kern_mutex.c revision 1.64 1 1.64 christos /* $NetBSD: kern_mutex.c,v 1.64 2017/01/26 04:11:56 christos Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.30 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
34 1.2 ad * a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.2 ad #define __MUTEX_PRIVATE
41 1.2 ad
42 1.2 ad #include <sys/cdefs.h>
43 1.64 christos __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.64 2017/01/26 04:11:56 christos Exp $");
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.46 pooka #include <sys/atomic.h>
47 1.2 ad #include <sys/proc.h>
48 1.2 ad #include <sys/mutex.h>
49 1.2 ad #include <sys/sched.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/systm.h>
52 1.2 ad #include <sys/lockdebug.h>
53 1.2 ad #include <sys/kernel.h>
54 1.24 ad #include <sys/intr.h>
55 1.29 xtraeme #include <sys/lock.h>
56 1.50 rmind #include <sys/types.h>
57 1.2 ad
58 1.2 ad #include <dev/lockstat.h>
59 1.2 ad
60 1.28 ad #include <machine/lock.h>
61 1.28 ad
62 1.2 ad /*
63 1.2 ad * When not running a debug kernel, spin mutexes are not much
64 1.2 ad * more than an splraiseipl() and splx() pair.
65 1.2 ad */
66 1.2 ad
67 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
68 1.2 ad #define FULL
69 1.2 ad #endif
70 1.2 ad
71 1.2 ad /*
72 1.2 ad * Debugging support.
73 1.2 ad */
74 1.2 ad
75 1.2 ad #define MUTEX_WANTLOCK(mtx) \
76 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
77 1.54 mlelstv (uintptr_t)__builtin_return_address(0), 0)
78 1.2 ad #define MUTEX_LOCKED(mtx) \
79 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
80 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
81 1.2 ad #define MUTEX_UNLOCKED(mtx) \
82 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
83 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
84 1.2 ad #define MUTEX_ABORT(mtx, msg) \
85 1.64 christos mutex_abort(__func__, __LINE__, mtx, msg)
86 1.2 ad
87 1.2 ad #if defined(LOCKDEBUG)
88 1.2 ad
89 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
90 1.2 ad do { \
91 1.2 ad if (!(cond)) \
92 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
93 1.2 ad } while (/* CONSTCOND */ 0);
94 1.2 ad
95 1.2 ad #else /* LOCKDEBUG */
96 1.2 ad
97 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
98 1.2 ad
99 1.2 ad #endif /* LOCKDEBUG */
100 1.2 ad
101 1.2 ad #if defined(DIAGNOSTIC)
102 1.2 ad
103 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
104 1.2 ad do { \
105 1.2 ad if (!(cond)) \
106 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
107 1.2 ad } while (/* CONSTCOND */ 0)
108 1.2 ad
109 1.2 ad #else /* DIAGNOSTIC */
110 1.2 ad
111 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
112 1.2 ad
113 1.2 ad #endif /* DIAGNOSTIC */
114 1.2 ad
115 1.2 ad /*
116 1.60 matt * Some architectures can't use __cpu_simple_lock as is so allow a way
117 1.60 matt * for them to use an alternate definition.
118 1.60 matt */
119 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_INIT
120 1.60 matt #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
121 1.60 matt #endif
122 1.60 matt #ifndef MUTEX_SPINBIT_LOCKED_P
123 1.60 matt #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
124 1.60 matt #endif
125 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_TRY
126 1.60 matt #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
127 1.60 matt #endif
128 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
129 1.60 matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
130 1.60 matt #endif
131 1.60 matt
132 1.60 matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
133 1.60 matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
134 1.60 matt ((mtx)->mtx_ipl = makeiplcookie((ipl)))
135 1.60 matt #endif
136 1.60 matt
137 1.60 matt /*
138 1.2 ad * Spin mutex SPL save / restore.
139 1.2 ad */
140 1.2 ad
141 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
142 1.2 ad do { \
143 1.36 ad struct cpu_info *x__ci; \
144 1.2 ad int x__cnt, s; \
145 1.60 matt s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
146 1.36 ad x__ci = curcpu(); \
147 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
148 1.37 ad __insn_barrier(); \
149 1.51 rmind if (x__cnt == 0) \
150 1.2 ad x__ci->ci_mtx_oldspl = (s); \
151 1.2 ad } while (/* CONSTCOND */ 0)
152 1.2 ad
153 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
154 1.2 ad do { \
155 1.2 ad struct cpu_info *x__ci = curcpu(); \
156 1.2 ad int s = x__ci->ci_mtx_oldspl; \
157 1.2 ad __insn_barrier(); \
158 1.51 rmind if (++(x__ci->ci_mtx_count) == 0) \
159 1.2 ad splx(s); \
160 1.2 ad } while (/* CONSTCOND */ 0)
161 1.2 ad
162 1.2 ad /*
163 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
164 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
165 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
166 1.2 ad * additional interlock.
167 1.2 ad */
168 1.2 ad
169 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
170 1.2 ad
171 1.2 ad #define MUTEX_OWNER(owner) \
172 1.2 ad (owner & MUTEX_THREAD)
173 1.2 ad #define MUTEX_HAS_WAITERS(mtx) \
174 1.2 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
175 1.2 ad
176 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
177 1.49 skrll if (!dodebug) \
178 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
179 1.2 ad do { \
180 1.2 ad } while (/* CONSTCOND */ 0);
181 1.2 ad
182 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
183 1.2 ad do { \
184 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
185 1.49 skrll if (!dodebug) \
186 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
187 1.60 matt MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
188 1.60 matt MUTEX_SPINBIT_LOCK_INIT((mtx)); \
189 1.2 ad } while (/* CONSTCOND */ 0)
190 1.2 ad
191 1.2 ad #define MUTEX_DESTROY(mtx) \
192 1.2 ad do { \
193 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
194 1.2 ad } while (/* CONSTCOND */ 0);
195 1.2 ad
196 1.2 ad #define MUTEX_SPIN_P(mtx) \
197 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
198 1.2 ad #define MUTEX_ADAPTIVE_P(mtx) \
199 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
200 1.2 ad
201 1.49 skrll #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
202 1.23 yamt #if defined(LOCKDEBUG)
203 1.49 skrll #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
204 1.59 matt #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
205 1.23 yamt #else /* defined(LOCKDEBUG) */
206 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
207 1.59 matt #define MUTEX_INHERITDEBUG(n, o) /* nothing */
208 1.23 yamt #endif /* defined(LOCKDEBUG) */
209 1.2 ad
210 1.2 ad static inline int
211 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
212 1.2 ad {
213 1.2 ad int rv;
214 1.59 matt uintptr_t oldown = 0;
215 1.59 matt uintptr_t newown = curthread;
216 1.23 yamt
217 1.59 matt MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
218 1.59 matt MUTEX_INHERITDEBUG(newown, oldown);
219 1.59 matt rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
220 1.7 itohy MUTEX_RECEIVE(mtx);
221 1.2 ad return rv;
222 1.2 ad }
223 1.2 ad
224 1.2 ad static inline int
225 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
226 1.2 ad {
227 1.2 ad int rv;
228 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
229 1.7 itohy MUTEX_RECEIVE(mtx);
230 1.2 ad return rv;
231 1.2 ad }
232 1.2 ad
233 1.2 ad static inline void
234 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
235 1.2 ad {
236 1.59 matt uintptr_t newown;
237 1.23 yamt
238 1.7 itohy MUTEX_GIVE(mtx);
239 1.59 matt newown = 0;
240 1.59 matt MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
241 1.59 matt mtx->mtx_owner = newown;
242 1.2 ad }
243 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
244 1.2 ad
245 1.2 ad /*
246 1.2 ad * Patch in stubs via strong alias where they are not available.
247 1.2 ad */
248 1.2 ad
249 1.2 ad #if defined(LOCKDEBUG)
250 1.2 ad #undef __HAVE_MUTEX_STUBS
251 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
252 1.2 ad #endif
253 1.2 ad
254 1.2 ad #ifndef __HAVE_MUTEX_STUBS
255 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
256 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
257 1.2 ad #endif
258 1.2 ad
259 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
260 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
261 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
262 1.2 ad #endif
263 1.2 ad
264 1.64 christos static void mutex_abort(const char *, size_t, kmutex_t *, const char *);
265 1.64 christos static void mutex_dump(volatile void *);
266 1.2 ad
267 1.2 ad lockops_t mutex_spin_lockops = {
268 1.2 ad "Mutex",
269 1.42 ad LOCKOPS_SPIN,
270 1.2 ad mutex_dump
271 1.2 ad };
272 1.2 ad
273 1.2 ad lockops_t mutex_adaptive_lockops = {
274 1.2 ad "Mutex",
275 1.42 ad LOCKOPS_SLEEP,
276 1.2 ad mutex_dump
277 1.2 ad };
278 1.2 ad
279 1.5 yamt syncobj_t mutex_syncobj = {
280 1.5 yamt SOBJ_SLEEPQ_SORTED,
281 1.5 yamt turnstile_unsleep,
282 1.5 yamt turnstile_changepri,
283 1.5 yamt sleepq_lendpri,
284 1.27 ad (void *)mutex_owner,
285 1.5 yamt };
286 1.5 yamt
287 1.2 ad /*
288 1.2 ad * mutex_dump:
289 1.2 ad *
290 1.2 ad * Dump the contents of a mutex structure.
291 1.2 ad */
292 1.2 ad void
293 1.2 ad mutex_dump(volatile void *cookie)
294 1.2 ad {
295 1.2 ad volatile kmutex_t *mtx = cookie;
296 1.2 ad
297 1.2 ad printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
298 1.2 ad (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
299 1.2 ad MUTEX_SPIN_P(mtx));
300 1.2 ad }
301 1.2 ad
302 1.2 ad /*
303 1.2 ad * mutex_abort:
304 1.2 ad *
305 1.3 ad * Dump information about an error and panic the system. This
306 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
307 1.3 ad * we ask the compiler to not inline it.
308 1.2 ad */
309 1.43 ad void __noinline
310 1.64 christos mutex_abort(const char *func, size_t line, kmutex_t *mtx, const char *msg)
311 1.2 ad {
312 1.2 ad
313 1.64 christos LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
314 1.64 christos &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
315 1.2 ad }
316 1.2 ad
317 1.2 ad /*
318 1.2 ad * mutex_init:
319 1.2 ad *
320 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
321 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
322 1.2 ad * CPU time. We can't easily provide a type of mutex that always
323 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
324 1.2 ad * mutexes unlocked.
325 1.2 ad */
326 1.2 ad void
327 1.2 ad mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
328 1.2 ad {
329 1.23 yamt bool dodebug;
330 1.2 ad
331 1.2 ad memset(mtx, 0, sizeof(*mtx));
332 1.2 ad
333 1.15 ad switch (type) {
334 1.15 ad case MUTEX_ADAPTIVE:
335 1.15 ad KASSERT(ipl == IPL_NONE);
336 1.15 ad break;
337 1.22 ad case MUTEX_DEFAULT:
338 1.15 ad case MUTEX_DRIVER:
339 1.26 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
340 1.26 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
341 1.26 ad ipl == IPL_SOFTSERIAL) {
342 1.22 ad type = MUTEX_ADAPTIVE;
343 1.26 ad } else {
344 1.22 ad type = MUTEX_SPIN;
345 1.22 ad }
346 1.15 ad break;
347 1.15 ad default:
348 1.15 ad break;
349 1.15 ad }
350 1.2 ad
351 1.2 ad switch (type) {
352 1.11 ad case MUTEX_NODEBUG:
353 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
354 1.19 ad (uintptr_t)__builtin_return_address(0));
355 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
356 1.11 ad break;
357 1.2 ad case MUTEX_ADAPTIVE:
358 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
359 1.19 ad (uintptr_t)__builtin_return_address(0));
360 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
361 1.2 ad break;
362 1.2 ad case MUTEX_SPIN:
363 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
364 1.19 ad (uintptr_t)__builtin_return_address(0));
365 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
366 1.2 ad break;
367 1.2 ad default:
368 1.2 ad panic("mutex_init: impossible type");
369 1.2 ad break;
370 1.2 ad }
371 1.2 ad }
372 1.2 ad
373 1.2 ad /*
374 1.2 ad * mutex_destroy:
375 1.2 ad *
376 1.2 ad * Tear down a mutex.
377 1.2 ad */
378 1.2 ad void
379 1.2 ad mutex_destroy(kmutex_t *mtx)
380 1.2 ad {
381 1.2 ad
382 1.2 ad if (MUTEX_ADAPTIVE_P(mtx)) {
383 1.2 ad MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
384 1.2 ad !MUTEX_HAS_WAITERS(mtx));
385 1.2 ad } else {
386 1.60 matt MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
387 1.2 ad }
388 1.2 ad
389 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
390 1.2 ad MUTEX_DESTROY(mtx);
391 1.2 ad }
392 1.2 ad
393 1.50 rmind #ifdef MULTIPROCESSOR
394 1.2 ad /*
395 1.50 rmind * mutex_oncpu:
396 1.2 ad *
397 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
398 1.2 ad * system. If the target is waiting on the kernel big lock, then we
399 1.15 ad * must release it. This is necessary to avoid deadlock.
400 1.2 ad */
401 1.50 rmind static bool
402 1.50 rmind mutex_oncpu(uintptr_t owner)
403 1.2 ad {
404 1.2 ad struct cpu_info *ci;
405 1.50 rmind lwp_t *l;
406 1.2 ad
407 1.50 rmind KASSERT(kpreempt_disabled());
408 1.50 rmind
409 1.50 rmind if (!MUTEX_OWNED(owner)) {
410 1.50 rmind return false;
411 1.50 rmind }
412 1.2 ad
413 1.50 rmind /*
414 1.50 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
415 1.50 rmind * We must have kernel preemption disabled for that.
416 1.50 rmind */
417 1.50 rmind l = (lwp_t *)MUTEX_OWNER(owner);
418 1.50 rmind ci = l->l_cpu;
419 1.2 ad
420 1.50 rmind if (ci && ci->ci_curlwp == l) {
421 1.50 rmind /* Target is running; do we need to block? */
422 1.50 rmind return (ci->ci_biglock_wanted != l);
423 1.50 rmind }
424 1.15 ad
425 1.50 rmind /* Not running. It may be safe to block now. */
426 1.50 rmind return false;
427 1.2 ad }
428 1.15 ad #endif /* MULTIPROCESSOR */
429 1.2 ad
430 1.2 ad /*
431 1.2 ad * mutex_vector_enter:
432 1.2 ad *
433 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In
434 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
435 1.62 prlw1 * fast-path stubs are available. If a mutex_spin_enter() stub is
436 1.2 ad * not available, then it is also aliased directly here.
437 1.2 ad */
438 1.2 ad void
439 1.2 ad mutex_vector_enter(kmutex_t *mtx)
440 1.2 ad {
441 1.2 ad uintptr_t owner, curthread;
442 1.2 ad turnstile_t *ts;
443 1.2 ad #ifdef MULTIPROCESSOR
444 1.2 ad u_int count;
445 1.2 ad #endif
446 1.2 ad LOCKSTAT_COUNTER(spincnt);
447 1.2 ad LOCKSTAT_COUNTER(slpcnt);
448 1.2 ad LOCKSTAT_TIMER(spintime);
449 1.2 ad LOCKSTAT_TIMER(slptime);
450 1.2 ad LOCKSTAT_FLAG(lsflag);
451 1.2 ad
452 1.2 ad /*
453 1.2 ad * Handle spin mutexes.
454 1.2 ad */
455 1.2 ad if (MUTEX_SPIN_P(mtx)) {
456 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
457 1.2 ad u_int spins = 0;
458 1.2 ad #endif
459 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
460 1.2 ad MUTEX_WANTLOCK(mtx);
461 1.2 ad #ifdef FULL
462 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
463 1.2 ad MUTEX_LOCKED(mtx);
464 1.2 ad return;
465 1.2 ad }
466 1.2 ad #if !defined(MULTIPROCESSOR)
467 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
468 1.2 ad #else /* !MULTIPROCESSOR */
469 1.2 ad
470 1.2 ad LOCKSTAT_ENTER(lsflag);
471 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
472 1.2 ad count = SPINLOCK_BACKOFF_MIN;
473 1.2 ad
474 1.2 ad /*
475 1.2 ad * Spin testing the lock word and do exponential backoff
476 1.2 ad * to reduce cache line ping-ponging between CPUs.
477 1.2 ad */
478 1.2 ad do {
479 1.2 ad if (panicstr != NULL)
480 1.2 ad break;
481 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
482 1.63 msaitoh SPINLOCK_BACKOFF(count);
483 1.2 ad #ifdef LOCKDEBUG
484 1.2 ad if (SPINLOCK_SPINOUT(spins))
485 1.2 ad MUTEX_ABORT(mtx, "spinout");
486 1.2 ad #endif /* LOCKDEBUG */
487 1.2 ad }
488 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
489 1.2 ad
490 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
491 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
492 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
493 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
494 1.2 ad }
495 1.2 ad LOCKSTAT_EXIT(lsflag);
496 1.2 ad #endif /* !MULTIPROCESSOR */
497 1.2 ad #endif /* FULL */
498 1.2 ad MUTEX_LOCKED(mtx);
499 1.2 ad return;
500 1.2 ad }
501 1.2 ad
502 1.2 ad curthread = (uintptr_t)curlwp;
503 1.2 ad
504 1.2 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
505 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
506 1.2 ad MUTEX_WANTLOCK(mtx);
507 1.2 ad
508 1.2 ad if (panicstr == NULL) {
509 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
510 1.2 ad }
511 1.2 ad
512 1.2 ad LOCKSTAT_ENTER(lsflag);
513 1.2 ad
514 1.2 ad /*
515 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
516 1.2 ad * determine that the owner is not running on a processor,
517 1.2 ad * then we stop spinning, and sleep instead.
518 1.2 ad */
519 1.50 rmind KPREEMPT_DISABLE(curlwp);
520 1.34 ad for (owner = mtx->mtx_owner;;) {
521 1.2 ad if (!MUTEX_OWNED(owner)) {
522 1.2 ad /*
523 1.2 ad * Mutex owner clear could mean two things:
524 1.2 ad *
525 1.2 ad * * The mutex has been released.
526 1.2 ad * * The owner field hasn't been set yet.
527 1.2 ad *
528 1.2 ad * Try to acquire it again. If that fails,
529 1.2 ad * we'll just loop again.
530 1.2 ad */
531 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
532 1.2 ad break;
533 1.34 ad owner = mtx->mtx_owner;
534 1.2 ad continue;
535 1.2 ad }
536 1.50 rmind if (__predict_false(panicstr != NULL)) {
537 1.61 uebayasi KPREEMPT_ENABLE(curlwp);
538 1.2 ad return;
539 1.50 rmind }
540 1.50 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
541 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
542 1.50 rmind }
543 1.2 ad #ifdef MULTIPROCESSOR
544 1.2 ad /*
545 1.2 ad * Check to see if the owner is running on a processor.
546 1.2 ad * If so, then we should just spin, as the owner will
547 1.2 ad * likely release the lock very soon.
548 1.2 ad */
549 1.50 rmind if (mutex_oncpu(owner)) {
550 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
551 1.2 ad count = SPINLOCK_BACKOFF_MIN;
552 1.50 rmind do {
553 1.53 rmind KPREEMPT_ENABLE(curlwp);
554 1.34 ad SPINLOCK_BACKOFF(count);
555 1.53 rmind KPREEMPT_DISABLE(curlwp);
556 1.2 ad owner = mtx->mtx_owner;
557 1.50 rmind } while (mutex_oncpu(owner));
558 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
559 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
560 1.2 ad if (!MUTEX_OWNED(owner))
561 1.2 ad continue;
562 1.2 ad }
563 1.2 ad #endif
564 1.2 ad
565 1.2 ad ts = turnstile_lookup(mtx);
566 1.2 ad
567 1.2 ad /*
568 1.2 ad * Once we have the turnstile chain interlock, mark the
569 1.2 ad * mutex has having waiters. If that fails, spin again:
570 1.2 ad * chances are that the mutex has been released.
571 1.2 ad */
572 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
573 1.2 ad turnstile_exit(mtx);
574 1.34 ad owner = mtx->mtx_owner;
575 1.2 ad continue;
576 1.2 ad }
577 1.2 ad
578 1.2 ad #ifdef MULTIPROCESSOR
579 1.2 ad /*
580 1.2 ad * mutex_exit() is permitted to release the mutex without
581 1.2 ad * any interlocking instructions, and the following can
582 1.2 ad * occur as a result:
583 1.2 ad *
584 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
585 1.2 ad * ---------------------------- ----------------------------
586 1.2 ad * .. acquire cache line
587 1.2 ad * .. test for waiters
588 1.2 ad * acquire cache line <- lose cache line
589 1.2 ad * lock cache line ..
590 1.2 ad * verify mutex is held ..
591 1.2 ad * set waiters ..
592 1.2 ad * unlock cache line ..
593 1.2 ad * lose cache line -> acquire cache line
594 1.2 ad * .. clear lock word, waiters
595 1.2 ad * return success
596 1.2 ad *
597 1.50 rmind * There is another race that can occur: a third CPU could
598 1.2 ad * acquire the mutex as soon as it is released. Since
599 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
600 1.2 ad * something that we need to worry about too much. What we
601 1.2 ad * do need to ensure is that the waiters bit gets set.
602 1.2 ad *
603 1.2 ad * To allow the unlocked release, we need to make some
604 1.2 ad * assumptions here:
605 1.2 ad *
606 1.2 ad * o Release is the only non-atomic/unlocked operation
607 1.2 ad * that can be performed on the mutex. (It must still
608 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
609 1.2 ad * or preempted).
610 1.2 ad *
611 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
612 1.21 pooka * be in progress on one CPU in the system - guaranteed
613 1.2 ad * by the turnstile chain lock.
614 1.2 ad *
615 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
616 1.2 ad * and release can modify a mutex with a non-zero
617 1.2 ad * owner field.
618 1.2 ad *
619 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
620 1.2 ad * is an unbuffered write that is immediately visible
621 1.2 ad * to all other processors in the system.
622 1.2 ad *
623 1.2 ad * o If the holding LWP switches away, it posts a store
624 1.2 ad * fence before changing curlwp, ensuring that any
625 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
626 1.2 ad * completes before the modification of curlwp becomes
627 1.2 ad * visible to this CPU.
628 1.2 ad *
629 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
630 1.2 ad * and before resuming execution of an LWP.
631 1.2 ad *
632 1.2 ad * o _kernel_lock() posts a store fence before setting
633 1.2 ad * curcpu()->ci_biglock_wanted, and after clearing it.
634 1.2 ad * This ensures that any overwrite of the mutex waiters
635 1.2 ad * flag by mutex_exit() completes before the modification
636 1.2 ad * of ci_biglock_wanted becomes visible.
637 1.2 ad *
638 1.2 ad * We now post a read memory barrier (after setting the
639 1.2 ad * waiters field) and check the lock holder's status again.
640 1.2 ad * Some of the possible outcomes (not an exhaustive list):
641 1.2 ad *
642 1.50 rmind * 1. The on-CPU check returns true: the holding LWP is
643 1.2 ad * running again. The lock may be released soon and
644 1.2 ad * we should spin. Importantly, we can't trust the
645 1.2 ad * value of the waiters flag.
646 1.2 ad *
647 1.50 rmind * 2. The on-CPU check returns false: the holding LWP is
648 1.39 yamt * not running. We now have the opportunity to check
649 1.2 ad * if mutex_exit() has blatted the modifications made
650 1.2 ad * by MUTEX_SET_WAITERS().
651 1.2 ad *
652 1.50 rmind * 3. The on-CPU check returns false: the holding LWP may
653 1.2 ad * or may not be running. It has context switched at
654 1.2 ad * some point during our check. Again, we have the
655 1.2 ad * chance to see if the waiters bit is still set or
656 1.2 ad * has been overwritten.
657 1.2 ad *
658 1.50 rmind * 4. The on-CPU check returns false: the holding LWP is
659 1.2 ad * running on a CPU, but wants the big lock. It's OK
660 1.2 ad * to check the waiters field in this case.
661 1.2 ad *
662 1.2 ad * 5. The has-waiters check fails: the mutex has been
663 1.2 ad * released, the waiters flag cleared and another LWP
664 1.2 ad * now owns the mutex.
665 1.2 ad *
666 1.2 ad * 6. The has-waiters check fails: the mutex has been
667 1.2 ad * released.
668 1.2 ad *
669 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
670 1.2 ad * as we might never be awoken.
671 1.2 ad */
672 1.50 rmind if ((membar_consumer(), mutex_oncpu(owner)) ||
673 1.24 ad (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
674 1.2 ad turnstile_exit(mtx);
675 1.34 ad owner = mtx->mtx_owner;
676 1.2 ad continue;
677 1.2 ad }
678 1.2 ad #endif /* MULTIPROCESSOR */
679 1.2 ad
680 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
681 1.2 ad
682 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
683 1.2 ad
684 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
685 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
686 1.34 ad
687 1.34 ad owner = mtx->mtx_owner;
688 1.2 ad }
689 1.50 rmind KPREEMPT_ENABLE(curlwp);
690 1.2 ad
691 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
692 1.2 ad slpcnt, slptime);
693 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
694 1.2 ad spincnt, spintime);
695 1.2 ad LOCKSTAT_EXIT(lsflag);
696 1.2 ad
697 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
698 1.2 ad MUTEX_LOCKED(mtx);
699 1.2 ad }
700 1.2 ad
701 1.2 ad /*
702 1.2 ad * mutex_vector_exit:
703 1.2 ad *
704 1.2 ad * Support routine for mutex_exit() that handles all cases.
705 1.2 ad */
706 1.2 ad void
707 1.2 ad mutex_vector_exit(kmutex_t *mtx)
708 1.2 ad {
709 1.2 ad turnstile_t *ts;
710 1.2 ad uintptr_t curthread;
711 1.2 ad
712 1.2 ad if (MUTEX_SPIN_P(mtx)) {
713 1.2 ad #ifdef FULL
714 1.60 matt if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
715 1.33 ad if (panicstr != NULL)
716 1.33 ad return;
717 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
718 1.33 ad }
719 1.2 ad MUTEX_UNLOCKED(mtx);
720 1.60 matt MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
721 1.2 ad #endif
722 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
723 1.2 ad return;
724 1.2 ad }
725 1.2 ad
726 1.11 ad if (__predict_false((uintptr_t)panicstr | cold)) {
727 1.2 ad MUTEX_UNLOCKED(mtx);
728 1.2 ad MUTEX_RELEASE(mtx);
729 1.2 ad return;
730 1.2 ad }
731 1.2 ad
732 1.2 ad curthread = (uintptr_t)curlwp;
733 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
734 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
735 1.2 ad MUTEX_UNLOCKED(mtx);
736 1.58 mrg #if !defined(LOCKDEBUG)
737 1.58 mrg __USE(curthread);
738 1.58 mrg #endif
739 1.2 ad
740 1.15 ad #ifdef LOCKDEBUG
741 1.15 ad /*
742 1.15 ad * Avoid having to take the turnstile chain lock every time
743 1.15 ad * around. Raise the priority level to splhigh() in order
744 1.15 ad * to disable preemption and so make the following atomic.
745 1.15 ad */
746 1.15 ad {
747 1.15 ad int s = splhigh();
748 1.15 ad if (!MUTEX_HAS_WAITERS(mtx)) {
749 1.15 ad MUTEX_RELEASE(mtx);
750 1.15 ad splx(s);
751 1.15 ad return;
752 1.15 ad }
753 1.15 ad splx(s);
754 1.15 ad }
755 1.15 ad #endif
756 1.15 ad
757 1.2 ad /*
758 1.2 ad * Get this lock's turnstile. This gets the interlock on
759 1.2 ad * the sleep queue. Once we have that, we can clear the
760 1.2 ad * lock. If there was no turnstile for the lock, there
761 1.2 ad * were no waiters remaining.
762 1.2 ad */
763 1.2 ad ts = turnstile_lookup(mtx);
764 1.2 ad
765 1.2 ad if (ts == NULL) {
766 1.2 ad MUTEX_RELEASE(mtx);
767 1.2 ad turnstile_exit(mtx);
768 1.2 ad } else {
769 1.2 ad MUTEX_RELEASE(mtx);
770 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
771 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
772 1.2 ad }
773 1.2 ad }
774 1.2 ad
775 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
776 1.4 ad /*
777 1.4 ad * mutex_wakeup:
778 1.4 ad *
779 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
780 1.4 ad * We assume that the mutex has been released, but it need not
781 1.4 ad * be.
782 1.4 ad */
783 1.4 ad void
784 1.4 ad mutex_wakeup(kmutex_t *mtx)
785 1.4 ad {
786 1.4 ad turnstile_t *ts;
787 1.4 ad
788 1.4 ad ts = turnstile_lookup(mtx);
789 1.4 ad if (ts == NULL) {
790 1.4 ad turnstile_exit(mtx);
791 1.4 ad return;
792 1.4 ad }
793 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
794 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
795 1.4 ad }
796 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
797 1.4 ad
798 1.2 ad /*
799 1.2 ad * mutex_owned:
800 1.2 ad *
801 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
802 1.3 ad * holds the mutex.
803 1.2 ad */
804 1.2 ad int
805 1.2 ad mutex_owned(kmutex_t *mtx)
806 1.2 ad {
807 1.2 ad
808 1.35 ad if (mtx == NULL)
809 1.35 ad return 0;
810 1.2 ad if (MUTEX_ADAPTIVE_P(mtx))
811 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
812 1.2 ad #ifdef FULL
813 1.60 matt return MUTEX_SPINBIT_LOCKED_P(mtx);
814 1.2 ad #else
815 1.2 ad return 1;
816 1.2 ad #endif
817 1.2 ad }
818 1.2 ad
819 1.2 ad /*
820 1.2 ad * mutex_owner:
821 1.2 ad *
822 1.6 ad * Return the current owner of an adaptive mutex. Used for
823 1.6 ad * priority inheritance.
824 1.2 ad */
825 1.27 ad lwp_t *
826 1.27 ad mutex_owner(kmutex_t *mtx)
827 1.2 ad {
828 1.2 ad
829 1.2 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
830 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
831 1.2 ad }
832 1.2 ad
833 1.2 ad /*
834 1.2 ad * mutex_tryenter:
835 1.2 ad *
836 1.2 ad * Try to acquire the mutex; return non-zero if we did.
837 1.2 ad */
838 1.2 ad int
839 1.2 ad mutex_tryenter(kmutex_t *mtx)
840 1.2 ad {
841 1.2 ad uintptr_t curthread;
842 1.2 ad
843 1.2 ad /*
844 1.2 ad * Handle spin mutexes.
845 1.2 ad */
846 1.2 ad if (MUTEX_SPIN_P(mtx)) {
847 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
848 1.2 ad #ifdef FULL
849 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
850 1.4 ad MUTEX_WANTLOCK(mtx);
851 1.2 ad MUTEX_LOCKED(mtx);
852 1.2 ad return 1;
853 1.2 ad }
854 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
855 1.2 ad #else
856 1.4 ad MUTEX_WANTLOCK(mtx);
857 1.2 ad MUTEX_LOCKED(mtx);
858 1.2 ad return 1;
859 1.2 ad #endif
860 1.2 ad } else {
861 1.2 ad curthread = (uintptr_t)curlwp;
862 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
863 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
864 1.4 ad MUTEX_WANTLOCK(mtx);
865 1.2 ad MUTEX_LOCKED(mtx);
866 1.2 ad MUTEX_DASSERT(mtx,
867 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
868 1.2 ad return 1;
869 1.2 ad }
870 1.2 ad }
871 1.2 ad
872 1.2 ad return 0;
873 1.2 ad }
874 1.2 ad
875 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
876 1.2 ad /*
877 1.2 ad * mutex_spin_retry:
878 1.2 ad *
879 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
880 1.2 ad * has already raised the SPL, and adjusted counters.
881 1.2 ad */
882 1.2 ad void
883 1.2 ad mutex_spin_retry(kmutex_t *mtx)
884 1.2 ad {
885 1.2 ad #ifdef MULTIPROCESSOR
886 1.2 ad u_int count;
887 1.2 ad LOCKSTAT_TIMER(spintime);
888 1.2 ad LOCKSTAT_FLAG(lsflag);
889 1.2 ad #ifdef LOCKDEBUG
890 1.2 ad u_int spins = 0;
891 1.2 ad #endif /* LOCKDEBUG */
892 1.2 ad
893 1.2 ad MUTEX_WANTLOCK(mtx);
894 1.2 ad
895 1.2 ad LOCKSTAT_ENTER(lsflag);
896 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
897 1.2 ad count = SPINLOCK_BACKOFF_MIN;
898 1.2 ad
899 1.2 ad /*
900 1.2 ad * Spin testing the lock word and do exponential backoff
901 1.2 ad * to reduce cache line ping-ponging between CPUs.
902 1.2 ad */
903 1.2 ad do {
904 1.2 ad if (panicstr != NULL)
905 1.2 ad break;
906 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
907 1.63 msaitoh SPINLOCK_BACKOFF(count);
908 1.2 ad #ifdef LOCKDEBUG
909 1.2 ad if (SPINLOCK_SPINOUT(spins))
910 1.2 ad MUTEX_ABORT(mtx, "spinout");
911 1.2 ad #endif /* LOCKDEBUG */
912 1.2 ad }
913 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
914 1.2 ad
915 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
916 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
917 1.2 ad LOCKSTAT_EXIT(lsflag);
918 1.2 ad
919 1.2 ad MUTEX_LOCKED(mtx);
920 1.2 ad #else /* MULTIPROCESSOR */
921 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
922 1.2 ad #endif /* MULTIPROCESSOR */
923 1.2 ad }
924 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
925