sleepq_lendpri,
270 1.27 ad (void *)mutex_owner,
271 1.5 yamt };
272 1.5 yamt
273 1.2 ad /*
274 1.2 ad * mutex_dump:
275 1.2 ad *
276 1.2 ad * Dump the contents of a mutex structure.
277 1.2 ad */
278 1.2 ad void
279 1.2 ad mutex_dump(volatile void *cookie)
280 1.2 ad {
281 1.2 ad volatile kmutex_t *mtx = cookie;
282 1.2 ad
283 1.2 ad printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
284 1.2 ad (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
285 1.2 ad MUTEX_SPIN_P(mtx));
286 1.2 ad }
287 1.2 ad
288 1.2 ad /*
289 1.2 ad * mutex_abort:
290 1.2 ad *
291 1.3 ad * Dump information about an error and panic the system. This
292 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
293 1.3 ad * we ask the compiler to not inline it.
294 1.2 ad */
295 1.43 ad void __noinline
296 1.2 ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
297 1.2 ad {
298 1.2 ad
299 1.23 yamt LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
300 1.3 ad &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
301 1.2 ad }
302 1.2 ad
303 1.2 ad /*
304 1.2 ad * mutex_init:
305 1.2 ad *
306 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
307 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
308 1.2 ad * CPU time. We can't easily provide a type of mutex that always
309 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
310 1.2 ad * mutexes unlocked.
311 1.2 ad */
312 1.2 ad void
313 1.2 ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
314 1.2 ad {
315 1.23 yamt bool dodebug;
316 1.2 ad
317 1.2 ad memset(mtx, 0, sizeof(*mtx));
318 1.2 ad
319 1.15 ad switch (type) {
320 1.15 ad case MUTEX_ADAPTIVE:
321 1.15 ad KASSERT(ipl == IPL_NONE);
322 1.15 ad break;
323 1.22 ad case MUTEX_DEFAULT:
324 1.15 ad case MUTEX_DRIVER:
325 1.26 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
326 1.26 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
327 1.26 ad ipl == IPL_SOFTSERIAL) {
328 1.22 ad type = MUTEX_ADAPTIVE;
329 1.26 ad } else {
330 1.22 ad type = MUTEX_SPIN;
331 1.22 ad }
332 1.15 ad break;
333 1.15 ad default:
334 1.15 ad break;
335 1.15 ad }
336 1.2 ad
337 1.2 ad switch (type) {
338 1.11 ad case MUTEX_NODEBUG:
339 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
340 1.19 ad (uintptr_t)__builtin_return_address(0));
341 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
342 1.11 ad break;
343 1.2 ad case MUTEX_ADAPTIVE:
344 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
345 1.19 ad (uintptr_t)__builtin_return_address(0));
346 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
347 1.2 ad break;
348 1.2 ad case MUTEX_SPIN:
349 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
350 1.19 ad (uintptr_t)__builtin_return_address(0));
351 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
352 1.2 ad break;
353 1.2 ad default:
354 1.2 ad panic("mutex_init: impossible type");
355 1.2 ad break;
356 1.2 ad }
357 1.2 ad }
358 1.2 ad
359 1.2 ad /*
360 1.2 ad * mutex_destroy:
361 1.2 ad *
362 1.2 ad * Tear down a mutex.
363 1.2 ad */
364 1.2 ad void
365 1.2 ad mutex_destroy(kmutex_t *mtx)
366 1.2 ad {
367 1.2 ad
368 1.2 ad if (MUTEX_ADAPTIVE_P(mtx)) {
369 1.2 ad MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
370 1.2 ad !MUTEX_HAS_WAITERS(mtx));
371 1.2 ad } else {
372 1.16 skrll MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
373 1.2 ad }
374 1.2 ad
375 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
376 1.2 ad MUTEX_DESTROY(mtx);
377 1.2 ad }
378 1.2 ad
379 1.50 rmind #ifdef MULTIPROCESSOR
380 1.2 ad /*
381 1.50 rmind * mutex_oncpu:
382 1.2 ad *
383 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
384 1.2 ad * system. If the target is waiting on the kernel big lock, then we
385 1.15 ad * must release it. This is necessary to avoid deadlock.
386 1.2 ad */
387 1.50 rmind static bool
388 1.50 rmind mutex_oncpu(uintptr_t owner)
389 1.2 ad {
390 1.2 ad struct cpu_info *ci;
391 1.50 rmind lwp_t *l;
392 1.2 ad
393 1.50 rmind KASSERT(kpreempt_disabled());
394 1.50 rmind
395 1.50 rmind if (!MUTEX_OWNED(owner)) {
396 1.50 rmind return false;
397 1.50 rmind }
398 1.2 ad
399 1.50 rmind /*
400 1.50 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
401 1.50 rmind * We must have kernel preemption disabled for that.
402 1.50 rmind */
403 1.50 rmind l = (lwp_t *)MUTEX_OWNER(owner);
404 1.50 rmind ci = l->l_cpu;
405 1.2 ad
406 1.50 rmind if (ci && ci->ci_curlwp == l) {
407 1.50 rmind /* Target is running; do we need to block? */
408 1.50 rmind return (ci->ci_biglock_wanted != l);
409 1.50 rmind }
410 1.15 ad
411 1.50 rmind /* Not running. It may be safe to block now. */
412 1.50 rmind return false;
413 1.2 ad }
414 1.15 ad #endif /* MULTIPROCESSOR */
415 1.2 ad
416 1.2 ad /*
417 1.2 ad * mutex_vector_enter:
418 1.2 ad *
419 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In
420 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
421 1.2 ad * fast-path stubs are available. If an mutex_spin_enter() stub is
422 1.2 ad * not available, then it is also aliased directly here.
423 1.2 ad */
424 1.2 ad void
425 1.2 ad mutex_vector_enter(kmutex_t *mtx)
426 1.2 ad {
427 1.2 ad uintptr_t owner, curthread;
428 1.2 ad turnstile_t *ts;
429 1.2 ad #ifdef MULTIPROCESSOR
430 1.2 ad u_int count;
431 1.2 ad #endif
432 1.44 wrstuden #ifdef KERN_SA
433 1.44 wrstuden int f;
434 1.44 wrstuden #endif
435 1.2 ad LOCKSTAT_COUNTER(spincnt);
436 1.2 ad LOCKSTAT_COUNTER(slpcnt);
437 1.2 ad LOCKSTAT_TIMER(spintime);
438 1.2 ad LOCKSTAT_TIMER(slptime);
439 1.2 ad LOCKSTAT_FLAG(lsflag);
440 1.2 ad
441 1.2 ad /*
442 1.2 ad * Handle spin mutexes.
443 1.2 ad */
444 1.2 ad if (MUTEX_SPIN_P(mtx)) {
445 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
446 1.2 ad u_int spins = 0;
447 1.2 ad #endif
448 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
449 1.2 ad MUTEX_WANTLOCK(mtx);
450 1.2 ad #ifdef FULL
451 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
452 1.2 ad MUTEX_LOCKED(mtx);
453 1.2 ad return;
454 1.2 ad }
455 1.2 ad #if !defined(MULTIPROCESSOR)
456 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
457 1.2 ad #else /* !MULTIPROCESSOR */
458 1.2 ad
459 1.2 ad LOCKSTAT_ENTER(lsflag);
460 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
461 1.2 ad count = SPINLOCK_BACKOFF_MIN;
462 1.2 ad
463 1.2 ad /*
464 1.2 ad * Spin testing the lock word and do exponential backoff
465 1.2 ad * to reduce cache line ping-ponging between CPUs.
466 1.2 ad */
467 1.2 ad do {
468 1.2 ad if (panicstr != NULL)
469 1.2 ad break;
470 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
471 1.2 ad SPINLOCK_BACKOFF(count);
472 1.2 ad #ifdef LOCKDEBUG
473 1.2 ad if (SPINLOCK_SPINOUT(spins))
474 1.2 ad MUTEX_ABORT(mtx, "spinout");
475 1.2 ad #endif /* LOCKDEBUG */
476 1.2 ad }
477 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
478 1.2 ad
479 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
480 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
481 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
482 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
483 1.2 ad }
484 1.2 ad LOCKSTAT_EXIT(lsflag);
485 1.2 ad #endif /* !MULTIPROCESSOR */
486 1.2 ad #endif /* FULL */
487 1.2 ad MUTEX_LOCKED(mtx);
488 1.2 ad return;
489 1.2 ad }
490 1.2 ad
491 1.2 ad curthread = (uintptr_t)curlwp;
492 1.2 ad
493 1.2 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
494 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
495 1.2 ad MUTEX_WANTLOCK(mtx);
496 1.2 ad
497 1.2 ad if (panicstr == NULL) {
498 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
499 1.2 ad }
500 1.2 ad
501 1.2 ad LOCKSTAT_ENTER(lsflag);
502 1.2 ad
503 1.2 ad /*
504 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
505 1.2 ad * determine that the owner is not running on a processor,
506 1.2 ad * then we stop spinning, and sleep instead.
507 1.2 ad */
508 1.50 rmind KPREEMPT_DISABLE(curlwp);
509 1.34 ad for (owner = mtx->mtx_owner;;) {
510 1.2 ad if (!MUTEX_OWNED(owner)) {
511 1.2 ad /*
512 1.2 ad * Mutex owner clear could mean two things:
513 1.2 ad *
514 1.2 ad * * The mutex has been released.
515 1.2 ad * * The owner field hasn't been set yet.
516 1.2 ad *
517 1.2 ad * Try to acquire it again. If that fails,
518 1.2 ad * we'll just loop again.
519 1.2 ad */
520 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
521 1.2 ad break;
522 1.34 ad owner = mtx->mtx_owner;
523 1.2 ad continue;
524 1.2 ad }
525 1.50 rmind if (__predict_false(panicstr != NULL)) {
526 1.50 rmind kpreempt_enable();
527 1.2 ad return;
528 1.50 rmind }
529 1.50 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
530 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
531 1.50 rmind }
532 1.2 ad #ifdef MULTIPROCESSOR
533 1.2 ad /*
534 1.2 ad * Check to see if the owner is running on a processor.
535 1.2 ad * If so, then we should just spin, as the owner will
536 1.2 ad * likely release the lock very soon.
537 1.2 ad */
538 1.50 rmind if (mutex_oncpu(owner)) {
539 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
540 1.2 ad count = SPINLOCK_BACKOFF_MIN;
541 1.50 rmind do {
542 1.50 rmind kpreempt_enable();
543 1.34 ad SPINLOCK_BACKOFF(count);
544 1.50 rmind kpreempt_disable();
545 1.2 ad owner = mtx->mtx_owner;
546 1.50 rmind } while (mutex_oncpu(owner));
547 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
548 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
549 1.2 ad if (!MUTEX_OWNED(owner))
550 1.2 ad continue;
551 1.2 ad }
552 1.2 ad #endif
553 1.2 ad
554 1.2 ad ts = turnstile_lookup(mtx);
555 1.2 ad
556 1.2 ad /*
557 1.2 ad * Once we have the turnstile chain interlock, mark the
558 1.2 ad * mutex has having waiters. If that fails, spin again:
559 1.2 ad * chances are that the mutex has been released.
560 1.2 ad */
561 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
562 1.2 ad turnstile_exit(mtx);
563 1.34 ad owner = mtx->mtx_owner;
564 1.2 ad continue;
565 1.2 ad }
566 1.2 ad
567 1.2 ad #ifdef MULTIPROCESSOR
568 1.2 ad /*
569 1.2 ad * mutex_exit() is permitted to release the mutex without
570 1.2 ad * any interlocking instructions, and the following can
571 1.2 ad * occur as a result:
572 1.2 ad *
573 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
574 1.2 ad * ---------------------------- ----------------------------
575 1.2 ad * .. acquire cache line
576 1.2 ad * .. test for waiters
577 1.2 ad * acquire cache line <- lose cache line
578 1.2 ad * lock cache line ..
579 1.2 ad * verify mutex is held ..
580 1.2 ad * set waiters ..
581 1.2 ad * unlock cache line ..
582 1.2 ad * lose cache line -> acquire cache line
583 1.2 ad * .. clear lock word, waiters
584 1.2 ad * return success
585 1.2 ad *
586 1.50 rmind * There is another race that can occur: a third CPU could
587 1.2 ad * acquire the mutex as soon as it is released. Since
588 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
589 1.2 ad * something that we need to worry about too much. What we
590 1.2 ad * do need to ensure is that the waiters bit gets set.
591 1.2 ad *
592 1.2 ad * To allow the unlocked release, we need to make some
593 1.2 ad * assumptions here:
594 1.2 ad *
595 1.2 ad * o Release is the only non-atomic/unlocked operation
596 1.2 ad * that can be performed on the mutex. (It must still
597 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
598 1.2 ad * or preempted).
599 1.2 ad *
600 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
601 1.21 pooka * be in progress on one CPU in the system - guaranteed
602 1.2 ad * by the turnstile chain lock.
603 1.2 ad *
604 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
605 1.2 ad * and release can modify a mutex with a non-zero
606 1.2 ad * owner field.
607 1.2 ad *
608 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
609 1.2 ad * is an unbuffered write that is immediately visible
610 1.2 ad * to all other processors in the system.
611 1.2 ad *
612 1.2 ad * o If the holding LWP switches away, it posts a store
613 1.2 ad * fence before changing curlwp, ensuring that any
614 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
615 1.2 ad * completes before the modification of curlwp becomes
616 1.2 ad * visible to this CPU.
617 1.2 ad *
618 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
619 1.2 ad * and before resuming execution of an LWP.
620 1.2 ad *
621 1.2 ad * o _kernel_lock() posts a store fence before setting
622 1.2 ad * curcpu()->ci_biglock_wanted, and after clearing it.
623 1.2 ad * This ensures that any overwrite of the mutex waiters
624 1.2 ad * flag by mutex_exit() completes before the modification
625 1.2 ad * of ci_biglock_wanted becomes visible.
626 1.2 ad *
627 1.2 ad * We now post a read memory barrier (after setting the
628 1.2 ad * waiters field) and check the lock holder's status again.
629 1.2 ad * Some of the possible outcomes (not an exhaustive list):
630 1.2 ad *
631 1.50 rmind * 1. The on-CPU check returns true: the holding LWP is
632 1.2 ad * running again. The lock may be released soon and
633 1.2 ad * we should spin. Importantly, we can't trust the
634 1.2 ad * value of the waiters flag.
635 1.2 ad *
636 1.50 rmind * 2. The on-CPU check returns false: the holding LWP is
637 1.39 yamt * not running. We now have the opportunity to check
638 1.2 ad * if mutex_exit() has blatted the modifications made
639 1.2 ad * by MUTEX_SET_WAITERS().
640 1.2 ad *
641 1.50 rmind * 3. The on-CPU check returns false: the holding LWP may
642 1.2 ad * or may not be running. It has context switched at
643 1.2 ad * some point during our check. Again, we have the
644 1.2 ad * chance to see if the waiters bit is still set or
645 1.2 ad * has been overwritten.
646 1.2 ad *
647 1.50 rmind * 4. The on-CPU check returns false: the holding LWP is
648 1.2 ad * running on a CPU, but wants the big lock. It's OK
649 1.2 ad * to check the waiters field in this case.
650 1.2 ad *
651 1.2 ad * 5. The has-waiters check fails: the mutex has been
652 1.2 ad * released, the waiters flag cleared and another LWP
653 1.2 ad * now owns the mutex.
654 1.2 ad *
655 1.2 ad * 6. The has-waiters check fails: the mutex has been
656 1.2 ad * released.
657 1.2 ad *
658 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
659 1.2 ad * as we might never be awoken.
660 1.2 ad */
661 1.50 rmind if ((membar_consumer(), mutex_oncpu(owner)) ||
662 1.24 ad (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
663 1.2 ad turnstile_exit(mtx);
664 1.34 ad owner = mtx->mtx_owner;
665 1.2 ad continue;
666 1.2 ad }
667 1.2 ad #endif /* MULTIPROCESSOR */
668 1.2 ad
669 1.44 wrstuden #ifdef KERN_SA
670 1.44 wrstuden /*
671 1.44 wrstuden * Sleeping for a mutex should not generate an upcall.
672 1.44 wrstuden * So set LP_SA_NOBLOCK to indicate this.
673 1.44 wrstuden * f indicates if we should clear LP_SA_NOBLOCK when done.
674 1.44 wrstuden */
675 1.44 wrstuden f = ~curlwp->l_pflag & LP_SA_NOBLOCK;
676 1.44 wrstuden curlwp->l_pflag |= LP_SA_NOBLOCK;
677 1.44 wrstuden #endif /* KERN_SA */
678 1.44 wrstuden
679 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
680 1.2 ad
681 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
682 1.2 ad
683 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
684 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
685 1.34 ad
686 1.44 wrstuden #ifdef KERN_SA
687 1.44 wrstuden curlwp->l_pflag ^= f;
688 1.44 wrstuden #endif /* KERN_SA */
689 1.44 wrstuden
690 1.34 ad owner = mtx->mtx_owner;
691 1.2 ad }
692 1.50 rmind KPREEMPT_ENABLE(curlwp);
693 1.2 ad
694 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
695 1.2 ad slpcnt, slptime);
696 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
697 1.2 ad spincnt, spintime);
698 1.2 ad LOCKSTAT_EXIT(lsflag);
699 1.2 ad
700 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
701 1.2 ad MUTEX_LOCKED(mtx);
702 1.2 ad }
703 1.2 ad
704 1.2 ad /*
705 1.2 ad * mutex_vector_exit:
706 1.2 ad *
707 1.2 ad * Support routine for mutex_exit() that handles all cases.
708 1.2 ad */
709 1.2 ad void
710 1.2 ad mutex_vector_exit(kmutex_t *mtx)
711 1.2 ad {
712 1.2 ad turnstile_t *ts;
713 1.2 ad uintptr_t curthread;
714 1.2 ad
715 1.2 ad if (MUTEX_SPIN_P(mtx)) {
716 1.2 ad #ifdef FULL
717 1.33 ad if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
718 1.33 ad if (panicstr != NULL)
719 1.33 ad return;
720 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
721 1.33 ad }
722 1.2 ad MUTEX_UNLOCKED(mtx);
723 1.2 ad __cpu_simple_unlock(&mtx->mtx_lock);
724 1.2 ad #endif
725 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
726 1.2 ad return;
727 1.2 ad }
728 1.2 ad
729 1.11 ad if (__predict_false((uintptr_t)panicstr | cold)) {
730 1.2 ad MUTEX_UNLOCKED(mtx);
731 1.2 ad MUTEX_RELEASE(mtx);
732 1.2 ad return;
733 1.2 ad }
734 1.2 ad
735 1.2 ad curthread = (uintptr_t)curlwp;
736 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
737 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
738 1.2 ad MUTEX_UNLOCKED(mtx);
739 1.2 ad
740 1.15 ad #ifdef LOCKDEBUG
741 1.15 ad /*
742 1.15 ad * Avoid having to take the turnstile chain lock every time
743 1.15 ad * around. Raise the priority level to splhigh() in order
744 1.15 ad * to disable preemption and so make the following atomic.
745 1.15 ad */
746 1.15 ad {
747 1.15 ad int s = splhigh();
748 1.15 ad if (!MUTEX_HAS_WAITERS(mtx)) {
749 1.15 ad MUTEX_RELEASE(mtx);
750 1.15 ad splx(s);
751 1.15 ad return;
752 1.15 ad }
753 1.15 ad splx(s);
754 1.15 ad }
755 1.15 ad #endif
756 1.15 ad
757 1.2 ad /*
758 1.2 ad * Get this lock's turnstile. This gets the interlock on
759 1.2 ad * the sleep queue. Once we have that, we can clear the
760 1.2 ad * lock. If there was no turnstile for the lock, there
761 1.2 ad * were no waiters remaining.
762 1.2 ad */
763 1.2 ad ts = turnstile_lookup(mtx);
764 1.2 ad
765 1.2 ad if (ts == NULL) {
766 1.2 ad MUTEX_RELEASE(mtx);
767 1.2 ad turnstile_exit(mtx);
768 1.2 ad } else {
769 1.2 ad MUTEX_RELEASE(mtx);
770 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
771 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
772 1.2 ad }
773 1.2 ad }
774 1.2 ad
775 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
776 1.4 ad /*
777 1.4 ad * mutex_wakeup:
778 1.4 ad *
779 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
780 1.4 ad * We assume that the mutex has been released, but it need not
781 1.4 ad * be.
782 1.4 ad */
783 1.4 ad void
784 1.4 ad mutex_wakeup(kmutex_t *mtx)
785 1.4 ad {
786 1.4 ad turnstile_t *ts;
787 1.4 ad
788 1.4 ad ts = turnstile_lookup(mtx);
789 1.4 ad if (ts == NULL) {
790 1.4 ad turnstile_exit(mtx);
791 1.4 ad return;
792 1.4 ad }
793 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
794 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
795 1.4 ad }
796 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
797 1.4 ad
798 1.2 ad /*
799 1.2 ad * mutex_owned:
800 1.2 ad *
801 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
802 1.3 ad * holds the mutex.
803 1.2 ad */
804 1.2 ad int
805 1.2 ad mutex_owned(kmutex_t *mtx)
806 1.2 ad {
807 1.2 ad
808 1.35 ad if (mtx == NULL)
809 1.35 ad return 0;
810 1.2 ad if (MUTEX_ADAPTIVE_P(mtx))
811 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
812 1.2 ad #ifdef FULL
813 1.16 skrll return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
814 1.2 ad #else
815 1.2 ad return 1;
816 1.2 ad #endif
817 1.2 ad }
818 1.2 ad
819 1.2 ad /*
820 1.2 ad * mutex_owner:
821 1.2 ad *
822 1.6 ad * Return the current owner of an adaptive mutex. Used for
823 1.6 ad * priority inheritance.
824 1.2 ad */
825 1.27 ad lwp_t *
826 1.27 ad mutex_owner(kmutex_t *mtx)
827 1.2 ad {
828 1.2 ad
829 1.2 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
830 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
831 1.2 ad }
832 1.2 ad
833 1.2 ad /*
834 1.2 ad * mutex_tryenter:
835 1.2 ad *
836 1.2 ad * Try to acquire the mutex; return non-zero if we did.
837 1.2 ad */
838 1.2 ad int
839 1.2 ad mutex_tryenter(kmutex_t *mtx)
840 1.2 ad {
841 1.2 ad uintptr_t curthread;
842 1.2 ad
843 1.2 ad /*
844 1.2 ad * Handle spin mutexes.
845 1.2 ad */
846 1.2 ad if (MUTEX_SPIN_P(mtx)) {
847 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
848 1.2 ad #ifdef FULL
849 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
850 1.4 ad MUTEX_WANTLOCK(mtx);
851 1.2 ad MUTEX_LOCKED(mtx);
852 1.2 ad return 1;
853 1.2 ad }
854 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
855 1.2 ad #else
856 1.4 ad MUTEX_WANTLOCK(mtx);
857 1.2 ad MUTEX_LOCKED(mtx);
858 1.2 ad return 1;
859 1.2 ad #endif
860 1.2 ad } else {
861 1.2 ad curthread = (uintptr_t)curlwp;
862 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
863 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
864 1.4 ad MUTEX_WANTLOCK(mtx);
865 1.2 ad MUTEX_LOCKED(mtx);
866 1.2 ad MUTEX_DASSERT(mtx,
867 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
868 1.2 ad return 1;
869 1.2 ad }
870 1.2 ad }
871 1.2 ad
872 1.2 ad return 0;
873 1.2 ad }
874 1.2 ad
875 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
876 1.2 ad /*
877 1.2 ad * mutex_spin_retry:
878 1.2 ad *
879 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
880 1.2 ad * has already raised the SPL, and adjusted counters.
881 1.2 ad */
882 1.2 ad void
883 1.2 ad mutex_spin_retry(kmutex_t *mtx)
884 1.2 ad {
885 1.2 ad #ifdef MULTIPROCESSOR
886 1.2 ad u_int count;
887 1.2 ad LOCKSTAT_TIMER(spintime);
888 1.2 ad LOCKSTAT_FLAG(lsflag);
889 1.2 ad #ifdef LOCKDEBUG
890 1.2 ad u_int spins = 0;
891 1.2 ad #endif /* LOCKDEBUG */
892 1.2 ad
893 1.2 ad MUTEX_WANTLOCK(mtx);
894 1.2 ad
895 1.2 ad LOCKSTAT_ENTER(lsflag);
896 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
897 1.2 ad count = SPINLOCK_BACKOFF_MIN;
898 1.2 ad
899 1.2 ad /*
900 1.2 ad * Spin testing the lock word and do exponential backoff
901 1.2 ad * to reduce cache line ping-ponging between CPUs.
902 1.2 ad */
903 1.2 ad do {
904 1.2 ad if (panicstr != NULL)
905 1.2 ad break;
906 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
907 1.2 ad SPINLOCK_BACKOFF(count);
908 1.2 ad #ifdef LOCKDEBUG
909 1.2 ad if (SPINLOCK_SPINOUT(spins))
910 1.2 ad MUTEX_ABORT(mtx, "spinout");
911 1.2 ad #endif /* LOCKDEBUG */
912 1.2 ad }
913 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
914 1.2 ad
915 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
916 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
917 1.2 ad LOCKSTAT_EXIT(lsflag);
918 1.2 ad
919 1.2 ad MUTEX_LOCKED(mtx);
920 1.2 ad #else /* MULTIPROCESSOR */
921 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
922 1.2 ad #endif /* MULTIPROCESSOR */
923 1.2 ad }
924 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
925