Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.61
      1  1.61  uebayasi /*	$NetBSD: kern_mutex.c,v 1.61 2014/11/28 08:27:27 uebayasi Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.30        ad  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Kernel mutex implementation, modeled after those found in Solaris,
     34   1.2        ad  * a description of which can be found in:
     35   1.2        ad  *
     36   1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37   1.2        ad  *	    Richard McDougall.
     38   1.2        ad  */
     39   1.2        ad 
     40   1.2        ad #define	__MUTEX_PRIVATE
     41   1.2        ad 
     42   1.2        ad #include <sys/cdefs.h>
     43  1.61  uebayasi __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.61 2014/11/28 08:27:27 uebayasi Exp $");
     44   1.2        ad 
     45   1.2        ad #include <sys/param.h>
     46  1.46     pooka #include <sys/atomic.h>
     47   1.2        ad #include <sys/proc.h>
     48   1.2        ad #include <sys/mutex.h>
     49   1.2        ad #include <sys/sched.h>
     50   1.2        ad #include <sys/sleepq.h>
     51   1.2        ad #include <sys/systm.h>
     52   1.2        ad #include <sys/lockdebug.h>
     53   1.2        ad #include <sys/kernel.h>
     54  1.24        ad #include <sys/intr.h>
     55  1.29   xtraeme #include <sys/lock.h>
     56  1.50     rmind #include <sys/types.h>
     57   1.2        ad 
     58   1.2        ad #include <dev/lockstat.h>
     59   1.2        ad 
     60  1.28        ad #include <machine/lock.h>
     61  1.28        ad 
     62   1.2        ad /*
     63   1.2        ad  * When not running a debug kernel, spin mutexes are not much
     64   1.2        ad  * more than an splraiseipl() and splx() pair.
     65   1.2        ad  */
     66   1.2        ad 
     67   1.2        ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     68   1.2        ad #define	FULL
     69   1.2        ad #endif
     70   1.2        ad 
     71   1.2        ad /*
     72   1.2        ad  * Debugging support.
     73   1.2        ad  */
     74   1.2        ad 
     75   1.2        ad #define	MUTEX_WANTLOCK(mtx)					\
     76  1.23      yamt     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     77  1.54   mlelstv         (uintptr_t)__builtin_return_address(0), 0)
     78   1.2        ad #define	MUTEX_LOCKED(mtx)					\
     79  1.42        ad     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     80   1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     81   1.2        ad #define	MUTEX_UNLOCKED(mtx)					\
     82  1.23      yamt     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     83   1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     84   1.2        ad #define	MUTEX_ABORT(mtx, msg)					\
     85  1.17        ad     mutex_abort(mtx, __func__, msg)
     86   1.2        ad 
     87   1.2        ad #if defined(LOCKDEBUG)
     88   1.2        ad 
     89   1.2        ad #define	MUTEX_DASSERT(mtx, cond)				\
     90   1.2        ad do {								\
     91   1.2        ad 	if (!(cond))						\
     92   1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     93   1.2        ad } while (/* CONSTCOND */ 0);
     94   1.2        ad 
     95   1.2        ad #else	/* LOCKDEBUG */
     96   1.2        ad 
     97   1.2        ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
     98   1.2        ad 
     99   1.2        ad #endif /* LOCKDEBUG */
    100   1.2        ad 
    101   1.2        ad #if defined(DIAGNOSTIC)
    102   1.2        ad 
    103   1.2        ad #define	MUTEX_ASSERT(mtx, cond)					\
    104   1.2        ad do {								\
    105   1.2        ad 	if (!(cond))						\
    106   1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    107   1.2        ad } while (/* CONSTCOND */ 0)
    108   1.2        ad 
    109   1.2        ad #else	/* DIAGNOSTIC */
    110   1.2        ad 
    111   1.2        ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    112   1.2        ad 
    113   1.2        ad #endif	/* DIAGNOSTIC */
    114   1.2        ad 
    115   1.2        ad /*
    116  1.60      matt  * Some architectures can't use __cpu_simple_lock as is so allow a way
    117  1.60      matt  * for them to use an alternate definition.
    118  1.60      matt  */
    119  1.60      matt #ifndef MUTEX_SPINBIT_LOCK_INIT
    120  1.60      matt #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    121  1.60      matt #endif
    122  1.60      matt #ifndef MUTEX_SPINBIT_LOCKED_P
    123  1.60      matt #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    124  1.60      matt #endif
    125  1.60      matt #ifndef MUTEX_SPINBIT_LOCK_TRY
    126  1.60      matt #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    127  1.60      matt #endif
    128  1.60      matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    129  1.60      matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    130  1.60      matt #endif
    131  1.60      matt 
    132  1.60      matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
    133  1.60      matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    134  1.60      matt 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    135  1.60      matt #endif
    136  1.60      matt 
    137  1.60      matt /*
    138   1.2        ad  * Spin mutex SPL save / restore.
    139   1.2        ad  */
    140   1.2        ad 
    141   1.2        ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    142   1.2        ad do {									\
    143  1.36        ad 	struct cpu_info *x__ci;						\
    144   1.2        ad 	int x__cnt, s;							\
    145  1.60      matt 	s = splraiseipl(MUTEX_SPIN_IPL(mtx));				\
    146  1.36        ad 	x__ci = curcpu();						\
    147   1.2        ad 	x__cnt = x__ci->ci_mtx_count--;					\
    148  1.37        ad 	__insn_barrier();						\
    149  1.51     rmind 	if (x__cnt == 0)						\
    150   1.2        ad 		x__ci->ci_mtx_oldspl = (s);				\
    151   1.2        ad } while (/* CONSTCOND */ 0)
    152   1.2        ad 
    153   1.2        ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    154   1.2        ad do {									\
    155   1.2        ad 	struct cpu_info *x__ci = curcpu();				\
    156   1.2        ad 	int s = x__ci->ci_mtx_oldspl;					\
    157   1.2        ad 	__insn_barrier();						\
    158  1.51     rmind 	if (++(x__ci->ci_mtx_count) == 0)			\
    159   1.2        ad 		splx(s);						\
    160   1.2        ad } while (/* CONSTCOND */ 0)
    161   1.2        ad 
    162   1.2        ad /*
    163   1.2        ad  * For architectures that provide 'simple' mutexes: they provide a
    164   1.2        ad  * CAS function that is either MP-safe, or does not need to be MP
    165   1.2        ad  * safe.  Adaptive mutexes on these architectures do not require an
    166   1.2        ad  * additional interlock.
    167   1.2        ad  */
    168   1.2        ad 
    169   1.2        ad #ifdef __HAVE_SIMPLE_MUTEXES
    170   1.2        ad 
    171   1.2        ad #define	MUTEX_OWNER(owner)						\
    172   1.2        ad 	(owner & MUTEX_THREAD)
    173   1.2        ad #define	MUTEX_HAS_WAITERS(mtx)						\
    174   1.2        ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    175   1.2        ad 
    176  1.23      yamt #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    177  1.49     skrll 	if (!dodebug)							\
    178  1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    179   1.2        ad do {									\
    180   1.2        ad } while (/* CONSTCOND */ 0);
    181   1.2        ad 
    182  1.23      yamt #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    183   1.2        ad do {									\
    184   1.2        ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    185  1.49     skrll 	if (!dodebug)							\
    186  1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    187  1.60      matt 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    188  1.60      matt 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    189   1.2        ad } while (/* CONSTCOND */ 0)
    190   1.2        ad 
    191   1.2        ad #define	MUTEX_DESTROY(mtx)						\
    192   1.2        ad do {									\
    193   1.2        ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    194   1.2        ad } while (/* CONSTCOND */ 0);
    195   1.2        ad 
    196   1.2        ad #define	MUTEX_SPIN_P(mtx)		\
    197   1.2        ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    198   1.2        ad #define	MUTEX_ADAPTIVE_P(mtx)		\
    199   1.2        ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    200   1.2        ad 
    201  1.49     skrll #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    202  1.23      yamt #if defined(LOCKDEBUG)
    203  1.49     skrll #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    204  1.59      matt #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    205  1.23      yamt #else /* defined(LOCKDEBUG) */
    206  1.23      yamt #define	MUTEX_OWNED(owner)		((owner) != 0)
    207  1.59      matt #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    208  1.23      yamt #endif /* defined(LOCKDEBUG) */
    209   1.2        ad 
    210   1.2        ad static inline int
    211   1.2        ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    212   1.2        ad {
    213   1.2        ad 	int rv;
    214  1.59      matt 	uintptr_t oldown = 0;
    215  1.59      matt 	uintptr_t newown = curthread;
    216  1.23      yamt 
    217  1.59      matt 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    218  1.59      matt 	MUTEX_INHERITDEBUG(newown, oldown);
    219  1.59      matt 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    220   1.7     itohy 	MUTEX_RECEIVE(mtx);
    221   1.2        ad 	return rv;
    222   1.2        ad }
    223   1.2        ad 
    224   1.2        ad static inline int
    225   1.2        ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    226   1.2        ad {
    227   1.2        ad 	int rv;
    228   1.2        ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    229   1.7     itohy 	MUTEX_RECEIVE(mtx);
    230   1.2        ad 	return rv;
    231   1.2        ad }
    232   1.2        ad 
    233   1.2        ad static inline void
    234   1.2        ad MUTEX_RELEASE(kmutex_t *mtx)
    235   1.2        ad {
    236  1.59      matt 	uintptr_t newown;
    237  1.23      yamt 
    238   1.7     itohy 	MUTEX_GIVE(mtx);
    239  1.59      matt 	newown = 0;
    240  1.59      matt 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    241  1.59      matt 	mtx->mtx_owner = newown;
    242   1.2        ad }
    243   1.2        ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    244   1.2        ad 
    245   1.2        ad /*
    246   1.2        ad  * Patch in stubs via strong alias where they are not available.
    247   1.2        ad  */
    248   1.2        ad 
    249   1.2        ad #if defined(LOCKDEBUG)
    250   1.2        ad #undef	__HAVE_MUTEX_STUBS
    251   1.2        ad #undef	__HAVE_SPIN_MUTEX_STUBS
    252   1.2        ad #endif
    253   1.2        ad 
    254   1.2        ad #ifndef __HAVE_MUTEX_STUBS
    255   1.8     itohy __strong_alias(mutex_enter,mutex_vector_enter);
    256   1.8     itohy __strong_alias(mutex_exit,mutex_vector_exit);
    257   1.2        ad #endif
    258   1.2        ad 
    259   1.2        ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    260   1.8     itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    261   1.8     itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    262   1.2        ad #endif
    263   1.2        ad 
    264  1.50     rmind static void		mutex_abort(kmutex_t *, const char *, const char *);
    265  1.50     rmind static void		mutex_dump(volatile void *);
    266   1.2        ad 
    267   1.2        ad lockops_t mutex_spin_lockops = {
    268   1.2        ad 	"Mutex",
    269  1.42        ad 	LOCKOPS_SPIN,
    270   1.2        ad 	mutex_dump
    271   1.2        ad };
    272   1.2        ad 
    273   1.2        ad lockops_t mutex_adaptive_lockops = {
    274   1.2        ad 	"Mutex",
    275  1.42        ad 	LOCKOPS_SLEEP,
    276   1.2        ad 	mutex_dump
    277   1.2        ad };
    278   1.2        ad 
    279   1.5      yamt syncobj_t mutex_syncobj = {
    280   1.5      yamt 	SOBJ_SLEEPQ_SORTED,
    281   1.5      yamt 	turnstile_unsleep,
    282   1.5      yamt 	turnstile_changepri,
    283   1.5      yamt 	sleepq_lendpri,
    284  1.27        ad 	(void *)mutex_owner,
    285   1.5      yamt };
    286   1.5      yamt 
    287   1.2        ad /*
    288   1.2        ad  * mutex_dump:
    289   1.2        ad  *
    290   1.2        ad  *	Dump the contents of a mutex structure.
    291   1.2        ad  */
    292   1.2        ad void
    293   1.2        ad mutex_dump(volatile void *cookie)
    294   1.2        ad {
    295   1.2        ad 	volatile kmutex_t *mtx = cookie;
    296   1.2        ad 
    297   1.2        ad 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    298   1.2        ad 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    299   1.2        ad 	    MUTEX_SPIN_P(mtx));
    300   1.2        ad }
    301   1.2        ad 
    302   1.2        ad /*
    303   1.2        ad  * mutex_abort:
    304   1.2        ad  *
    305   1.3        ad  *	Dump information about an error and panic the system.  This
    306   1.3        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    307   1.3        ad  *	we ask the compiler to not inline it.
    308   1.2        ad  */
    309  1.43        ad void __noinline
    310   1.2        ad mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    311   1.2        ad {
    312   1.2        ad 
    313  1.23      yamt 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    314   1.3        ad 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    315   1.2        ad }
    316   1.2        ad 
    317   1.2        ad /*
    318   1.2        ad  * mutex_init:
    319   1.2        ad  *
    320   1.2        ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    321   1.2        ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    322   1.2        ad  *	CPU time.  We can't easily provide a type of mutex that always
    323   1.2        ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    324   1.2        ad  *	mutexes unlocked.
    325   1.2        ad  */
    326   1.2        ad void
    327   1.2        ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    328   1.2        ad {
    329  1.23      yamt 	bool dodebug;
    330   1.2        ad 
    331   1.2        ad 	memset(mtx, 0, sizeof(*mtx));
    332   1.2        ad 
    333  1.15        ad 	switch (type) {
    334  1.15        ad 	case MUTEX_ADAPTIVE:
    335  1.15        ad 		KASSERT(ipl == IPL_NONE);
    336  1.15        ad 		break;
    337  1.22        ad 	case MUTEX_DEFAULT:
    338  1.15        ad 	case MUTEX_DRIVER:
    339  1.26        ad 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    340  1.26        ad 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    341  1.26        ad 		    ipl == IPL_SOFTSERIAL) {
    342  1.22        ad 			type = MUTEX_ADAPTIVE;
    343  1.26        ad 		} else {
    344  1.22        ad 			type = MUTEX_SPIN;
    345  1.22        ad 		}
    346  1.15        ad 		break;
    347  1.15        ad 	default:
    348  1.15        ad 		break;
    349  1.15        ad 	}
    350   1.2        ad 
    351   1.2        ad 	switch (type) {
    352  1.11        ad 	case MUTEX_NODEBUG:
    353  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    354  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    355  1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    356  1.11        ad 		break;
    357   1.2        ad 	case MUTEX_ADAPTIVE:
    358  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    359  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    360  1.23      yamt 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    361   1.2        ad 		break;
    362   1.2        ad 	case MUTEX_SPIN:
    363  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    364  1.19        ad 		    (uintptr_t)__builtin_return_address(0));
    365  1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    366   1.2        ad 		break;
    367   1.2        ad 	default:
    368   1.2        ad 		panic("mutex_init: impossible type");
    369   1.2        ad 		break;
    370   1.2        ad 	}
    371   1.2        ad }
    372   1.2        ad 
    373   1.2        ad /*
    374   1.2        ad  * mutex_destroy:
    375   1.2        ad  *
    376   1.2        ad  *	Tear down a mutex.
    377   1.2        ad  */
    378   1.2        ad void
    379   1.2        ad mutex_destroy(kmutex_t *mtx)
    380   1.2        ad {
    381   1.2        ad 
    382   1.2        ad 	if (MUTEX_ADAPTIVE_P(mtx)) {
    383   1.2        ad 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    384   1.2        ad 		    !MUTEX_HAS_WAITERS(mtx));
    385   1.2        ad 	} else {
    386  1.60      matt 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    387   1.2        ad 	}
    388   1.2        ad 
    389  1.23      yamt 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    390   1.2        ad 	MUTEX_DESTROY(mtx);
    391   1.2        ad }
    392   1.2        ad 
    393  1.50     rmind #ifdef MULTIPROCESSOR
    394   1.2        ad /*
    395  1.50     rmind  * mutex_oncpu:
    396   1.2        ad  *
    397   1.2        ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    398   1.2        ad  *	system.  If the target is waiting on the kernel big lock, then we
    399  1.15        ad  *	must release it.  This is necessary to avoid deadlock.
    400   1.2        ad  */
    401  1.50     rmind static bool
    402  1.50     rmind mutex_oncpu(uintptr_t owner)
    403   1.2        ad {
    404   1.2        ad 	struct cpu_info *ci;
    405  1.50     rmind 	lwp_t *l;
    406   1.2        ad 
    407  1.50     rmind 	KASSERT(kpreempt_disabled());
    408  1.50     rmind 
    409  1.50     rmind 	if (!MUTEX_OWNED(owner)) {
    410  1.50     rmind 		return false;
    411  1.50     rmind 	}
    412   1.2        ad 
    413  1.50     rmind 	/*
    414  1.50     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    415  1.50     rmind 	 * We must have kernel preemption disabled for that.
    416  1.50     rmind 	 */
    417  1.50     rmind 	l = (lwp_t *)MUTEX_OWNER(owner);
    418  1.50     rmind 	ci = l->l_cpu;
    419   1.2        ad 
    420  1.50     rmind 	if (ci && ci->ci_curlwp == l) {
    421  1.50     rmind 		/* Target is running; do we need to block? */
    422  1.50     rmind 		return (ci->ci_biglock_wanted != l);
    423  1.50     rmind 	}
    424  1.15        ad 
    425  1.50     rmind 	/* Not running.  It may be safe to block now. */
    426  1.50     rmind 	return false;
    427   1.2        ad }
    428  1.15        ad #endif	/* MULTIPROCESSOR */
    429   1.2        ad 
    430   1.2        ad /*
    431   1.2        ad  * mutex_vector_enter:
    432   1.2        ad  *
    433  1.45     rmind  *	Support routine for mutex_enter() that must handle all cases.  In
    434   1.2        ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    435   1.2        ad  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    436   1.2        ad  *	not available, then it is also aliased directly here.
    437   1.2        ad  */
    438   1.2        ad void
    439   1.2        ad mutex_vector_enter(kmutex_t *mtx)
    440   1.2        ad {
    441   1.2        ad 	uintptr_t owner, curthread;
    442   1.2        ad 	turnstile_t *ts;
    443   1.2        ad #ifdef MULTIPROCESSOR
    444   1.2        ad 	u_int count;
    445   1.2        ad #endif
    446   1.2        ad 	LOCKSTAT_COUNTER(spincnt);
    447   1.2        ad 	LOCKSTAT_COUNTER(slpcnt);
    448   1.2        ad 	LOCKSTAT_TIMER(spintime);
    449   1.2        ad 	LOCKSTAT_TIMER(slptime);
    450   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    451   1.2        ad 
    452   1.2        ad 	/*
    453   1.2        ad 	 * Handle spin mutexes.
    454   1.2        ad 	 */
    455   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    456   1.2        ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    457   1.2        ad 		u_int spins = 0;
    458   1.2        ad #endif
    459   1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    460   1.2        ad 		MUTEX_WANTLOCK(mtx);
    461   1.2        ad #ifdef FULL
    462  1.60      matt 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    463   1.2        ad 			MUTEX_LOCKED(mtx);
    464   1.2        ad 			return;
    465   1.2        ad 		}
    466   1.2        ad #if !defined(MULTIPROCESSOR)
    467   1.2        ad 		MUTEX_ABORT(mtx, "locking against myself");
    468   1.2        ad #else /* !MULTIPROCESSOR */
    469   1.2        ad 
    470   1.2        ad 		LOCKSTAT_ENTER(lsflag);
    471   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    472   1.2        ad 		count = SPINLOCK_BACKOFF_MIN;
    473   1.2        ad 
    474   1.2        ad 		/*
    475   1.2        ad 		 * Spin testing the lock word and do exponential backoff
    476   1.2        ad 		 * to reduce cache line ping-ponging between CPUs.
    477   1.2        ad 		 */
    478   1.2        ad 		do {
    479   1.2        ad 			if (panicstr != NULL)
    480   1.2        ad 				break;
    481  1.60      matt 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    482   1.2        ad 				SPINLOCK_BACKOFF(count);
    483   1.2        ad #ifdef LOCKDEBUG
    484   1.2        ad 				if (SPINLOCK_SPINOUT(spins))
    485   1.2        ad 					MUTEX_ABORT(mtx, "spinout");
    486   1.2        ad #endif	/* LOCKDEBUG */
    487   1.2        ad 			}
    488  1.60      matt 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    489   1.2        ad 
    490   1.2        ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    491   1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    492   1.2        ad 			LOCKSTAT_EVENT(lsflag, mtx,
    493   1.2        ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    494   1.2        ad 		}
    495   1.2        ad 		LOCKSTAT_EXIT(lsflag);
    496   1.2        ad #endif	/* !MULTIPROCESSOR */
    497   1.2        ad #endif	/* FULL */
    498   1.2        ad 		MUTEX_LOCKED(mtx);
    499   1.2        ad 		return;
    500   1.2        ad 	}
    501   1.2        ad 
    502   1.2        ad 	curthread = (uintptr_t)curlwp;
    503   1.2        ad 
    504   1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    505   1.2        ad 	MUTEX_ASSERT(mtx, curthread != 0);
    506   1.2        ad 	MUTEX_WANTLOCK(mtx);
    507   1.2        ad 
    508   1.2        ad 	if (panicstr == NULL) {
    509   1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    510   1.2        ad 	}
    511   1.2        ad 
    512   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    513   1.2        ad 
    514   1.2        ad 	/*
    515   1.2        ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    516   1.2        ad 	 * determine that the owner is not running on a processor,
    517   1.2        ad 	 * then we stop spinning, and sleep instead.
    518   1.2        ad 	 */
    519  1.50     rmind 	KPREEMPT_DISABLE(curlwp);
    520  1.34        ad 	for (owner = mtx->mtx_owner;;) {
    521   1.2        ad 		if (!MUTEX_OWNED(owner)) {
    522   1.2        ad 			/*
    523   1.2        ad 			 * Mutex owner clear could mean two things:
    524   1.2        ad 			 *
    525   1.2        ad 			 *	* The mutex has been released.
    526   1.2        ad 			 *	* The owner field hasn't been set yet.
    527   1.2        ad 			 *
    528   1.2        ad 			 * Try to acquire it again.  If that fails,
    529   1.2        ad 			 * we'll just loop again.
    530   1.2        ad 			 */
    531   1.2        ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    532   1.2        ad 				break;
    533  1.34        ad 			owner = mtx->mtx_owner;
    534   1.2        ad 			continue;
    535   1.2        ad 		}
    536  1.50     rmind 		if (__predict_false(panicstr != NULL)) {
    537  1.61  uebayasi 			KPREEMPT_ENABLE(curlwp);
    538   1.2        ad 			return;
    539  1.50     rmind 		}
    540  1.50     rmind 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    541   1.2        ad 			MUTEX_ABORT(mtx, "locking against myself");
    542  1.50     rmind 		}
    543   1.2        ad #ifdef MULTIPROCESSOR
    544   1.2        ad 		/*
    545   1.2        ad 		 * Check to see if the owner is running on a processor.
    546   1.2        ad 		 * If so, then we should just spin, as the owner will
    547   1.2        ad 		 * likely release the lock very soon.
    548   1.2        ad 		 */
    549  1.50     rmind 		if (mutex_oncpu(owner)) {
    550   1.2        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    551   1.2        ad 			count = SPINLOCK_BACKOFF_MIN;
    552  1.50     rmind 			do {
    553  1.53     rmind 				KPREEMPT_ENABLE(curlwp);
    554  1.34        ad 				SPINLOCK_BACKOFF(count);
    555  1.53     rmind 				KPREEMPT_DISABLE(curlwp);
    556   1.2        ad 				owner = mtx->mtx_owner;
    557  1.50     rmind 			} while (mutex_oncpu(owner));
    558   1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    559   1.2        ad 			LOCKSTAT_COUNT(spincnt, 1);
    560   1.2        ad 			if (!MUTEX_OWNED(owner))
    561   1.2        ad 				continue;
    562   1.2        ad 		}
    563   1.2        ad #endif
    564   1.2        ad 
    565   1.2        ad 		ts = turnstile_lookup(mtx);
    566   1.2        ad 
    567   1.2        ad 		/*
    568   1.2        ad 		 * Once we have the turnstile chain interlock, mark the
    569   1.2        ad 		 * mutex has having waiters.  If that fails, spin again:
    570   1.2        ad 		 * chances are that the mutex has been released.
    571   1.2        ad 		 */
    572   1.2        ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    573   1.2        ad 			turnstile_exit(mtx);
    574  1.34        ad 			owner = mtx->mtx_owner;
    575   1.2        ad 			continue;
    576   1.2        ad 		}
    577   1.2        ad 
    578   1.2        ad #ifdef MULTIPROCESSOR
    579   1.2        ad 		/*
    580   1.2        ad 		 * mutex_exit() is permitted to release the mutex without
    581   1.2        ad 		 * any interlocking instructions, and the following can
    582   1.2        ad 		 * occur as a result:
    583   1.2        ad 		 *
    584   1.2        ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    585   1.2        ad 		 * ---------------------------- ----------------------------
    586   1.2        ad 		 *		..		    acquire cache line
    587   1.2        ad 		 *		..                   test for waiters
    588   1.2        ad 		 *	acquire cache line    <-      lose cache line
    589   1.2        ad 		 *	 lock cache line	           ..
    590   1.2        ad 		 *     verify mutex is held                ..
    591   1.2        ad 		 *	    set waiters  	           ..
    592   1.2        ad 		 *	 unlock cache line		   ..
    593   1.2        ad 		 *	  lose cache line     ->    acquire cache line
    594   1.2        ad 		 *		..	          clear lock word, waiters
    595   1.2        ad 		 *	  return success
    596   1.2        ad 		 *
    597  1.50     rmind 		 * There is another race that can occur: a third CPU could
    598   1.2        ad 		 * acquire the mutex as soon as it is released.  Since
    599   1.2        ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    600   1.2        ad 		 * something that we need to worry about too much.  What we
    601   1.2        ad 		 * do need to ensure is that the waiters bit gets set.
    602   1.2        ad 		 *
    603   1.2        ad 		 * To allow the unlocked release, we need to make some
    604   1.2        ad 		 * assumptions here:
    605   1.2        ad 		 *
    606   1.2        ad 		 * o Release is the only non-atomic/unlocked operation
    607   1.2        ad 		 *   that can be performed on the mutex.  (It must still
    608   1.2        ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    609   1.2        ad 		 *   or preempted).
    610   1.2        ad 		 *
    611   1.2        ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    612  1.21     pooka 		 *   be in progress on one CPU in the system - guaranteed
    613   1.2        ad 		 *   by the turnstile chain lock.
    614   1.2        ad 		 *
    615   1.2        ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    616   1.2        ad 		 *   and release can modify a mutex with a non-zero
    617   1.2        ad 		 *   owner field.
    618   1.2        ad 		 *
    619   1.2        ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    620   1.2        ad 		 *   is an unbuffered write that is immediately visible
    621   1.2        ad 		 *   to all other processors in the system.
    622   1.2        ad 		 *
    623   1.2        ad 		 * o If the holding LWP switches away, it posts a store
    624   1.2        ad 		 *   fence before changing curlwp, ensuring that any
    625   1.2        ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    626   1.2        ad 		 *   completes before the modification of curlwp becomes
    627   1.2        ad 		 *   visible to this CPU.
    628   1.2        ad 		 *
    629  1.14      yamt 		 * o mi_switch() posts a store fence before setting curlwp
    630   1.2        ad 		 *   and before resuming execution of an LWP.
    631   1.2        ad 		 *
    632   1.2        ad 		 * o _kernel_lock() posts a store fence before setting
    633   1.2        ad 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    634   1.2        ad 		 *   This ensures that any overwrite of the mutex waiters
    635   1.2        ad 		 *   flag by mutex_exit() completes before the modification
    636   1.2        ad 		 *   of ci_biglock_wanted becomes visible.
    637   1.2        ad 		 *
    638   1.2        ad 		 * We now post a read memory barrier (after setting the
    639   1.2        ad 		 * waiters field) and check the lock holder's status again.
    640   1.2        ad 		 * Some of the possible outcomes (not an exhaustive list):
    641   1.2        ad 		 *
    642  1.50     rmind 		 * 1. The on-CPU check returns true: the holding LWP is
    643   1.2        ad 		 *    running again.  The lock may be released soon and
    644   1.2        ad 		 *    we should spin.  Importantly, we can't trust the
    645   1.2        ad 		 *    value of the waiters flag.
    646   1.2        ad 		 *
    647  1.50     rmind 		 * 2. The on-CPU check returns false: the holding LWP is
    648  1.39      yamt 		 *    not running.  We now have the opportunity to check
    649   1.2        ad 		 *    if mutex_exit() has blatted the modifications made
    650   1.2        ad 		 *    by MUTEX_SET_WAITERS().
    651   1.2        ad 		 *
    652  1.50     rmind 		 * 3. The on-CPU check returns false: the holding LWP may
    653   1.2        ad 		 *    or may not be running.  It has context switched at
    654   1.2        ad 		 *    some point during our check.  Again, we have the
    655   1.2        ad 		 *    chance to see if the waiters bit is still set or
    656   1.2        ad 		 *    has been overwritten.
    657   1.2        ad 		 *
    658  1.50     rmind 		 * 4. The on-CPU check returns false: the holding LWP is
    659   1.2        ad 		 *    running on a CPU, but wants the big lock.  It's OK
    660   1.2        ad 		 *    to check the waiters field in this case.
    661   1.2        ad 		 *
    662   1.2        ad 		 * 5. The has-waiters check fails: the mutex has been
    663   1.2        ad 		 *    released, the waiters flag cleared and another LWP
    664   1.2        ad 		 *    now owns the mutex.
    665   1.2        ad 		 *
    666   1.2        ad 		 * 6. The has-waiters check fails: the mutex has been
    667   1.2        ad 		 *    released.
    668   1.2        ad 		 *
    669   1.2        ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    670   1.2        ad 		 * as we might never be awoken.
    671   1.2        ad 		 */
    672  1.50     rmind 		if ((membar_consumer(), mutex_oncpu(owner)) ||
    673  1.24        ad 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    674   1.2        ad 			turnstile_exit(mtx);
    675  1.34        ad 			owner = mtx->mtx_owner;
    676   1.2        ad 			continue;
    677   1.2        ad 		}
    678   1.2        ad #endif	/* MULTIPROCESSOR */
    679   1.2        ad 
    680   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    681   1.2        ad 
    682   1.5      yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    683   1.2        ad 
    684   1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    685   1.2        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    686  1.34        ad 
    687  1.34        ad 		owner = mtx->mtx_owner;
    688   1.2        ad 	}
    689  1.50     rmind 	KPREEMPT_ENABLE(curlwp);
    690   1.2        ad 
    691   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    692   1.2        ad 	    slpcnt, slptime);
    693   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    694   1.2        ad 	    spincnt, spintime);
    695   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    696   1.2        ad 
    697   1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    698   1.2        ad 	MUTEX_LOCKED(mtx);
    699   1.2        ad }
    700   1.2        ad 
    701   1.2        ad /*
    702   1.2        ad  * mutex_vector_exit:
    703   1.2        ad  *
    704   1.2        ad  *	Support routine for mutex_exit() that handles all cases.
    705   1.2        ad  */
    706   1.2        ad void
    707   1.2        ad mutex_vector_exit(kmutex_t *mtx)
    708   1.2        ad {
    709   1.2        ad 	turnstile_t *ts;
    710   1.2        ad 	uintptr_t curthread;
    711   1.2        ad 
    712   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    713   1.2        ad #ifdef FULL
    714  1.60      matt 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    715  1.33        ad 			if (panicstr != NULL)
    716  1.33        ad 				return;
    717   1.2        ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    718  1.33        ad 		}
    719   1.2        ad 		MUTEX_UNLOCKED(mtx);
    720  1.60      matt 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    721   1.2        ad #endif
    722   1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    723   1.2        ad 		return;
    724   1.2        ad 	}
    725   1.2        ad 
    726  1.11        ad 	if (__predict_false((uintptr_t)panicstr | cold)) {
    727   1.2        ad 		MUTEX_UNLOCKED(mtx);
    728   1.2        ad 		MUTEX_RELEASE(mtx);
    729   1.2        ad 		return;
    730   1.2        ad 	}
    731   1.2        ad 
    732   1.2        ad 	curthread = (uintptr_t)curlwp;
    733   1.2        ad 	MUTEX_DASSERT(mtx, curthread != 0);
    734   1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    735   1.2        ad 	MUTEX_UNLOCKED(mtx);
    736  1.58       mrg #if !defined(LOCKDEBUG)
    737  1.58       mrg 	__USE(curthread);
    738  1.58       mrg #endif
    739   1.2        ad 
    740  1.15        ad #ifdef LOCKDEBUG
    741  1.15        ad 	/*
    742  1.15        ad 	 * Avoid having to take the turnstile chain lock every time
    743  1.15        ad 	 * around.  Raise the priority level to splhigh() in order
    744  1.15        ad 	 * to disable preemption and so make the following atomic.
    745  1.15        ad 	 */
    746  1.15        ad 	{
    747  1.15        ad 		int s = splhigh();
    748  1.15        ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    749  1.15        ad 			MUTEX_RELEASE(mtx);
    750  1.15        ad 			splx(s);
    751  1.15        ad 			return;
    752  1.15        ad 		}
    753  1.15        ad 		splx(s);
    754  1.15        ad 	}
    755  1.15        ad #endif
    756  1.15        ad 
    757   1.2        ad 	/*
    758   1.2        ad 	 * Get this lock's turnstile.  This gets the interlock on
    759   1.2        ad 	 * the sleep queue.  Once we have that, we can clear the
    760   1.2        ad 	 * lock.  If there was no turnstile for the lock, there
    761   1.2        ad 	 * were no waiters remaining.
    762   1.2        ad 	 */
    763   1.2        ad 	ts = turnstile_lookup(mtx);
    764   1.2        ad 
    765   1.2        ad 	if (ts == NULL) {
    766   1.2        ad 		MUTEX_RELEASE(mtx);
    767   1.2        ad 		turnstile_exit(mtx);
    768   1.2        ad 	} else {
    769   1.2        ad 		MUTEX_RELEASE(mtx);
    770   1.2        ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    771   1.2        ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    772   1.2        ad 	}
    773   1.2        ad }
    774   1.2        ad 
    775   1.4        ad #ifndef __HAVE_SIMPLE_MUTEXES
    776   1.4        ad /*
    777   1.4        ad  * mutex_wakeup:
    778   1.4        ad  *
    779   1.4        ad  *	Support routine for mutex_exit() that wakes up all waiters.
    780   1.4        ad  *	We assume that the mutex has been released, but it need not
    781   1.4        ad  *	be.
    782   1.4        ad  */
    783   1.4        ad void
    784   1.4        ad mutex_wakeup(kmutex_t *mtx)
    785   1.4        ad {
    786   1.4        ad 	turnstile_t *ts;
    787   1.4        ad 
    788   1.4        ad 	ts = turnstile_lookup(mtx);
    789   1.4        ad 	if (ts == NULL) {
    790   1.4        ad 		turnstile_exit(mtx);
    791   1.4        ad 		return;
    792   1.4        ad 	}
    793   1.4        ad 	MUTEX_CLEAR_WAITERS(mtx);
    794   1.4        ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    795   1.4        ad }
    796   1.4        ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    797   1.4        ad 
    798   1.2        ad /*
    799   1.2        ad  * mutex_owned:
    800   1.2        ad  *
    801   1.3        ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    802   1.3        ad  *	holds the mutex.
    803   1.2        ad  */
    804   1.2        ad int
    805   1.2        ad mutex_owned(kmutex_t *mtx)
    806   1.2        ad {
    807   1.2        ad 
    808  1.35        ad 	if (mtx == NULL)
    809  1.35        ad 		return 0;
    810   1.2        ad 	if (MUTEX_ADAPTIVE_P(mtx))
    811   1.2        ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    812   1.2        ad #ifdef FULL
    813  1.60      matt 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    814   1.2        ad #else
    815   1.2        ad 	return 1;
    816   1.2        ad #endif
    817   1.2        ad }
    818   1.2        ad 
    819   1.2        ad /*
    820   1.2        ad  * mutex_owner:
    821   1.2        ad  *
    822   1.6        ad  *	Return the current owner of an adaptive mutex.  Used for
    823   1.6        ad  *	priority inheritance.
    824   1.2        ad  */
    825  1.27        ad lwp_t *
    826  1.27        ad mutex_owner(kmutex_t *mtx)
    827   1.2        ad {
    828   1.2        ad 
    829   1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    830   1.2        ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    831   1.2        ad }
    832   1.2        ad 
    833   1.2        ad /*
    834   1.2        ad  * mutex_tryenter:
    835   1.2        ad  *
    836   1.2        ad  *	Try to acquire the mutex; return non-zero if we did.
    837   1.2        ad  */
    838   1.2        ad int
    839   1.2        ad mutex_tryenter(kmutex_t *mtx)
    840   1.2        ad {
    841   1.2        ad 	uintptr_t curthread;
    842   1.2        ad 
    843   1.2        ad 	/*
    844   1.2        ad 	 * Handle spin mutexes.
    845   1.2        ad 	 */
    846   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    847   1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    848   1.2        ad #ifdef FULL
    849  1.60      matt 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    850   1.4        ad 			MUTEX_WANTLOCK(mtx);
    851   1.2        ad 			MUTEX_LOCKED(mtx);
    852   1.2        ad 			return 1;
    853   1.2        ad 		}
    854   1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    855   1.2        ad #else
    856   1.4        ad 		MUTEX_WANTLOCK(mtx);
    857   1.2        ad 		MUTEX_LOCKED(mtx);
    858   1.2        ad 		return 1;
    859   1.2        ad #endif
    860   1.2        ad 	} else {
    861   1.2        ad 		curthread = (uintptr_t)curlwp;
    862   1.2        ad 		MUTEX_ASSERT(mtx, curthread != 0);
    863   1.2        ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    864   1.4        ad 			MUTEX_WANTLOCK(mtx);
    865   1.2        ad 			MUTEX_LOCKED(mtx);
    866   1.2        ad 			MUTEX_DASSERT(mtx,
    867   1.2        ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    868   1.2        ad 			return 1;
    869   1.2        ad 		}
    870   1.2        ad 	}
    871   1.2        ad 
    872   1.2        ad 	return 0;
    873   1.2        ad }
    874   1.2        ad 
    875   1.2        ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    876   1.2        ad /*
    877   1.2        ad  * mutex_spin_retry:
    878   1.2        ad  *
    879   1.2        ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    880   1.2        ad  *	has already raised the SPL, and adjusted counters.
    881   1.2        ad  */
    882   1.2        ad void
    883   1.2        ad mutex_spin_retry(kmutex_t *mtx)
    884   1.2        ad {
    885   1.2        ad #ifdef MULTIPROCESSOR
    886   1.2        ad 	u_int count;
    887   1.2        ad 	LOCKSTAT_TIMER(spintime);
    888   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    889   1.2        ad #ifdef LOCKDEBUG
    890   1.2        ad 	u_int spins = 0;
    891   1.2        ad #endif	/* LOCKDEBUG */
    892   1.2        ad 
    893   1.2        ad 	MUTEX_WANTLOCK(mtx);
    894   1.2        ad 
    895   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    896   1.2        ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    897   1.2        ad 	count = SPINLOCK_BACKOFF_MIN;
    898   1.2        ad 
    899   1.2        ad 	/*
    900   1.2        ad 	 * Spin testing the lock word and do exponential backoff
    901   1.2        ad 	 * to reduce cache line ping-ponging between CPUs.
    902   1.2        ad 	 */
    903   1.2        ad 	do {
    904   1.2        ad 		if (panicstr != NULL)
    905   1.2        ad 			break;
    906  1.60      matt 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    907   1.2        ad 			SPINLOCK_BACKOFF(count);
    908   1.2        ad #ifdef LOCKDEBUG
    909   1.2        ad 			if (SPINLOCK_SPINOUT(spins))
    910   1.2        ad 				MUTEX_ABORT(mtx, "spinout");
    911   1.2        ad #endif	/* LOCKDEBUG */
    912   1.2        ad 		}
    913  1.60      matt 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    914   1.2        ad 
    915   1.2        ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    916   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    917   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    918   1.2        ad 
    919   1.2        ad 	MUTEX_LOCKED(mtx);
    920   1.2        ad #else	/* MULTIPROCESSOR */
    921   1.2        ad 	MUTEX_ABORT(mtx, "locking against myself");
    922   1.2        ad #endif	/* MULTIPROCESSOR */
    923   1.2        ad }
    924   1.2        ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    925