kern_mutex.c revision 1.59 1 1.59 matt /* $NetBSD: kern_mutex.c,v 1.59 2014/09/05 05:57:21 matt Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.30 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
34 1.2 ad * a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.2 ad #define __MUTEX_PRIVATE
41 1.2 ad
42 1.2 ad #include <sys/cdefs.h>
43 1.59 matt __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.59 2014/09/05 05:57:21 matt Exp $");
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.46 pooka #include <sys/atomic.h>
47 1.2 ad #include <sys/proc.h>
48 1.2 ad #include <sys/mutex.h>
49 1.2 ad #include <sys/sched.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/systm.h>
52 1.2 ad #include <sys/lockdebug.h>
53 1.2 ad #include <sys/kernel.h>
54 1.24 ad #include <sys/intr.h>
55 1.29 xtraeme #include <sys/lock.h>
56 1.50 rmind #include <sys/types.h>
57 1.2 ad
58 1.2 ad #include <dev/lockstat.h>
59 1.2 ad
60 1.28 ad #include <machine/lock.h>
61 1.28 ad
62 1.2 ad /*
63 1.2 ad * When not running a debug kernel, spin mutexes are not much
64 1.2 ad * more than an splraiseipl() and splx() pair.
65 1.2 ad */
66 1.2 ad
67 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
68 1.2 ad #define FULL
69 1.2 ad #endif
70 1.2 ad
71 1.2 ad /*
72 1.2 ad * Debugging support.
73 1.2 ad */
74 1.2 ad
75 1.2 ad #define MUTEX_WANTLOCK(mtx) \
76 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
77 1.54 mlelstv (uintptr_t)__builtin_return_address(0), 0)
78 1.2 ad #define MUTEX_LOCKED(mtx) \
79 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
80 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
81 1.2 ad #define MUTEX_UNLOCKED(mtx) \
82 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
83 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
84 1.2 ad #define MUTEX_ABORT(mtx, msg) \
85 1.17 ad mutex_abort(mtx, __func__, msg)
86 1.2 ad
87 1.2 ad #if defined(LOCKDEBUG)
88 1.2 ad
89 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
90 1.2 ad do { \
91 1.2 ad if (!(cond)) \
92 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
93 1.2 ad } while (/* CONSTCOND */ 0);
94 1.2 ad
95 1.2 ad #else /* LOCKDEBUG */
96 1.2 ad
97 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
98 1.2 ad
99 1.2 ad #endif /* LOCKDEBUG */
100 1.2 ad
101 1.2 ad #if defined(DIAGNOSTIC)
102 1.2 ad
103 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
104 1.2 ad do { \
105 1.2 ad if (!(cond)) \
106 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
107 1.2 ad } while (/* CONSTCOND */ 0)
108 1.2 ad
109 1.2 ad #else /* DIAGNOSTIC */
110 1.2 ad
111 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
112 1.2 ad
113 1.2 ad #endif /* DIAGNOSTIC */
114 1.2 ad
115 1.2 ad /*
116 1.2 ad * Spin mutex SPL save / restore.
117 1.2 ad */
118 1.2 ad
119 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
120 1.2 ad do { \
121 1.36 ad struct cpu_info *x__ci; \
122 1.2 ad int x__cnt, s; \
123 1.36 ad s = splraiseipl(mtx->mtx_ipl); \
124 1.36 ad x__ci = curcpu(); \
125 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
126 1.37 ad __insn_barrier(); \
127 1.51 rmind if (x__cnt == 0) \
128 1.2 ad x__ci->ci_mtx_oldspl = (s); \
129 1.2 ad } while (/* CONSTCOND */ 0)
130 1.2 ad
131 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
132 1.2 ad do { \
133 1.2 ad struct cpu_info *x__ci = curcpu(); \
134 1.2 ad int s = x__ci->ci_mtx_oldspl; \
135 1.2 ad __insn_barrier(); \
136 1.51 rmind if (++(x__ci->ci_mtx_count) == 0) \
137 1.2 ad splx(s); \
138 1.2 ad } while (/* CONSTCOND */ 0)
139 1.2 ad
140 1.2 ad /*
141 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
142 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
143 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
144 1.2 ad * additional interlock.
145 1.2 ad */
146 1.2 ad
147 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
148 1.2 ad
149 1.2 ad #define MUTEX_OWNER(owner) \
150 1.2 ad (owner & MUTEX_THREAD)
151 1.2 ad #define MUTEX_HAS_WAITERS(mtx) \
152 1.2 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
153 1.2 ad
154 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
155 1.49 skrll if (!dodebug) \
156 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
157 1.2 ad do { \
158 1.2 ad } while (/* CONSTCOND */ 0);
159 1.2 ad
160 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
161 1.2 ad do { \
162 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
163 1.49 skrll if (!dodebug) \
164 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
165 1.2 ad (mtx)->mtx_ipl = makeiplcookie((ipl)); \
166 1.2 ad __cpu_simple_lock_init(&(mtx)->mtx_lock); \
167 1.2 ad } while (/* CONSTCOND */ 0)
168 1.2 ad
169 1.2 ad #define MUTEX_DESTROY(mtx) \
170 1.2 ad do { \
171 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
172 1.2 ad } while (/* CONSTCOND */ 0);
173 1.2 ad
174 1.2 ad #define MUTEX_SPIN_P(mtx) \
175 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
176 1.2 ad #define MUTEX_ADAPTIVE_P(mtx) \
177 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
178 1.2 ad
179 1.49 skrll #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
180 1.23 yamt #if defined(LOCKDEBUG)
181 1.49 skrll #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
182 1.59 matt #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
183 1.23 yamt #else /* defined(LOCKDEBUG) */
184 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
185 1.59 matt #define MUTEX_INHERITDEBUG(n, o) /* nothing */
186 1.23 yamt #endif /* defined(LOCKDEBUG) */
187 1.2 ad
188 1.2 ad static inline int
189 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
190 1.2 ad {
191 1.2 ad int rv;
192 1.59 matt uintptr_t oldown = 0;
193 1.59 matt uintptr_t newown = curthread;
194 1.23 yamt
195 1.59 matt MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
196 1.59 matt MUTEX_INHERITDEBUG(newown, oldown);
197 1.59 matt rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
198 1.7 itohy MUTEX_RECEIVE(mtx);
199 1.2 ad return rv;
200 1.2 ad }
201 1.2 ad
202 1.2 ad static inline int
203 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
204 1.2 ad {
205 1.2 ad int rv;
206 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
207 1.7 itohy MUTEX_RECEIVE(mtx);
208 1.2 ad return rv;
209 1.2 ad }
210 1.2 ad
211 1.2 ad static inline void
212 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
213 1.2 ad {
214 1.59 matt uintptr_t newown;
215 1.23 yamt
216 1.7 itohy MUTEX_GIVE(mtx);
217 1.59 matt newown = 0;
218 1.59 matt MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
219 1.59 matt mtx->mtx_owner = newown;
220 1.2 ad }
221 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
222 1.2 ad
223 1.2 ad /*
224 1.2 ad * Patch in stubs via strong alias where they are not available.
225 1.2 ad */
226 1.2 ad
227 1.2 ad #if defined(LOCKDEBUG)
228 1.2 ad #undef __HAVE_MUTEX_STUBS
229 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
230 1.2 ad #endif
231 1.2 ad
232 1.2 ad #ifndef __HAVE_MUTEX_STUBS
233 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
234 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
235 1.2 ad #endif
236 1.2 ad
237 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
238 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
239 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
240 1.2 ad #endif
241 1.2 ad
242 1.50 rmind static void mutex_abort(kmutex_t *, const char *, const char *);
243 1.50 rmind static void mutex_dump(volatile void *);
244 1.2 ad
245 1.2 ad lockops_t mutex_spin_lockops = {
246 1.2 ad "Mutex",
247 1.42 ad LOCKOPS_SPIN,
248 1.2 ad mutex_dump
249 1.2 ad };
250 1.2 ad
251 1.2 ad lockops_t mutex_adaptive_lockops = {
252 1.2 ad "Mutex",
253 1.42 ad LOCKOPS_SLEEP,
254 1.2 ad mutex_dump
255 1.2 ad };
256 1.2 ad
257 1.5 yamt syncobj_t mutex_syncobj = {
258 1.5 yamt SOBJ_SLEEPQ_SORTED,
259 1.5 yamt turnstile_unsleep,
260 1.5 yamt turnstile_changepri,
261 1.5 yamt sleepq_lendpri,
262 1.27 ad (void *)mutex_owner,
263 1.5 yamt };
264 1.5 yamt
265 1.2 ad /*
266 1.2 ad * mutex_dump:
267 1.2 ad *
268 1.2 ad * Dump the contents of a mutex structure.
269 1.2 ad */
270 1.2 ad void
271 1.2 ad mutex_dump(volatile void *cookie)
272 1.2 ad {
273 1.2 ad volatile kmutex_t *mtx = cookie;
274 1.2 ad
275 1.2 ad printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
276 1.2 ad (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
277 1.2 ad MUTEX_SPIN_P(mtx));
278 1.2 ad }
279 1.2 ad
280 1.2 ad /*
281 1.2 ad * mutex_abort:
282 1.2 ad *
283 1.3 ad * Dump information about an error and panic the system. This
284 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
285 1.3 ad * we ask the compiler to not inline it.
286 1.2 ad */
287 1.43 ad void __noinline
288 1.2 ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
289 1.2 ad {
290 1.2 ad
291 1.23 yamt LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
292 1.3 ad &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
293 1.2 ad }
294 1.2 ad
295 1.2 ad /*
296 1.2 ad * mutex_init:
297 1.2 ad *
298 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
299 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
300 1.2 ad * CPU time. We can't easily provide a type of mutex that always
301 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
302 1.2 ad * mutexes unlocked.
303 1.2 ad */
304 1.2 ad void
305 1.2 ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
306 1.2 ad {
307 1.23 yamt bool dodebug;
308 1.2 ad
309 1.2 ad memset(mtx, 0, sizeof(*mtx));
310 1.2 ad
311 1.15 ad switch (type) {
312 1.15 ad case MUTEX_ADAPTIVE:
313 1.15 ad KASSERT(ipl == IPL_NONE);
314 1.15 ad break;
315 1.22 ad case MUTEX_DEFAULT:
316 1.15 ad case MUTEX_DRIVER:
317 1.26 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
318 1.26 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
319 1.26 ad ipl == IPL_SOFTSERIAL) {
320 1.22 ad type = MUTEX_ADAPTIVE;
321 1.26 ad } else {
322 1.22 ad type = MUTEX_SPIN;
323 1.22 ad }
324 1.15 ad break;
325 1.15 ad default:
326 1.15 ad break;
327 1.15 ad }
328 1.2 ad
329 1.2 ad switch (type) {
330 1.11 ad case MUTEX_NODEBUG:
331 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
332 1.19 ad (uintptr_t)__builtin_return_address(0));
333 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
334 1.11 ad break;
335 1.2 ad case MUTEX_ADAPTIVE:
336 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
337 1.19 ad (uintptr_t)__builtin_return_address(0));
338 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
339 1.2 ad break;
340 1.2 ad case MUTEX_SPIN:
341 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
342 1.19 ad (uintptr_t)__builtin_return_address(0));
343 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
344 1.2 ad break;
345 1.2 ad default:
346 1.2 ad panic("mutex_init: impossible type");
347 1.2 ad break;
348 1.2 ad }
349 1.2 ad }
350 1.2 ad
351 1.2 ad /*
352 1.2 ad * mutex_destroy:
353 1.2 ad *
354 1.2 ad * Tear down a mutex.
355 1.2 ad */
356 1.2 ad void
357 1.2 ad mutex_destroy(kmutex_t *mtx)
358 1.2 ad {
359 1.2 ad
360 1.2 ad if (MUTEX_ADAPTIVE_P(mtx)) {
361 1.2 ad MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
362 1.2 ad !MUTEX_HAS_WAITERS(mtx));
363 1.2 ad } else {
364 1.16 skrll MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
365 1.2 ad }
366 1.2 ad
367 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
368 1.2 ad MUTEX_DESTROY(mtx);
369 1.2 ad }
370 1.2 ad
371 1.50 rmind #ifdef MULTIPROCESSOR
372 1.2 ad /*
373 1.50 rmind * mutex_oncpu:
374 1.2 ad *
375 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
376 1.2 ad * system. If the target is waiting on the kernel big lock, then we
377 1.15 ad * must release it. This is necessary to avoid deadlock.
378 1.2 ad */
379 1.50 rmind static bool
380 1.50 rmind mutex_oncpu(uintptr_t owner)
381 1.2 ad {
382 1.2 ad struct cpu_info *ci;
383 1.50 rmind lwp_t *l;
384 1.2 ad
385 1.50 rmind KASSERT(kpreempt_disabled());
386 1.50 rmind
387 1.50 rmind if (!MUTEX_OWNED(owner)) {
388 1.50 rmind return false;
389 1.50 rmind }
390 1.2 ad
391 1.50 rmind /*
392 1.50 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
393 1.50 rmind * We must have kernel preemption disabled for that.
394 1.50 rmind */
395 1.50 rmind l = (lwp_t *)MUTEX_OWNER(owner);
396 1.50 rmind ci = l->l_cpu;
397 1.2 ad
398 1.50 rmind if (ci && ci->ci_curlwp == l) {
399 1.50 rmind /* Target is running; do we need to block? */
400 1.50 rmind return (ci->ci_biglock_wanted != l);
401 1.50 rmind }
402 1.15 ad
403 1.50 rmind /* Not running. It may be safe to block now. */
404 1.50 rmind return false;
405 1.2 ad }
406 1.15 ad #endif /* MULTIPROCESSOR */
407 1.2 ad
408 1.2 ad /*
409 1.2 ad * mutex_vector_enter:
410 1.2 ad *
411 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In
412 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
413 1.2 ad * fast-path stubs are available. If an mutex_spin_enter() stub is
414 1.2 ad * not available, then it is also aliased directly here.
415 1.2 ad */
416 1.2 ad void
417 1.2 ad mutex_vector_enter(kmutex_t *mtx)
418 1.2 ad {
419 1.2 ad uintptr_t owner, curthread;
420 1.2 ad turnstile_t *ts;
421 1.2 ad #ifdef MULTIPROCESSOR
422 1.2 ad u_int count;
423 1.2 ad #endif
424 1.2 ad LOCKSTAT_COUNTER(spincnt);
425 1.2 ad LOCKSTAT_COUNTER(slpcnt);
426 1.2 ad LOCKSTAT_TIMER(spintime);
427 1.2 ad LOCKSTAT_TIMER(slptime);
428 1.2 ad LOCKSTAT_FLAG(lsflag);
429 1.2 ad
430 1.2 ad /*
431 1.2 ad * Handle spin mutexes.
432 1.2 ad */
433 1.2 ad if (MUTEX_SPIN_P(mtx)) {
434 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
435 1.2 ad u_int spins = 0;
436 1.2 ad #endif
437 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
438 1.2 ad MUTEX_WANTLOCK(mtx);
439 1.2 ad #ifdef FULL
440 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
441 1.2 ad MUTEX_LOCKED(mtx);
442 1.2 ad return;
443 1.2 ad }
444 1.2 ad #if !defined(MULTIPROCESSOR)
445 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
446 1.2 ad #else /* !MULTIPROCESSOR */
447 1.2 ad
448 1.2 ad LOCKSTAT_ENTER(lsflag);
449 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
450 1.2 ad count = SPINLOCK_BACKOFF_MIN;
451 1.2 ad
452 1.2 ad /*
453 1.2 ad * Spin testing the lock word and do exponential backoff
454 1.2 ad * to reduce cache line ping-ponging between CPUs.
455 1.2 ad */
456 1.2 ad do {
457 1.2 ad if (panicstr != NULL)
458 1.2 ad break;
459 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
460 1.2 ad SPINLOCK_BACKOFF(count);
461 1.2 ad #ifdef LOCKDEBUG
462 1.2 ad if (SPINLOCK_SPINOUT(spins))
463 1.2 ad MUTEX_ABORT(mtx, "spinout");
464 1.2 ad #endif /* LOCKDEBUG */
465 1.2 ad }
466 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
467 1.2 ad
468 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
469 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
470 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
471 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
472 1.2 ad }
473 1.2 ad LOCKSTAT_EXIT(lsflag);
474 1.2 ad #endif /* !MULTIPROCESSOR */
475 1.2 ad #endif /* FULL */
476 1.2 ad MUTEX_LOCKED(mtx);
477 1.2 ad return;
478 1.2 ad }
479 1.2 ad
480 1.2 ad curthread = (uintptr_t)curlwp;
481 1.2 ad
482 1.2 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
483 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
484 1.2 ad MUTEX_WANTLOCK(mtx);
485 1.2 ad
486 1.2 ad if (panicstr == NULL) {
487 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
488 1.2 ad }
489 1.2 ad
490 1.2 ad LOCKSTAT_ENTER(lsflag);
491 1.2 ad
492 1.2 ad /*
493 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
494 1.2 ad * determine that the owner is not running on a processor,
495 1.2 ad * then we stop spinning, and sleep instead.
496 1.2 ad */
497 1.50 rmind KPREEMPT_DISABLE(curlwp);
498 1.34 ad for (owner = mtx->mtx_owner;;) {
499 1.2 ad if (!MUTEX_OWNED(owner)) {
500 1.2 ad /*
501 1.2 ad * Mutex owner clear could mean two things:
502 1.2 ad *
503 1.2 ad * * The mutex has been released.
504 1.2 ad * * The owner field hasn't been set yet.
505 1.2 ad *
506 1.2 ad * Try to acquire it again. If that fails,
507 1.2 ad * we'll just loop again.
508 1.2 ad */
509 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
510 1.2 ad break;
511 1.34 ad owner = mtx->mtx_owner;
512 1.2 ad continue;
513 1.2 ad }
514 1.50 rmind if (__predict_false(panicstr != NULL)) {
515 1.50 rmind kpreempt_enable();
516 1.2 ad return;
517 1.50 rmind }
518 1.50 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
519 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
520 1.50 rmind }
521 1.2 ad #ifdef MULTIPROCESSOR
522 1.2 ad /*
523 1.2 ad * Check to see if the owner is running on a processor.
524 1.2 ad * If so, then we should just spin, as the owner will
525 1.2 ad * likely release the lock very soon.
526 1.2 ad */
527 1.50 rmind if (mutex_oncpu(owner)) {
528 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
529 1.2 ad count = SPINLOCK_BACKOFF_MIN;
530 1.50 rmind do {
531 1.53 rmind KPREEMPT_ENABLE(curlwp);
532 1.34 ad SPINLOCK_BACKOFF(count);
533 1.53 rmind KPREEMPT_DISABLE(curlwp);
534 1.2 ad owner = mtx->mtx_owner;
535 1.50 rmind } while (mutex_oncpu(owner));
536 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
537 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
538 1.2 ad if (!MUTEX_OWNED(owner))
539 1.2 ad continue;
540 1.2 ad }
541 1.2 ad #endif
542 1.2 ad
543 1.2 ad ts = turnstile_lookup(mtx);
544 1.2 ad
545 1.2 ad /*
546 1.2 ad * Once we have the turnstile chain interlock, mark the
547 1.2 ad * mutex has having waiters. If that fails, spin again:
548 1.2 ad * chances are that the mutex has been released.
549 1.2 ad */
550 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
551 1.2 ad turnstile_exit(mtx);
552 1.34 ad owner = mtx->mtx_owner;
553 1.2 ad continue;
554 1.2 ad }
555 1.2 ad
556 1.2 ad #ifdef MULTIPROCESSOR
557 1.2 ad /*
558 1.2 ad * mutex_exit() is permitted to release the mutex without
559 1.2 ad * any interlocking instructions, and the following can
560 1.2 ad * occur as a result:
561 1.2 ad *
562 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
563 1.2 ad * ---------------------------- ----------------------------
564 1.2 ad * .. acquire cache line
565 1.2 ad * .. test for waiters
566 1.2 ad * acquire cache line <- lose cache line
567 1.2 ad * lock cache line ..
568 1.2 ad * verify mutex is held ..
569 1.2 ad * set waiters ..
570 1.2 ad * unlock cache line ..
571 1.2 ad * lose cache line -> acquire cache line
572 1.2 ad * .. clear lock word, waiters
573 1.2 ad * return success
574 1.2 ad *
575 1.50 rmind * There is another race that can occur: a third CPU could
576 1.2 ad * acquire the mutex as soon as it is released. Since
577 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
578 1.2 ad * something that we need to worry about too much. What we
579 1.2 ad * do need to ensure is that the waiters bit gets set.
580 1.2 ad *
581 1.2 ad * To allow the unlocked release, we need to make some
582 1.2 ad * assumptions here:
583 1.2 ad *
584 1.2 ad * o Release is the only non-atomic/unlocked operation
585 1.2 ad * that can be performed on the mutex. (It must still
586 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
587 1.2 ad * or preempted).
588 1.2 ad *
589 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
590 1.21 pooka * be in progress on one CPU in the system - guaranteed
591 1.2 ad * by the turnstile chain lock.
592 1.2 ad *
593 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
594 1.2 ad * and release can modify a mutex with a non-zero
595 1.2 ad * owner field.
596 1.2 ad *
597 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
598 1.2 ad * is an unbuffered write that is immediately visible
599 1.2 ad * to all other processors in the system.
600 1.2 ad *
601 1.2 ad * o If the holding LWP switches away, it posts a store
602 1.2 ad * fence before changing curlwp, ensuring that any
603 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
604 1.2 ad * completes before the modification of curlwp becomes
605 1.2 ad * visible to this CPU.
606 1.2 ad *
607 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
608 1.2 ad * and before resuming execution of an LWP.
609 1.2 ad *
610 1.2 ad * o _kernel_lock() posts a store fence before setting
611 1.2 ad * curcpu()->ci_biglock_wanted, and after clearing it.
612 1.2 ad * This ensures that any overwrite of the mutex waiters
613 1.2 ad * flag by mutex_exit() completes before the modification
614 1.2 ad * of ci_biglock_wanted becomes visible.
615 1.2 ad *
616 1.2 ad * We now post a read memory barrier (after setting the
617 1.2 ad * waiters field) and check the lock holder's status again.
618 1.2 ad * Some of the possible outcomes (not an exhaustive list):
619 1.2 ad *
620 1.50 rmind * 1. The on-CPU check returns true: the holding LWP is
621 1.2 ad * running again. The lock may be released soon and
622 1.2 ad * we should spin. Importantly, we can't trust the
623 1.2 ad * value of the waiters flag.
624 1.2 ad *
625 1.50 rmind * 2. The on-CPU check returns false: the holding LWP is
626 1.39 yamt * not running. We now have the opportunity to check
627 1.2 ad * if mutex_exit() has blatted the modifications made
628 1.2 ad * by MUTEX_SET_WAITERS().
629 1.2 ad *
630 1.50 rmind * 3. The on-CPU check returns false: the holding LWP may
631 1.2 ad * or may not be running. It has context switched at
632 1.2 ad * some point during our check. Again, we have the
633 1.2 ad * chance to see if the waiters bit is still set or
634 1.2 ad * has been overwritten.
635 1.2 ad *
636 1.50 rmind * 4. The on-CPU check returns false: the holding LWP is
637 1.2 ad * running on a CPU, but wants the big lock. It's OK
638 1.2 ad * to check the waiters field in this case.
639 1.2 ad *
640 1.2 ad * 5. The has-waiters check fails: the mutex has been
641 1.2 ad * released, the waiters flag cleared and another LWP
642 1.2 ad * now owns the mutex.
643 1.2 ad *
644 1.2 ad * 6. The has-waiters check fails: the mutex has been
645 1.2 ad * released.
646 1.2 ad *
647 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
648 1.2 ad * as we might never be awoken.
649 1.2 ad */
650 1.50 rmind if ((membar_consumer(), mutex_oncpu(owner)) ||
651 1.24 ad (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
652 1.2 ad turnstile_exit(mtx);
653 1.34 ad owner = mtx->mtx_owner;
654 1.2 ad continue;
655 1.2 ad }
656 1.2 ad #endif /* MULTIPROCESSOR */
657 1.2 ad
658 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
659 1.2 ad
660 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
661 1.2 ad
662 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
663 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
664 1.34 ad
665 1.34 ad owner = mtx->mtx_owner;
666 1.2 ad }
667 1.50 rmind KPREEMPT_ENABLE(curlwp);
668 1.2 ad
669 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
670 1.2 ad slpcnt, slptime);
671 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
672 1.2 ad spincnt, spintime);
673 1.2 ad LOCKSTAT_EXIT(lsflag);
674 1.2 ad
675 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
676 1.2 ad MUTEX_LOCKED(mtx);
677 1.2 ad }
678 1.2 ad
679 1.2 ad /*
680 1.2 ad * mutex_vector_exit:
681 1.2 ad *
682 1.2 ad * Support routine for mutex_exit() that handles all cases.
683 1.2 ad */
684 1.2 ad void
685 1.2 ad mutex_vector_exit(kmutex_t *mtx)
686 1.2 ad {
687 1.2 ad turnstile_t *ts;
688 1.2 ad uintptr_t curthread;
689 1.2 ad
690 1.2 ad if (MUTEX_SPIN_P(mtx)) {
691 1.2 ad #ifdef FULL
692 1.33 ad if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
693 1.33 ad if (panicstr != NULL)
694 1.33 ad return;
695 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
696 1.33 ad }
697 1.2 ad MUTEX_UNLOCKED(mtx);
698 1.2 ad __cpu_simple_unlock(&mtx->mtx_lock);
699 1.2 ad #endif
700 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
701 1.2 ad return;
702 1.2 ad }
703 1.2 ad
704 1.11 ad if (__predict_false((uintptr_t)panicstr | cold)) {
705 1.2 ad MUTEX_UNLOCKED(mtx);
706 1.2 ad MUTEX_RELEASE(mtx);
707 1.2 ad return;
708 1.2 ad }
709 1.2 ad
710 1.2 ad curthread = (uintptr_t)curlwp;
711 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
712 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
713 1.2 ad MUTEX_UNLOCKED(mtx);
714 1.58 mrg #if !defined(LOCKDEBUG)
715 1.58 mrg __USE(curthread);
716 1.58 mrg #endif
717 1.2 ad
718 1.15 ad #ifdef LOCKDEBUG
719 1.15 ad /*
720 1.15 ad * Avoid having to take the turnstile chain lock every time
721 1.15 ad * around. Raise the priority level to splhigh() in order
722 1.15 ad * to disable preemption and so make the following atomic.
723 1.15 ad */
724 1.15 ad {
725 1.15 ad int s = splhigh();
726 1.15 ad if (!MUTEX_HAS_WAITERS(mtx)) {
727 1.15 ad MUTEX_RELEASE(mtx);
728 1.15 ad splx(s);
729 1.15 ad return;
730 1.15 ad }
731 1.15 ad splx(s);
732 1.15 ad }
733 1.15 ad #endif
734 1.15 ad
735 1.2 ad /*
736 1.2 ad * Get this lock's turnstile. This gets the interlock on
737 1.2 ad * the sleep queue. Once we have that, we can clear the
738 1.2 ad * lock. If there was no turnstile for the lock, there
739 1.2 ad * were no waiters remaining.
740 1.2 ad */
741 1.2 ad ts = turnstile_lookup(mtx);
742 1.2 ad
743 1.2 ad if (ts == NULL) {
744 1.2 ad MUTEX_RELEASE(mtx);
745 1.2 ad turnstile_exit(mtx);
746 1.2 ad } else {
747 1.2 ad MUTEX_RELEASE(mtx);
748 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
749 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
750 1.2 ad }
751 1.2 ad }
752 1.2 ad
753 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
754 1.4 ad /*
755 1.4 ad * mutex_wakeup:
756 1.4 ad *
757 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
758 1.4 ad * We assume that the mutex has been released, but it need not
759 1.4 ad * be.
760 1.4 ad */
761 1.4 ad void
762 1.4 ad mutex_wakeup(kmutex_t *mtx)
763 1.4 ad {
764 1.4 ad turnstile_t *ts;
765 1.4 ad
766 1.4 ad ts = turnstile_lookup(mtx);
767 1.4 ad if (ts == NULL) {
768 1.4 ad turnstile_exit(mtx);
769 1.4 ad return;
770 1.4 ad }
771 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
772 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
773 1.4 ad }
774 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
775 1.4 ad
776 1.2 ad /*
777 1.2 ad * mutex_owned:
778 1.2 ad *
779 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
780 1.3 ad * holds the mutex.
781 1.2 ad */
782 1.2 ad int
783 1.2 ad mutex_owned(kmutex_t *mtx)
784 1.2 ad {
785 1.2 ad
786 1.35 ad if (mtx == NULL)
787 1.35 ad return 0;
788 1.2 ad if (MUTEX_ADAPTIVE_P(mtx))
789 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
790 1.2 ad #ifdef FULL
791 1.16 skrll return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
792 1.2 ad #else
793 1.2 ad return 1;
794 1.2 ad #endif
795 1.2 ad }
796 1.2 ad
797 1.2 ad /*
798 1.2 ad * mutex_owner:
799 1.2 ad *
800 1.6 ad * Return the current owner of an adaptive mutex. Used for
801 1.6 ad * priority inheritance.
802 1.2 ad */
803 1.27 ad lwp_t *
804 1.27 ad mutex_owner(kmutex_t *mtx)
805 1.2 ad {
806 1.2 ad
807 1.2 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
808 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
809 1.2 ad }
810 1.2 ad
811 1.2 ad /*
812 1.2 ad * mutex_tryenter:
813 1.2 ad *
814 1.2 ad * Try to acquire the mutex; return non-zero if we did.
815 1.2 ad */
816 1.2 ad int
817 1.2 ad mutex_tryenter(kmutex_t *mtx)
818 1.2 ad {
819 1.2 ad uintptr_t curthread;
820 1.2 ad
821 1.2 ad /*
822 1.2 ad * Handle spin mutexes.
823 1.2 ad */
824 1.2 ad if (MUTEX_SPIN_P(mtx)) {
825 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
826 1.2 ad #ifdef FULL
827 1.2 ad if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
828 1.4 ad MUTEX_WANTLOCK(mtx);
829 1.2 ad MUTEX_LOCKED(mtx);
830 1.2 ad return 1;
831 1.2 ad }
832 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
833 1.2 ad #else
834 1.4 ad MUTEX_WANTLOCK(mtx);
835 1.2 ad MUTEX_LOCKED(mtx);
836 1.2 ad return 1;
837 1.2 ad #endif
838 1.2 ad } else {
839 1.2 ad curthread = (uintptr_t)curlwp;
840 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
841 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
842 1.4 ad MUTEX_WANTLOCK(mtx);
843 1.2 ad MUTEX_LOCKED(mtx);
844 1.2 ad MUTEX_DASSERT(mtx,
845 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
846 1.2 ad return 1;
847 1.2 ad }
848 1.2 ad }
849 1.2 ad
850 1.2 ad return 0;
851 1.2 ad }
852 1.2 ad
853 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
854 1.2 ad /*
855 1.2 ad * mutex_spin_retry:
856 1.2 ad *
857 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
858 1.2 ad * has already raised the SPL, and adjusted counters.
859 1.2 ad */
860 1.2 ad void
861 1.2 ad mutex_spin_retry(kmutex_t *mtx)
862 1.2 ad {
863 1.2 ad #ifdef MULTIPROCESSOR
864 1.2 ad u_int count;
865 1.2 ad LOCKSTAT_TIMER(spintime);
866 1.2 ad LOCKSTAT_FLAG(lsflag);
867 1.2 ad #ifdef LOCKDEBUG
868 1.2 ad u_int spins = 0;
869 1.2 ad #endif /* LOCKDEBUG */
870 1.2 ad
871 1.2 ad MUTEX_WANTLOCK(mtx);
872 1.2 ad
873 1.2 ad LOCKSTAT_ENTER(lsflag);
874 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
875 1.2 ad count = SPINLOCK_BACKOFF_MIN;
876 1.2 ad
877 1.2 ad /*
878 1.2 ad * Spin testing the lock word and do exponential backoff
879 1.2 ad * to reduce cache line ping-ponging between CPUs.
880 1.2 ad */
881 1.2 ad do {
882 1.2 ad if (panicstr != NULL)
883 1.2 ad break;
884 1.16 skrll while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
885 1.2 ad SPINLOCK_BACKOFF(count);
886 1.2 ad #ifdef LOCKDEBUG
887 1.2 ad if (SPINLOCK_SPINOUT(spins))
888 1.2 ad MUTEX_ABORT(mtx, "spinout");
889 1.2 ad #endif /* LOCKDEBUG */
890 1.2 ad }
891 1.2 ad } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
892 1.2 ad
893 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
894 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
895 1.2 ad LOCKSTAT_EXIT(lsflag);
896 1.2 ad
897 1.2 ad MUTEX_LOCKED(mtx);
898 1.2 ad #else /* MULTIPROCESSOR */
899 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
900 1.2 ad #endif /* MULTIPROCESSOR */
901 1.2 ad }
902 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
903