Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.72
      1  1.72     ozaki /*	$NetBSD: kern_mutex.c,v 1.72 2018/02/06 07:46:24 ozaki-r Exp $	*/
      2   1.2        ad 
      3   1.2        ad /*-
      4  1.30        ad  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2        ad  * All rights reserved.
      6   1.2        ad  *
      7   1.2        ad  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2        ad  * by Jason R. Thorpe and Andrew Doran.
      9   1.2        ad  *
     10   1.2        ad  * Redistribution and use in source and binary forms, with or without
     11   1.2        ad  * modification, are permitted provided that the following conditions
     12   1.2        ad  * are met:
     13   1.2        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.2        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.2        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.2        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.2        ad  *    documentation and/or other materials provided with the distribution.
     18   1.2        ad  *
     19   1.2        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.2        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.2        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.2        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.2        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.2        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.2        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.2        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.2        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.2        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.2        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.2        ad  */
     31   1.2        ad 
     32   1.2        ad /*
     33   1.2        ad  * Kernel mutex implementation, modeled after those found in Solaris,
     34   1.2        ad  * a description of which can be found in:
     35   1.2        ad  *
     36   1.2        ad  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37   1.2        ad  *	    Richard McDougall.
     38   1.2        ad  */
     39   1.2        ad 
     40   1.2        ad #define	__MUTEX_PRIVATE
     41   1.2        ad 
     42   1.2        ad #include <sys/cdefs.h>
     43  1.72     ozaki __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.72 2018/02/06 07:46:24 ozaki-r Exp $");
     44   1.2        ad 
     45   1.2        ad #include <sys/param.h>
     46  1.46     pooka #include <sys/atomic.h>
     47   1.2        ad #include <sys/proc.h>
     48   1.2        ad #include <sys/mutex.h>
     49   1.2        ad #include <sys/sched.h>
     50   1.2        ad #include <sys/sleepq.h>
     51   1.2        ad #include <sys/systm.h>
     52   1.2        ad #include <sys/lockdebug.h>
     53   1.2        ad #include <sys/kernel.h>
     54  1.24        ad #include <sys/intr.h>
     55  1.29   xtraeme #include <sys/lock.h>
     56  1.50     rmind #include <sys/types.h>
     57  1.72     ozaki #include <sys/cpu.h>
     58   1.2        ad 
     59   1.2        ad #include <dev/lockstat.h>
     60   1.2        ad 
     61  1.28        ad #include <machine/lock.h>
     62  1.28        ad 
     63   1.2        ad /*
     64   1.2        ad  * When not running a debug kernel, spin mutexes are not much
     65   1.2        ad  * more than an splraiseipl() and splx() pair.
     66   1.2        ad  */
     67   1.2        ad 
     68   1.2        ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     69   1.2        ad #define	FULL
     70   1.2        ad #endif
     71   1.2        ad 
     72   1.2        ad /*
     73   1.2        ad  * Debugging support.
     74   1.2        ad  */
     75   1.2        ad 
     76   1.2        ad #define	MUTEX_WANTLOCK(mtx)					\
     77  1.23      yamt     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     78  1.54   mlelstv         (uintptr_t)__builtin_return_address(0), 0)
     79  1.65  pgoyette #define	MUTEX_TESTLOCK(mtx)					\
     80  1.65  pgoyette     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     81  1.65  pgoyette         (uintptr_t)__builtin_return_address(0), -1)
     82   1.2        ad #define	MUTEX_LOCKED(mtx)					\
     83  1.42        ad     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     84   1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     85   1.2        ad #define	MUTEX_UNLOCKED(mtx)					\
     86  1.23      yamt     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     87   1.2        ad         (uintptr_t)__builtin_return_address(0), 0)
     88   1.2        ad #define	MUTEX_ABORT(mtx, msg)					\
     89  1.64  christos     mutex_abort(__func__, __LINE__, mtx, msg)
     90   1.2        ad 
     91   1.2        ad #if defined(LOCKDEBUG)
     92   1.2        ad 
     93   1.2        ad #define	MUTEX_DASSERT(mtx, cond)				\
     94   1.2        ad do {								\
     95   1.2        ad 	if (!(cond))						\
     96   1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     97   1.2        ad } while (/* CONSTCOND */ 0);
     98   1.2        ad 
     99   1.2        ad #else	/* LOCKDEBUG */
    100   1.2        ad 
    101   1.2        ad #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    102   1.2        ad 
    103   1.2        ad #endif /* LOCKDEBUG */
    104   1.2        ad 
    105   1.2        ad #if defined(DIAGNOSTIC)
    106   1.2        ad 
    107   1.2        ad #define	MUTEX_ASSERT(mtx, cond)					\
    108   1.2        ad do {								\
    109   1.2        ad 	if (!(cond))						\
    110   1.2        ad 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    111   1.2        ad } while (/* CONSTCOND */ 0)
    112   1.2        ad 
    113   1.2        ad #else	/* DIAGNOSTIC */
    114   1.2        ad 
    115   1.2        ad #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    116   1.2        ad 
    117   1.2        ad #endif	/* DIAGNOSTIC */
    118   1.2        ad 
    119   1.2        ad /*
    120  1.60      matt  * Some architectures can't use __cpu_simple_lock as is so allow a way
    121  1.60      matt  * for them to use an alternate definition.
    122  1.60      matt  */
    123  1.60      matt #ifndef MUTEX_SPINBIT_LOCK_INIT
    124  1.60      matt #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    125  1.60      matt #endif
    126  1.60      matt #ifndef MUTEX_SPINBIT_LOCKED_P
    127  1.60      matt #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    128  1.60      matt #endif
    129  1.60      matt #ifndef MUTEX_SPINBIT_LOCK_TRY
    130  1.60      matt #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    131  1.60      matt #endif
    132  1.60      matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    133  1.60      matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    134  1.60      matt #endif
    135  1.60      matt 
    136  1.60      matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
    137  1.60      matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    138  1.60      matt 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    139  1.60      matt #endif
    140  1.60      matt 
    141  1.60      matt /*
    142   1.2        ad  * Spin mutex SPL save / restore.
    143   1.2        ad  */
    144   1.2        ad 
    145   1.2        ad #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    146   1.2        ad do {									\
    147  1.36        ad 	struct cpu_info *x__ci;						\
    148   1.2        ad 	int x__cnt, s;							\
    149  1.60      matt 	s = splraiseipl(MUTEX_SPIN_IPL(mtx));				\
    150  1.36        ad 	x__ci = curcpu();						\
    151   1.2        ad 	x__cnt = x__ci->ci_mtx_count--;					\
    152  1.37        ad 	__insn_barrier();						\
    153  1.51     rmind 	if (x__cnt == 0)						\
    154   1.2        ad 		x__ci->ci_mtx_oldspl = (s);				\
    155   1.2        ad } while (/* CONSTCOND */ 0)
    156   1.2        ad 
    157   1.2        ad #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    158   1.2        ad do {									\
    159   1.2        ad 	struct cpu_info *x__ci = curcpu();				\
    160   1.2        ad 	int s = x__ci->ci_mtx_oldspl;					\
    161   1.2        ad 	__insn_barrier();						\
    162  1.51     rmind 	if (++(x__ci->ci_mtx_count) == 0)			\
    163   1.2        ad 		splx(s);						\
    164   1.2        ad } while (/* CONSTCOND */ 0)
    165   1.2        ad 
    166   1.2        ad /*
    167   1.2        ad  * For architectures that provide 'simple' mutexes: they provide a
    168   1.2        ad  * CAS function that is either MP-safe, or does not need to be MP
    169   1.2        ad  * safe.  Adaptive mutexes on these architectures do not require an
    170   1.2        ad  * additional interlock.
    171   1.2        ad  */
    172   1.2        ad 
    173   1.2        ad #ifdef __HAVE_SIMPLE_MUTEXES
    174   1.2        ad 
    175   1.2        ad #define	MUTEX_OWNER(owner)						\
    176   1.2        ad 	(owner & MUTEX_THREAD)
    177   1.2        ad #define	MUTEX_HAS_WAITERS(mtx)						\
    178   1.2        ad 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    179   1.2        ad 
    180  1.23      yamt #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    181  1.49     skrll 	if (!dodebug)							\
    182  1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    183   1.2        ad do {									\
    184   1.2        ad } while (/* CONSTCOND */ 0);
    185   1.2        ad 
    186  1.23      yamt #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    187   1.2        ad do {									\
    188   1.2        ad 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    189  1.49     skrll 	if (!dodebug)							\
    190  1.49     skrll 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    191  1.60      matt 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    192  1.60      matt 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    193   1.2        ad } while (/* CONSTCOND */ 0)
    194   1.2        ad 
    195   1.2        ad #define	MUTEX_DESTROY(mtx)						\
    196   1.2        ad do {									\
    197   1.2        ad 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    198   1.2        ad } while (/* CONSTCOND */ 0);
    199   1.2        ad 
    200   1.2        ad #define	MUTEX_SPIN_P(mtx)		\
    201   1.2        ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    202   1.2        ad #define	MUTEX_ADAPTIVE_P(mtx)		\
    203   1.2        ad     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    204   1.2        ad 
    205  1.49     skrll #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    206  1.23      yamt #if defined(LOCKDEBUG)
    207  1.49     skrll #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    208  1.59      matt #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    209  1.23      yamt #else /* defined(LOCKDEBUG) */
    210  1.23      yamt #define	MUTEX_OWNED(owner)		((owner) != 0)
    211  1.59      matt #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    212  1.23      yamt #endif /* defined(LOCKDEBUG) */
    213   1.2        ad 
    214   1.2        ad static inline int
    215   1.2        ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    216   1.2        ad {
    217   1.2        ad 	int rv;
    218  1.59      matt 	uintptr_t oldown = 0;
    219  1.59      matt 	uintptr_t newown = curthread;
    220  1.23      yamt 
    221  1.59      matt 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    222  1.59      matt 	MUTEX_INHERITDEBUG(newown, oldown);
    223  1.59      matt 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    224   1.7     itohy 	MUTEX_RECEIVE(mtx);
    225   1.2        ad 	return rv;
    226   1.2        ad }
    227   1.2        ad 
    228   1.2        ad static inline int
    229   1.2        ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    230   1.2        ad {
    231   1.2        ad 	int rv;
    232   1.2        ad 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    233   1.7     itohy 	MUTEX_RECEIVE(mtx);
    234   1.2        ad 	return rv;
    235   1.2        ad }
    236   1.2        ad 
    237   1.2        ad static inline void
    238   1.2        ad MUTEX_RELEASE(kmutex_t *mtx)
    239   1.2        ad {
    240  1.59      matt 	uintptr_t newown;
    241  1.23      yamt 
    242   1.7     itohy 	MUTEX_GIVE(mtx);
    243  1.59      matt 	newown = 0;
    244  1.59      matt 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    245  1.59      matt 	mtx->mtx_owner = newown;
    246   1.2        ad }
    247   1.2        ad #endif	/* __HAVE_SIMPLE_MUTEXES */
    248   1.2        ad 
    249   1.2        ad /*
    250   1.2        ad  * Patch in stubs via strong alias where they are not available.
    251   1.2        ad  */
    252   1.2        ad 
    253   1.2        ad #if defined(LOCKDEBUG)
    254   1.2        ad #undef	__HAVE_MUTEX_STUBS
    255   1.2        ad #undef	__HAVE_SPIN_MUTEX_STUBS
    256   1.2        ad #endif
    257   1.2        ad 
    258   1.2        ad #ifndef __HAVE_MUTEX_STUBS
    259   1.8     itohy __strong_alias(mutex_enter,mutex_vector_enter);
    260   1.8     itohy __strong_alias(mutex_exit,mutex_vector_exit);
    261   1.2        ad #endif
    262   1.2        ad 
    263   1.2        ad #ifndef __HAVE_SPIN_MUTEX_STUBS
    264   1.8     itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
    265   1.8     itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
    266   1.2        ad #endif
    267   1.2        ad 
    268  1.67  christos static void	mutex_abort(const char *, size_t, const kmutex_t *,
    269  1.67  christos     const char *);
    270  1.67  christos static void	mutex_dump(const volatile void *);
    271   1.2        ad 
    272   1.2        ad lockops_t mutex_spin_lockops = {
    273  1.68     ozaki 	.lo_name = "Mutex",
    274  1.68     ozaki 	.lo_type = LOCKOPS_SPIN,
    275  1.68     ozaki 	.lo_dump = mutex_dump,
    276   1.2        ad };
    277   1.2        ad 
    278   1.2        ad lockops_t mutex_adaptive_lockops = {
    279  1.68     ozaki 	.lo_name = "Mutex",
    280  1.68     ozaki 	.lo_type = LOCKOPS_SLEEP,
    281  1.68     ozaki 	.lo_dump = mutex_dump,
    282   1.2        ad };
    283   1.2        ad 
    284   1.5      yamt syncobj_t mutex_syncobj = {
    285  1.70     ozaki 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    286  1.70     ozaki 	.sobj_unsleep	= turnstile_unsleep,
    287  1.70     ozaki 	.sobj_changepri	= turnstile_changepri,
    288  1.70     ozaki 	.sobj_lendpri	= sleepq_lendpri,
    289  1.70     ozaki 	.sobj_owner	= (void *)mutex_owner,
    290   1.5      yamt };
    291   1.5      yamt 
    292   1.2        ad /*
    293   1.2        ad  * mutex_dump:
    294   1.2        ad  *
    295   1.2        ad  *	Dump the contents of a mutex structure.
    296   1.2        ad  */
    297   1.2        ad void
    298  1.67  christos mutex_dump(const volatile void *cookie)
    299   1.2        ad {
    300  1.67  christos 	const volatile kmutex_t *mtx = cookie;
    301   1.2        ad 
    302   1.2        ad 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    303   1.2        ad 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    304   1.2        ad 	    MUTEX_SPIN_P(mtx));
    305   1.2        ad }
    306   1.2        ad 
    307   1.2        ad /*
    308   1.2        ad  * mutex_abort:
    309   1.2        ad  *
    310   1.3        ad  *	Dump information about an error and panic the system.  This
    311   1.3        ad  *	generates a lot of machine code in the DIAGNOSTIC case, so
    312   1.3        ad  *	we ask the compiler to not inline it.
    313   1.2        ad  */
    314  1.43        ad void __noinline
    315  1.67  christos mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
    316   1.2        ad {
    317   1.2        ad 
    318  1.64  christos 	LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
    319  1.64  christos 	    &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
    320   1.2        ad }
    321   1.2        ad 
    322   1.2        ad /*
    323   1.2        ad  * mutex_init:
    324   1.2        ad  *
    325   1.2        ad  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    326   1.2        ad  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    327   1.2        ad  *	CPU time.  We can't easily provide a type of mutex that always
    328   1.2        ad  *	sleeps - see comments in mutex_vector_enter() about releasing
    329   1.2        ad  *	mutexes unlocked.
    330   1.2        ad  */
    331  1.71     ozaki void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
    332   1.2        ad void
    333  1.71     ozaki _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
    334  1.71     ozaki     uintptr_t return_address)
    335   1.2        ad {
    336  1.23      yamt 	bool dodebug;
    337   1.2        ad 
    338   1.2        ad 	memset(mtx, 0, sizeof(*mtx));
    339   1.2        ad 
    340  1.15        ad 	switch (type) {
    341  1.15        ad 	case MUTEX_ADAPTIVE:
    342  1.15        ad 		KASSERT(ipl == IPL_NONE);
    343  1.15        ad 		break;
    344  1.22        ad 	case MUTEX_DEFAULT:
    345  1.15        ad 	case MUTEX_DRIVER:
    346  1.26        ad 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    347  1.26        ad 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    348  1.26        ad 		    ipl == IPL_SOFTSERIAL) {
    349  1.22        ad 			type = MUTEX_ADAPTIVE;
    350  1.26        ad 		} else {
    351  1.22        ad 			type = MUTEX_SPIN;
    352  1.22        ad 		}
    353  1.15        ad 		break;
    354  1.15        ad 	default:
    355  1.15        ad 		break;
    356  1.15        ad 	}
    357   1.2        ad 
    358   1.2        ad 	switch (type) {
    359  1.11        ad 	case MUTEX_NODEBUG:
    360  1.71     ozaki 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL, return_address);
    361  1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    362  1.11        ad 		break;
    363   1.2        ad 	case MUTEX_ADAPTIVE:
    364  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    365  1.71     ozaki 		    return_address);
    366  1.23      yamt 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    367   1.2        ad 		break;
    368   1.2        ad 	case MUTEX_SPIN:
    369  1.23      yamt 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    370  1.71     ozaki 		    return_address);
    371  1.23      yamt 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    372   1.2        ad 		break;
    373   1.2        ad 	default:
    374   1.2        ad 		panic("mutex_init: impossible type");
    375   1.2        ad 		break;
    376   1.2        ad 	}
    377   1.2        ad }
    378   1.2        ad 
    379  1.71     ozaki void
    380  1.71     ozaki mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    381  1.71     ozaki {
    382  1.71     ozaki 
    383  1.71     ozaki 	_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
    384  1.71     ozaki }
    385  1.71     ozaki 
    386   1.2        ad /*
    387   1.2        ad  * mutex_destroy:
    388   1.2        ad  *
    389   1.2        ad  *	Tear down a mutex.
    390   1.2        ad  */
    391   1.2        ad void
    392   1.2        ad mutex_destroy(kmutex_t *mtx)
    393   1.2        ad {
    394   1.2        ad 
    395   1.2        ad 	if (MUTEX_ADAPTIVE_P(mtx)) {
    396   1.2        ad 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    397   1.2        ad 		    !MUTEX_HAS_WAITERS(mtx));
    398   1.2        ad 	} else {
    399  1.60      matt 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    400   1.2        ad 	}
    401   1.2        ad 
    402  1.23      yamt 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    403   1.2        ad 	MUTEX_DESTROY(mtx);
    404   1.2        ad }
    405   1.2        ad 
    406  1.50     rmind #ifdef MULTIPROCESSOR
    407   1.2        ad /*
    408  1.50     rmind  * mutex_oncpu:
    409   1.2        ad  *
    410   1.2        ad  *	Return true if an adaptive mutex owner is running on a CPU in the
    411   1.2        ad  *	system.  If the target is waiting on the kernel big lock, then we
    412  1.15        ad  *	must release it.  This is necessary to avoid deadlock.
    413   1.2        ad  */
    414  1.50     rmind static bool
    415  1.50     rmind mutex_oncpu(uintptr_t owner)
    416   1.2        ad {
    417   1.2        ad 	struct cpu_info *ci;
    418  1.50     rmind 	lwp_t *l;
    419   1.2        ad 
    420  1.50     rmind 	KASSERT(kpreempt_disabled());
    421  1.50     rmind 
    422  1.50     rmind 	if (!MUTEX_OWNED(owner)) {
    423  1.50     rmind 		return false;
    424  1.50     rmind 	}
    425   1.2        ad 
    426  1.50     rmind 	/*
    427  1.50     rmind 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    428  1.50     rmind 	 * We must have kernel preemption disabled for that.
    429  1.50     rmind 	 */
    430  1.50     rmind 	l = (lwp_t *)MUTEX_OWNER(owner);
    431  1.50     rmind 	ci = l->l_cpu;
    432   1.2        ad 
    433  1.50     rmind 	if (ci && ci->ci_curlwp == l) {
    434  1.50     rmind 		/* Target is running; do we need to block? */
    435  1.50     rmind 		return (ci->ci_biglock_wanted != l);
    436  1.50     rmind 	}
    437  1.15        ad 
    438  1.50     rmind 	/* Not running.  It may be safe to block now. */
    439  1.50     rmind 	return false;
    440   1.2        ad }
    441  1.15        ad #endif	/* MULTIPROCESSOR */
    442   1.2        ad 
    443   1.2        ad /*
    444   1.2        ad  * mutex_vector_enter:
    445   1.2        ad  *
    446  1.45     rmind  *	Support routine for mutex_enter() that must handle all cases.  In
    447   1.2        ad  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    448  1.62     prlw1  *	fast-path stubs are available.  If a mutex_spin_enter() stub is
    449   1.2        ad  *	not available, then it is also aliased directly here.
    450   1.2        ad  */
    451   1.2        ad void
    452   1.2        ad mutex_vector_enter(kmutex_t *mtx)
    453   1.2        ad {
    454   1.2        ad 	uintptr_t owner, curthread;
    455   1.2        ad 	turnstile_t *ts;
    456   1.2        ad #ifdef MULTIPROCESSOR
    457   1.2        ad 	u_int count;
    458   1.2        ad #endif
    459   1.2        ad 	LOCKSTAT_COUNTER(spincnt);
    460   1.2        ad 	LOCKSTAT_COUNTER(slpcnt);
    461   1.2        ad 	LOCKSTAT_TIMER(spintime);
    462   1.2        ad 	LOCKSTAT_TIMER(slptime);
    463   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    464   1.2        ad 
    465   1.2        ad 	/*
    466   1.2        ad 	 * Handle spin mutexes.
    467   1.2        ad 	 */
    468   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    469   1.2        ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    470   1.2        ad 		u_int spins = 0;
    471   1.2        ad #endif
    472   1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    473   1.2        ad 		MUTEX_WANTLOCK(mtx);
    474   1.2        ad #ifdef FULL
    475  1.60      matt 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    476   1.2        ad 			MUTEX_LOCKED(mtx);
    477   1.2        ad 			return;
    478   1.2        ad 		}
    479   1.2        ad #if !defined(MULTIPROCESSOR)
    480   1.2        ad 		MUTEX_ABORT(mtx, "locking against myself");
    481   1.2        ad #else /* !MULTIPROCESSOR */
    482   1.2        ad 
    483   1.2        ad 		LOCKSTAT_ENTER(lsflag);
    484   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, spintime);
    485   1.2        ad 		count = SPINLOCK_BACKOFF_MIN;
    486   1.2        ad 
    487   1.2        ad 		/*
    488   1.2        ad 		 * Spin testing the lock word and do exponential backoff
    489   1.2        ad 		 * to reduce cache line ping-ponging between CPUs.
    490   1.2        ad 		 */
    491   1.2        ad 		do {
    492   1.2        ad 			if (panicstr != NULL)
    493   1.2        ad 				break;
    494  1.60      matt 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    495  1.63   msaitoh 				SPINLOCK_BACKOFF(count);
    496   1.2        ad #ifdef LOCKDEBUG
    497   1.2        ad 				if (SPINLOCK_SPINOUT(spins))
    498   1.2        ad 					MUTEX_ABORT(mtx, "spinout");
    499   1.2        ad #endif	/* LOCKDEBUG */
    500   1.2        ad 			}
    501  1.60      matt 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    502   1.2        ad 
    503   1.2        ad 		if (count != SPINLOCK_BACKOFF_MIN) {
    504   1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    505   1.2        ad 			LOCKSTAT_EVENT(lsflag, mtx,
    506   1.2        ad 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    507   1.2        ad 		}
    508   1.2        ad 		LOCKSTAT_EXIT(lsflag);
    509   1.2        ad #endif	/* !MULTIPROCESSOR */
    510   1.2        ad #endif	/* FULL */
    511   1.2        ad 		MUTEX_LOCKED(mtx);
    512   1.2        ad 		return;
    513   1.2        ad 	}
    514   1.2        ad 
    515   1.2        ad 	curthread = (uintptr_t)curlwp;
    516   1.2        ad 
    517   1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    518   1.2        ad 	MUTEX_ASSERT(mtx, curthread != 0);
    519  1.72     ozaki 	MUTEX_ASSERT(mtx, !cpu_intr_p());
    520   1.2        ad 	MUTEX_WANTLOCK(mtx);
    521   1.2        ad 
    522   1.2        ad 	if (panicstr == NULL) {
    523   1.2        ad 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    524   1.2        ad 	}
    525   1.2        ad 
    526   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    527   1.2        ad 
    528   1.2        ad 	/*
    529   1.2        ad 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    530   1.2        ad 	 * determine that the owner is not running on a processor,
    531   1.2        ad 	 * then we stop spinning, and sleep instead.
    532   1.2        ad 	 */
    533  1.50     rmind 	KPREEMPT_DISABLE(curlwp);
    534  1.34        ad 	for (owner = mtx->mtx_owner;;) {
    535   1.2        ad 		if (!MUTEX_OWNED(owner)) {
    536   1.2        ad 			/*
    537   1.2        ad 			 * Mutex owner clear could mean two things:
    538   1.2        ad 			 *
    539   1.2        ad 			 *	* The mutex has been released.
    540   1.2        ad 			 *	* The owner field hasn't been set yet.
    541   1.2        ad 			 *
    542   1.2        ad 			 * Try to acquire it again.  If that fails,
    543   1.2        ad 			 * we'll just loop again.
    544   1.2        ad 			 */
    545   1.2        ad 			if (MUTEX_ACQUIRE(mtx, curthread))
    546   1.2        ad 				break;
    547  1.34        ad 			owner = mtx->mtx_owner;
    548   1.2        ad 			continue;
    549   1.2        ad 		}
    550  1.50     rmind 		if (__predict_false(panicstr != NULL)) {
    551  1.61  uebayasi 			KPREEMPT_ENABLE(curlwp);
    552   1.2        ad 			return;
    553  1.50     rmind 		}
    554  1.50     rmind 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    555   1.2        ad 			MUTEX_ABORT(mtx, "locking against myself");
    556  1.50     rmind 		}
    557   1.2        ad #ifdef MULTIPROCESSOR
    558   1.2        ad 		/*
    559   1.2        ad 		 * Check to see if the owner is running on a processor.
    560   1.2        ad 		 * If so, then we should just spin, as the owner will
    561   1.2        ad 		 * likely release the lock very soon.
    562   1.2        ad 		 */
    563  1.50     rmind 		if (mutex_oncpu(owner)) {
    564   1.2        ad 			LOCKSTAT_START_TIMER(lsflag, spintime);
    565   1.2        ad 			count = SPINLOCK_BACKOFF_MIN;
    566  1.50     rmind 			do {
    567  1.53     rmind 				KPREEMPT_ENABLE(curlwp);
    568  1.34        ad 				SPINLOCK_BACKOFF(count);
    569  1.53     rmind 				KPREEMPT_DISABLE(curlwp);
    570   1.2        ad 				owner = mtx->mtx_owner;
    571  1.50     rmind 			} while (mutex_oncpu(owner));
    572   1.2        ad 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    573   1.2        ad 			LOCKSTAT_COUNT(spincnt, 1);
    574   1.2        ad 			if (!MUTEX_OWNED(owner))
    575   1.2        ad 				continue;
    576   1.2        ad 		}
    577   1.2        ad #endif
    578   1.2        ad 
    579   1.2        ad 		ts = turnstile_lookup(mtx);
    580   1.2        ad 
    581   1.2        ad 		/*
    582   1.2        ad 		 * Once we have the turnstile chain interlock, mark the
    583  1.69     skrll 		 * mutex as having waiters.  If that fails, spin again:
    584   1.2        ad 		 * chances are that the mutex has been released.
    585   1.2        ad 		 */
    586   1.2        ad 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    587   1.2        ad 			turnstile_exit(mtx);
    588  1.34        ad 			owner = mtx->mtx_owner;
    589   1.2        ad 			continue;
    590   1.2        ad 		}
    591   1.2        ad 
    592   1.2        ad #ifdef MULTIPROCESSOR
    593   1.2        ad 		/*
    594   1.2        ad 		 * mutex_exit() is permitted to release the mutex without
    595   1.2        ad 		 * any interlocking instructions, and the following can
    596   1.2        ad 		 * occur as a result:
    597   1.2        ad 		 *
    598   1.2        ad 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    599   1.2        ad 		 * ---------------------------- ----------------------------
    600   1.2        ad 		 *		..		    acquire cache line
    601   1.2        ad 		 *		..                   test for waiters
    602   1.2        ad 		 *	acquire cache line    <-      lose cache line
    603   1.2        ad 		 *	 lock cache line	           ..
    604   1.2        ad 		 *     verify mutex is held                ..
    605   1.2        ad 		 *	    set waiters  	           ..
    606   1.2        ad 		 *	 unlock cache line		   ..
    607   1.2        ad 		 *	  lose cache line     ->    acquire cache line
    608   1.2        ad 		 *		..	          clear lock word, waiters
    609   1.2        ad 		 *	  return success
    610   1.2        ad 		 *
    611  1.50     rmind 		 * There is another race that can occur: a third CPU could
    612   1.2        ad 		 * acquire the mutex as soon as it is released.  Since
    613   1.2        ad 		 * adaptive mutexes are primarily spin mutexes, this is not
    614   1.2        ad 		 * something that we need to worry about too much.  What we
    615   1.2        ad 		 * do need to ensure is that the waiters bit gets set.
    616   1.2        ad 		 *
    617   1.2        ad 		 * To allow the unlocked release, we need to make some
    618   1.2        ad 		 * assumptions here:
    619   1.2        ad 		 *
    620   1.2        ad 		 * o Release is the only non-atomic/unlocked operation
    621   1.2        ad 		 *   that can be performed on the mutex.  (It must still
    622   1.2        ad 		 *   be atomic on the local CPU, e.g. in case interrupted
    623   1.2        ad 		 *   or preempted).
    624   1.2        ad 		 *
    625   1.2        ad 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    626  1.21     pooka 		 *   be in progress on one CPU in the system - guaranteed
    627   1.2        ad 		 *   by the turnstile chain lock.
    628   1.2        ad 		 *
    629   1.2        ad 		 * o No other operations other than MUTEX_SET_WAITERS()
    630   1.2        ad 		 *   and release can modify a mutex with a non-zero
    631   1.2        ad 		 *   owner field.
    632   1.2        ad 		 *
    633   1.2        ad 		 * o The result of a successful MUTEX_SET_WAITERS() call
    634   1.2        ad 		 *   is an unbuffered write that is immediately visible
    635   1.2        ad 		 *   to all other processors in the system.
    636   1.2        ad 		 *
    637   1.2        ad 		 * o If the holding LWP switches away, it posts a store
    638   1.2        ad 		 *   fence before changing curlwp, ensuring that any
    639   1.2        ad 		 *   overwrite of the mutex waiters flag by mutex_exit()
    640   1.2        ad 		 *   completes before the modification of curlwp becomes
    641   1.2        ad 		 *   visible to this CPU.
    642   1.2        ad 		 *
    643  1.14      yamt 		 * o mi_switch() posts a store fence before setting curlwp
    644   1.2        ad 		 *   and before resuming execution of an LWP.
    645   1.2        ad 		 *
    646   1.2        ad 		 * o _kernel_lock() posts a store fence before setting
    647   1.2        ad 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    648   1.2        ad 		 *   This ensures that any overwrite of the mutex waiters
    649   1.2        ad 		 *   flag by mutex_exit() completes before the modification
    650   1.2        ad 		 *   of ci_biglock_wanted becomes visible.
    651   1.2        ad 		 *
    652   1.2        ad 		 * We now post a read memory barrier (after setting the
    653   1.2        ad 		 * waiters field) and check the lock holder's status again.
    654   1.2        ad 		 * Some of the possible outcomes (not an exhaustive list):
    655   1.2        ad 		 *
    656  1.50     rmind 		 * 1. The on-CPU check returns true: the holding LWP is
    657   1.2        ad 		 *    running again.  The lock may be released soon and
    658   1.2        ad 		 *    we should spin.  Importantly, we can't trust the
    659   1.2        ad 		 *    value of the waiters flag.
    660   1.2        ad 		 *
    661  1.50     rmind 		 * 2. The on-CPU check returns false: the holding LWP is
    662  1.39      yamt 		 *    not running.  We now have the opportunity to check
    663   1.2        ad 		 *    if mutex_exit() has blatted the modifications made
    664   1.2        ad 		 *    by MUTEX_SET_WAITERS().
    665   1.2        ad 		 *
    666  1.50     rmind 		 * 3. The on-CPU check returns false: the holding LWP may
    667   1.2        ad 		 *    or may not be running.  It has context switched at
    668   1.2        ad 		 *    some point during our check.  Again, we have the
    669   1.2        ad 		 *    chance to see if the waiters bit is still set or
    670   1.2        ad 		 *    has been overwritten.
    671   1.2        ad 		 *
    672  1.50     rmind 		 * 4. The on-CPU check returns false: the holding LWP is
    673   1.2        ad 		 *    running on a CPU, but wants the big lock.  It's OK
    674   1.2        ad 		 *    to check the waiters field in this case.
    675   1.2        ad 		 *
    676   1.2        ad 		 * 5. The has-waiters check fails: the mutex has been
    677   1.2        ad 		 *    released, the waiters flag cleared and another LWP
    678   1.2        ad 		 *    now owns the mutex.
    679   1.2        ad 		 *
    680   1.2        ad 		 * 6. The has-waiters check fails: the mutex has been
    681   1.2        ad 		 *    released.
    682   1.2        ad 		 *
    683   1.2        ad 		 * If the waiters bit is not set it's unsafe to go asleep,
    684   1.2        ad 		 * as we might never be awoken.
    685   1.2        ad 		 */
    686  1.50     rmind 		if ((membar_consumer(), mutex_oncpu(owner)) ||
    687  1.24        ad 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    688   1.2        ad 			turnstile_exit(mtx);
    689  1.34        ad 			owner = mtx->mtx_owner;
    690   1.2        ad 			continue;
    691   1.2        ad 		}
    692   1.2        ad #endif	/* MULTIPROCESSOR */
    693   1.2        ad 
    694   1.2        ad 		LOCKSTAT_START_TIMER(lsflag, slptime);
    695   1.2        ad 
    696   1.5      yamt 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    697   1.2        ad 
    698   1.2        ad 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    699   1.2        ad 		LOCKSTAT_COUNT(slpcnt, 1);
    700  1.34        ad 
    701  1.34        ad 		owner = mtx->mtx_owner;
    702   1.2        ad 	}
    703  1.50     rmind 	KPREEMPT_ENABLE(curlwp);
    704   1.2        ad 
    705   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    706   1.2        ad 	    slpcnt, slptime);
    707   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    708   1.2        ad 	    spincnt, spintime);
    709   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    710   1.2        ad 
    711   1.2        ad 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    712   1.2        ad 	MUTEX_LOCKED(mtx);
    713   1.2        ad }
    714   1.2        ad 
    715   1.2        ad /*
    716   1.2        ad  * mutex_vector_exit:
    717   1.2        ad  *
    718   1.2        ad  *	Support routine for mutex_exit() that handles all cases.
    719   1.2        ad  */
    720   1.2        ad void
    721   1.2        ad mutex_vector_exit(kmutex_t *mtx)
    722   1.2        ad {
    723   1.2        ad 	turnstile_t *ts;
    724   1.2        ad 	uintptr_t curthread;
    725   1.2        ad 
    726   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    727   1.2        ad #ifdef FULL
    728  1.60      matt 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    729  1.33        ad 			if (panicstr != NULL)
    730  1.33        ad 				return;
    731   1.2        ad 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    732  1.33        ad 		}
    733   1.2        ad 		MUTEX_UNLOCKED(mtx);
    734  1.60      matt 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    735   1.2        ad #endif
    736   1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    737   1.2        ad 		return;
    738   1.2        ad 	}
    739   1.2        ad 
    740  1.11        ad 	if (__predict_false((uintptr_t)panicstr | cold)) {
    741   1.2        ad 		MUTEX_UNLOCKED(mtx);
    742   1.2        ad 		MUTEX_RELEASE(mtx);
    743   1.2        ad 		return;
    744   1.2        ad 	}
    745   1.2        ad 
    746   1.2        ad 	curthread = (uintptr_t)curlwp;
    747   1.2        ad 	MUTEX_DASSERT(mtx, curthread != 0);
    748   1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    749   1.2        ad 	MUTEX_UNLOCKED(mtx);
    750  1.58       mrg #if !defined(LOCKDEBUG)
    751  1.58       mrg 	__USE(curthread);
    752  1.58       mrg #endif
    753   1.2        ad 
    754  1.15        ad #ifdef LOCKDEBUG
    755  1.15        ad 	/*
    756  1.15        ad 	 * Avoid having to take the turnstile chain lock every time
    757  1.15        ad 	 * around.  Raise the priority level to splhigh() in order
    758  1.15        ad 	 * to disable preemption and so make the following atomic.
    759  1.15        ad 	 */
    760  1.15        ad 	{
    761  1.15        ad 		int s = splhigh();
    762  1.15        ad 		if (!MUTEX_HAS_WAITERS(mtx)) {
    763  1.15        ad 			MUTEX_RELEASE(mtx);
    764  1.15        ad 			splx(s);
    765  1.15        ad 			return;
    766  1.15        ad 		}
    767  1.15        ad 		splx(s);
    768  1.15        ad 	}
    769  1.15        ad #endif
    770  1.15        ad 
    771   1.2        ad 	/*
    772   1.2        ad 	 * Get this lock's turnstile.  This gets the interlock on
    773   1.2        ad 	 * the sleep queue.  Once we have that, we can clear the
    774   1.2        ad 	 * lock.  If there was no turnstile for the lock, there
    775   1.2        ad 	 * were no waiters remaining.
    776   1.2        ad 	 */
    777   1.2        ad 	ts = turnstile_lookup(mtx);
    778   1.2        ad 
    779   1.2        ad 	if (ts == NULL) {
    780   1.2        ad 		MUTEX_RELEASE(mtx);
    781   1.2        ad 		turnstile_exit(mtx);
    782   1.2        ad 	} else {
    783   1.2        ad 		MUTEX_RELEASE(mtx);
    784   1.2        ad 		turnstile_wakeup(ts, TS_WRITER_Q,
    785   1.2        ad 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    786   1.2        ad 	}
    787   1.2        ad }
    788   1.2        ad 
    789   1.4        ad #ifndef __HAVE_SIMPLE_MUTEXES
    790   1.4        ad /*
    791   1.4        ad  * mutex_wakeup:
    792   1.4        ad  *
    793   1.4        ad  *	Support routine for mutex_exit() that wakes up all waiters.
    794   1.4        ad  *	We assume that the mutex has been released, but it need not
    795   1.4        ad  *	be.
    796   1.4        ad  */
    797   1.4        ad void
    798   1.4        ad mutex_wakeup(kmutex_t *mtx)
    799   1.4        ad {
    800   1.4        ad 	turnstile_t *ts;
    801   1.4        ad 
    802   1.4        ad 	ts = turnstile_lookup(mtx);
    803   1.4        ad 	if (ts == NULL) {
    804   1.4        ad 		turnstile_exit(mtx);
    805   1.4        ad 		return;
    806   1.4        ad 	}
    807   1.4        ad 	MUTEX_CLEAR_WAITERS(mtx);
    808   1.4        ad 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    809   1.4        ad }
    810   1.4        ad #endif	/* !__HAVE_SIMPLE_MUTEXES */
    811   1.4        ad 
    812   1.2        ad /*
    813   1.2        ad  * mutex_owned:
    814   1.2        ad  *
    815   1.3        ad  *	Return true if the current LWP (adaptive) or CPU (spin)
    816   1.3        ad  *	holds the mutex.
    817   1.2        ad  */
    818   1.2        ad int
    819  1.66  christos mutex_owned(const kmutex_t *mtx)
    820   1.2        ad {
    821   1.2        ad 
    822  1.35        ad 	if (mtx == NULL)
    823  1.35        ad 		return 0;
    824   1.2        ad 	if (MUTEX_ADAPTIVE_P(mtx))
    825   1.2        ad 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    826   1.2        ad #ifdef FULL
    827  1.60      matt 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    828   1.2        ad #else
    829   1.2        ad 	return 1;
    830   1.2        ad #endif
    831   1.2        ad }
    832   1.2        ad 
    833   1.2        ad /*
    834   1.2        ad  * mutex_owner:
    835   1.2        ad  *
    836   1.6        ad  *	Return the current owner of an adaptive mutex.  Used for
    837   1.6        ad  *	priority inheritance.
    838   1.2        ad  */
    839  1.27        ad lwp_t *
    840  1.66  christos mutex_owner(const kmutex_t *mtx)
    841   1.2        ad {
    842   1.2        ad 
    843   1.2        ad 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    844   1.2        ad 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    845   1.2        ad }
    846   1.2        ad 
    847   1.2        ad /*
    848  1.65  pgoyette  * mutex_ownable:
    849  1.65  pgoyette  *
    850  1.65  pgoyette  *	When compiled with DEBUG and LOCKDEBUG defined, ensure that
    851  1.65  pgoyette  *	the mutex is available.  We cannot use !mutex_owned() since
    852  1.65  pgoyette  *	that won't work correctly for spin mutexes.
    853  1.65  pgoyette  */
    854  1.65  pgoyette int
    855  1.66  christos mutex_ownable(const kmutex_t *mtx)
    856  1.65  pgoyette {
    857  1.65  pgoyette 
    858  1.65  pgoyette #ifdef LOCKDEBUG
    859  1.65  pgoyette 	MUTEX_TESTLOCK(mtx);
    860  1.65  pgoyette #endif
    861  1.65  pgoyette 	return 1;
    862  1.65  pgoyette }
    863  1.65  pgoyette 
    864  1.65  pgoyette /*
    865   1.2        ad  * mutex_tryenter:
    866   1.2        ad  *
    867   1.2        ad  *	Try to acquire the mutex; return non-zero if we did.
    868   1.2        ad  */
    869   1.2        ad int
    870   1.2        ad mutex_tryenter(kmutex_t *mtx)
    871   1.2        ad {
    872   1.2        ad 	uintptr_t curthread;
    873   1.2        ad 
    874   1.2        ad 	/*
    875   1.2        ad 	 * Handle spin mutexes.
    876   1.2        ad 	 */
    877   1.2        ad 	if (MUTEX_SPIN_P(mtx)) {
    878   1.2        ad 		MUTEX_SPIN_SPLRAISE(mtx);
    879   1.2        ad #ifdef FULL
    880  1.60      matt 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    881   1.4        ad 			MUTEX_WANTLOCK(mtx);
    882   1.2        ad 			MUTEX_LOCKED(mtx);
    883   1.2        ad 			return 1;
    884   1.2        ad 		}
    885   1.2        ad 		MUTEX_SPIN_SPLRESTORE(mtx);
    886   1.2        ad #else
    887   1.4        ad 		MUTEX_WANTLOCK(mtx);
    888   1.2        ad 		MUTEX_LOCKED(mtx);
    889   1.2        ad 		return 1;
    890   1.2        ad #endif
    891   1.2        ad 	} else {
    892   1.2        ad 		curthread = (uintptr_t)curlwp;
    893   1.2        ad 		MUTEX_ASSERT(mtx, curthread != 0);
    894   1.2        ad 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    895   1.4        ad 			MUTEX_WANTLOCK(mtx);
    896   1.2        ad 			MUTEX_LOCKED(mtx);
    897   1.2        ad 			MUTEX_DASSERT(mtx,
    898   1.2        ad 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    899   1.2        ad 			return 1;
    900   1.2        ad 		}
    901   1.2        ad 	}
    902   1.2        ad 
    903   1.2        ad 	return 0;
    904   1.2        ad }
    905   1.2        ad 
    906   1.2        ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    907   1.2        ad /*
    908   1.2        ad  * mutex_spin_retry:
    909   1.2        ad  *
    910   1.2        ad  *	Support routine for mutex_spin_enter().  Assumes that the caller
    911   1.2        ad  *	has already raised the SPL, and adjusted counters.
    912   1.2        ad  */
    913   1.2        ad void
    914   1.2        ad mutex_spin_retry(kmutex_t *mtx)
    915   1.2        ad {
    916   1.2        ad #ifdef MULTIPROCESSOR
    917   1.2        ad 	u_int count;
    918   1.2        ad 	LOCKSTAT_TIMER(spintime);
    919   1.2        ad 	LOCKSTAT_FLAG(lsflag);
    920   1.2        ad #ifdef LOCKDEBUG
    921   1.2        ad 	u_int spins = 0;
    922   1.2        ad #endif	/* LOCKDEBUG */
    923   1.2        ad 
    924   1.2        ad 	MUTEX_WANTLOCK(mtx);
    925   1.2        ad 
    926   1.2        ad 	LOCKSTAT_ENTER(lsflag);
    927   1.2        ad 	LOCKSTAT_START_TIMER(lsflag, spintime);
    928   1.2        ad 	count = SPINLOCK_BACKOFF_MIN;
    929   1.2        ad 
    930   1.2        ad 	/*
    931   1.2        ad 	 * Spin testing the lock word and do exponential backoff
    932   1.2        ad 	 * to reduce cache line ping-ponging between CPUs.
    933   1.2        ad 	 */
    934   1.2        ad 	do {
    935   1.2        ad 		if (panicstr != NULL)
    936   1.2        ad 			break;
    937  1.60      matt 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    938  1.63   msaitoh 			SPINLOCK_BACKOFF(count);
    939   1.2        ad #ifdef LOCKDEBUG
    940   1.2        ad 			if (SPINLOCK_SPINOUT(spins))
    941   1.2        ad 				MUTEX_ABORT(mtx, "spinout");
    942   1.2        ad #endif	/* LOCKDEBUG */
    943   1.2        ad 		}
    944  1.60      matt 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    945   1.2        ad 
    946   1.2        ad 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    947   1.2        ad 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    948   1.2        ad 	LOCKSTAT_EXIT(lsflag);
    949   1.2        ad 
    950   1.2        ad 	MUTEX_LOCKED(mtx);
    951   1.2        ad #else	/* MULTIPROCESSOR */
    952   1.2        ad 	MUTEX_ABORT(mtx, "locking against myself");
    953   1.2        ad #endif	/* MULTIPROCESSOR */
    954   1.2        ad }
    955   1.2        ad #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    956