kern_mutex.c revision 1.72 1 1.72 ozaki /* $NetBSD: kern_mutex.c,v 1.72 2018/02/06 07:46:24 ozaki-r Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.30 ad * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
34 1.2 ad * a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.2 ad #define __MUTEX_PRIVATE
41 1.2 ad
42 1.2 ad #include <sys/cdefs.h>
43 1.72 ozaki __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.72 2018/02/06 07:46:24 ozaki-r Exp $");
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.46 pooka #include <sys/atomic.h>
47 1.2 ad #include <sys/proc.h>
48 1.2 ad #include <sys/mutex.h>
49 1.2 ad #include <sys/sched.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/systm.h>
52 1.2 ad #include <sys/lockdebug.h>
53 1.2 ad #include <sys/kernel.h>
54 1.24 ad #include <sys/intr.h>
55 1.29 xtraeme #include <sys/lock.h>
56 1.50 rmind #include <sys/types.h>
57 1.72 ozaki #include <sys/cpu.h>
58 1.2 ad
59 1.2 ad #include <dev/lockstat.h>
60 1.2 ad
61 1.28 ad #include <machine/lock.h>
62 1.28 ad
63 1.2 ad /*
64 1.2 ad * When not running a debug kernel, spin mutexes are not much
65 1.2 ad * more than an splraiseipl() and splx() pair.
66 1.2 ad */
67 1.2 ad
68 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
69 1.2 ad #define FULL
70 1.2 ad #endif
71 1.2 ad
72 1.2 ad /*
73 1.2 ad * Debugging support.
74 1.2 ad */
75 1.2 ad
76 1.2 ad #define MUTEX_WANTLOCK(mtx) \
77 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
78 1.54 mlelstv (uintptr_t)__builtin_return_address(0), 0)
79 1.65 pgoyette #define MUTEX_TESTLOCK(mtx) \
80 1.65 pgoyette LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
81 1.65 pgoyette (uintptr_t)__builtin_return_address(0), -1)
82 1.2 ad #define MUTEX_LOCKED(mtx) \
83 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
84 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
85 1.2 ad #define MUTEX_UNLOCKED(mtx) \
86 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
87 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
88 1.2 ad #define MUTEX_ABORT(mtx, msg) \
89 1.64 christos mutex_abort(__func__, __LINE__, mtx, msg)
90 1.2 ad
91 1.2 ad #if defined(LOCKDEBUG)
92 1.2 ad
93 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
94 1.2 ad do { \
95 1.2 ad if (!(cond)) \
96 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
97 1.2 ad } while (/* CONSTCOND */ 0);
98 1.2 ad
99 1.2 ad #else /* LOCKDEBUG */
100 1.2 ad
101 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
102 1.2 ad
103 1.2 ad #endif /* LOCKDEBUG */
104 1.2 ad
105 1.2 ad #if defined(DIAGNOSTIC)
106 1.2 ad
107 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
108 1.2 ad do { \
109 1.2 ad if (!(cond)) \
110 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
111 1.2 ad } while (/* CONSTCOND */ 0)
112 1.2 ad
113 1.2 ad #else /* DIAGNOSTIC */
114 1.2 ad
115 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
116 1.2 ad
117 1.2 ad #endif /* DIAGNOSTIC */
118 1.2 ad
119 1.2 ad /*
120 1.60 matt * Some architectures can't use __cpu_simple_lock as is so allow a way
121 1.60 matt * for them to use an alternate definition.
122 1.60 matt */
123 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_INIT
124 1.60 matt #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
125 1.60 matt #endif
126 1.60 matt #ifndef MUTEX_SPINBIT_LOCKED_P
127 1.60 matt #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
128 1.60 matt #endif
129 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_TRY
130 1.60 matt #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
131 1.60 matt #endif
132 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
133 1.60 matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
134 1.60 matt #endif
135 1.60 matt
136 1.60 matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
137 1.60 matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
138 1.60 matt ((mtx)->mtx_ipl = makeiplcookie((ipl)))
139 1.60 matt #endif
140 1.60 matt
141 1.60 matt /*
142 1.2 ad * Spin mutex SPL save / restore.
143 1.2 ad */
144 1.2 ad
145 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
146 1.2 ad do { \
147 1.36 ad struct cpu_info *x__ci; \
148 1.2 ad int x__cnt, s; \
149 1.60 matt s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
150 1.36 ad x__ci = curcpu(); \
151 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
152 1.37 ad __insn_barrier(); \
153 1.51 rmind if (x__cnt == 0) \
154 1.2 ad x__ci->ci_mtx_oldspl = (s); \
155 1.2 ad } while (/* CONSTCOND */ 0)
156 1.2 ad
157 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
158 1.2 ad do { \
159 1.2 ad struct cpu_info *x__ci = curcpu(); \
160 1.2 ad int s = x__ci->ci_mtx_oldspl; \
161 1.2 ad __insn_barrier(); \
162 1.51 rmind if (++(x__ci->ci_mtx_count) == 0) \
163 1.2 ad splx(s); \
164 1.2 ad } while (/* CONSTCOND */ 0)
165 1.2 ad
166 1.2 ad /*
167 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
168 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
169 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
170 1.2 ad * additional interlock.
171 1.2 ad */
172 1.2 ad
173 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
174 1.2 ad
175 1.2 ad #define MUTEX_OWNER(owner) \
176 1.2 ad (owner & MUTEX_THREAD)
177 1.2 ad #define MUTEX_HAS_WAITERS(mtx) \
178 1.2 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
179 1.2 ad
180 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
181 1.49 skrll if (!dodebug) \
182 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
183 1.2 ad do { \
184 1.2 ad } while (/* CONSTCOND */ 0);
185 1.2 ad
186 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
187 1.2 ad do { \
188 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
189 1.49 skrll if (!dodebug) \
190 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
191 1.60 matt MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
192 1.60 matt MUTEX_SPINBIT_LOCK_INIT((mtx)); \
193 1.2 ad } while (/* CONSTCOND */ 0)
194 1.2 ad
195 1.2 ad #define MUTEX_DESTROY(mtx) \
196 1.2 ad do { \
197 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
198 1.2 ad } while (/* CONSTCOND */ 0);
199 1.2 ad
200 1.2 ad #define MUTEX_SPIN_P(mtx) \
201 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
202 1.2 ad #define MUTEX_ADAPTIVE_P(mtx) \
203 1.2 ad (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
204 1.2 ad
205 1.49 skrll #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
206 1.23 yamt #if defined(LOCKDEBUG)
207 1.49 skrll #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
208 1.59 matt #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
209 1.23 yamt #else /* defined(LOCKDEBUG) */
210 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
211 1.59 matt #define MUTEX_INHERITDEBUG(n, o) /* nothing */
212 1.23 yamt #endif /* defined(LOCKDEBUG) */
213 1.2 ad
214 1.2 ad static inline int
215 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
216 1.2 ad {
217 1.2 ad int rv;
218 1.59 matt uintptr_t oldown = 0;
219 1.59 matt uintptr_t newown = curthread;
220 1.23 yamt
221 1.59 matt MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
222 1.59 matt MUTEX_INHERITDEBUG(newown, oldown);
223 1.59 matt rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
224 1.7 itohy MUTEX_RECEIVE(mtx);
225 1.2 ad return rv;
226 1.2 ad }
227 1.2 ad
228 1.2 ad static inline int
229 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
230 1.2 ad {
231 1.2 ad int rv;
232 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
233 1.7 itohy MUTEX_RECEIVE(mtx);
234 1.2 ad return rv;
235 1.2 ad }
236 1.2 ad
237 1.2 ad static inline void
238 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
239 1.2 ad {
240 1.59 matt uintptr_t newown;
241 1.23 yamt
242 1.7 itohy MUTEX_GIVE(mtx);
243 1.59 matt newown = 0;
244 1.59 matt MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
245 1.59 matt mtx->mtx_owner = newown;
246 1.2 ad }
247 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
248 1.2 ad
249 1.2 ad /*
250 1.2 ad * Patch in stubs via strong alias where they are not available.
251 1.2 ad */
252 1.2 ad
253 1.2 ad #if defined(LOCKDEBUG)
254 1.2 ad #undef __HAVE_MUTEX_STUBS
255 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
256 1.2 ad #endif
257 1.2 ad
258 1.2 ad #ifndef __HAVE_MUTEX_STUBS
259 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
260 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
261 1.2 ad #endif
262 1.2 ad
263 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
264 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
265 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
266 1.2 ad #endif
267 1.2 ad
268 1.67 christos static void mutex_abort(const char *, size_t, const kmutex_t *,
269 1.67 christos const char *);
270 1.67 christos static void mutex_dump(const volatile void *);
271 1.2 ad
272 1.2 ad lockops_t mutex_spin_lockops = {
273 1.68 ozaki .lo_name = "Mutex",
274 1.68 ozaki .lo_type = LOCKOPS_SPIN,
275 1.68 ozaki .lo_dump = mutex_dump,
276 1.2 ad };
277 1.2 ad
278 1.2 ad lockops_t mutex_adaptive_lockops = {
279 1.68 ozaki .lo_name = "Mutex",
280 1.68 ozaki .lo_type = LOCKOPS_SLEEP,
281 1.68 ozaki .lo_dump = mutex_dump,
282 1.2 ad };
283 1.2 ad
284 1.5 yamt syncobj_t mutex_syncobj = {
285 1.70 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
286 1.70 ozaki .sobj_unsleep = turnstile_unsleep,
287 1.70 ozaki .sobj_changepri = turnstile_changepri,
288 1.70 ozaki .sobj_lendpri = sleepq_lendpri,
289 1.70 ozaki .sobj_owner = (void *)mutex_owner,
290 1.5 yamt };
291 1.5 yamt
292 1.2 ad /*
293 1.2 ad * mutex_dump:
294 1.2 ad *
295 1.2 ad * Dump the contents of a mutex structure.
296 1.2 ad */
297 1.2 ad void
298 1.67 christos mutex_dump(const volatile void *cookie)
299 1.2 ad {
300 1.67 christos const volatile kmutex_t *mtx = cookie;
301 1.2 ad
302 1.2 ad printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
303 1.2 ad (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
304 1.2 ad MUTEX_SPIN_P(mtx));
305 1.2 ad }
306 1.2 ad
307 1.2 ad /*
308 1.2 ad * mutex_abort:
309 1.2 ad *
310 1.3 ad * Dump information about an error and panic the system. This
311 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
312 1.3 ad * we ask the compiler to not inline it.
313 1.2 ad */
314 1.43 ad void __noinline
315 1.67 christos mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
316 1.2 ad {
317 1.2 ad
318 1.64 christos LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
319 1.64 christos &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
320 1.2 ad }
321 1.2 ad
322 1.2 ad /*
323 1.2 ad * mutex_init:
324 1.2 ad *
325 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
326 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
327 1.2 ad * CPU time. We can't easily provide a type of mutex that always
328 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
329 1.2 ad * mutexes unlocked.
330 1.2 ad */
331 1.71 ozaki void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
332 1.2 ad void
333 1.71 ozaki _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
334 1.71 ozaki uintptr_t return_address)
335 1.2 ad {
336 1.23 yamt bool dodebug;
337 1.2 ad
338 1.2 ad memset(mtx, 0, sizeof(*mtx));
339 1.2 ad
340 1.15 ad switch (type) {
341 1.15 ad case MUTEX_ADAPTIVE:
342 1.15 ad KASSERT(ipl == IPL_NONE);
343 1.15 ad break;
344 1.22 ad case MUTEX_DEFAULT:
345 1.15 ad case MUTEX_DRIVER:
346 1.26 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
347 1.26 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
348 1.26 ad ipl == IPL_SOFTSERIAL) {
349 1.22 ad type = MUTEX_ADAPTIVE;
350 1.26 ad } else {
351 1.22 ad type = MUTEX_SPIN;
352 1.22 ad }
353 1.15 ad break;
354 1.15 ad default:
355 1.15 ad break;
356 1.15 ad }
357 1.2 ad
358 1.2 ad switch (type) {
359 1.11 ad case MUTEX_NODEBUG:
360 1.71 ozaki dodebug = LOCKDEBUG_ALLOC(mtx, NULL, return_address);
361 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
362 1.11 ad break;
363 1.2 ad case MUTEX_ADAPTIVE:
364 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
365 1.71 ozaki return_address);
366 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
367 1.2 ad break;
368 1.2 ad case MUTEX_SPIN:
369 1.23 yamt dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
370 1.71 ozaki return_address);
371 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
372 1.2 ad break;
373 1.2 ad default:
374 1.2 ad panic("mutex_init: impossible type");
375 1.2 ad break;
376 1.2 ad }
377 1.2 ad }
378 1.2 ad
379 1.71 ozaki void
380 1.71 ozaki mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
381 1.71 ozaki {
382 1.71 ozaki
383 1.71 ozaki _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
384 1.71 ozaki }
385 1.71 ozaki
386 1.2 ad /*
387 1.2 ad * mutex_destroy:
388 1.2 ad *
389 1.2 ad * Tear down a mutex.
390 1.2 ad */
391 1.2 ad void
392 1.2 ad mutex_destroy(kmutex_t *mtx)
393 1.2 ad {
394 1.2 ad
395 1.2 ad if (MUTEX_ADAPTIVE_P(mtx)) {
396 1.2 ad MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
397 1.2 ad !MUTEX_HAS_WAITERS(mtx));
398 1.2 ad } else {
399 1.60 matt MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
400 1.2 ad }
401 1.2 ad
402 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
403 1.2 ad MUTEX_DESTROY(mtx);
404 1.2 ad }
405 1.2 ad
406 1.50 rmind #ifdef MULTIPROCESSOR
407 1.2 ad /*
408 1.50 rmind * mutex_oncpu:
409 1.2 ad *
410 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
411 1.2 ad * system. If the target is waiting on the kernel big lock, then we
412 1.15 ad * must release it. This is necessary to avoid deadlock.
413 1.2 ad */
414 1.50 rmind static bool
415 1.50 rmind mutex_oncpu(uintptr_t owner)
416 1.2 ad {
417 1.2 ad struct cpu_info *ci;
418 1.50 rmind lwp_t *l;
419 1.2 ad
420 1.50 rmind KASSERT(kpreempt_disabled());
421 1.50 rmind
422 1.50 rmind if (!MUTEX_OWNED(owner)) {
423 1.50 rmind return false;
424 1.50 rmind }
425 1.2 ad
426 1.50 rmind /*
427 1.50 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
428 1.50 rmind * We must have kernel preemption disabled for that.
429 1.50 rmind */
430 1.50 rmind l = (lwp_t *)MUTEX_OWNER(owner);
431 1.50 rmind ci = l->l_cpu;
432 1.2 ad
433 1.50 rmind if (ci && ci->ci_curlwp == l) {
434 1.50 rmind /* Target is running; do we need to block? */
435 1.50 rmind return (ci->ci_biglock_wanted != l);
436 1.50 rmind }
437 1.15 ad
438 1.50 rmind /* Not running. It may be safe to block now. */
439 1.50 rmind return false;
440 1.2 ad }
441 1.15 ad #endif /* MULTIPROCESSOR */
442 1.2 ad
443 1.2 ad /*
444 1.2 ad * mutex_vector_enter:
445 1.2 ad *
446 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In
447 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
448 1.62 prlw1 * fast-path stubs are available. If a mutex_spin_enter() stub is
449 1.2 ad * not available, then it is also aliased directly here.
450 1.2 ad */
451 1.2 ad void
452 1.2 ad mutex_vector_enter(kmutex_t *mtx)
453 1.2 ad {
454 1.2 ad uintptr_t owner, curthread;
455 1.2 ad turnstile_t *ts;
456 1.2 ad #ifdef MULTIPROCESSOR
457 1.2 ad u_int count;
458 1.2 ad #endif
459 1.2 ad LOCKSTAT_COUNTER(spincnt);
460 1.2 ad LOCKSTAT_COUNTER(slpcnt);
461 1.2 ad LOCKSTAT_TIMER(spintime);
462 1.2 ad LOCKSTAT_TIMER(slptime);
463 1.2 ad LOCKSTAT_FLAG(lsflag);
464 1.2 ad
465 1.2 ad /*
466 1.2 ad * Handle spin mutexes.
467 1.2 ad */
468 1.2 ad if (MUTEX_SPIN_P(mtx)) {
469 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
470 1.2 ad u_int spins = 0;
471 1.2 ad #endif
472 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
473 1.2 ad MUTEX_WANTLOCK(mtx);
474 1.2 ad #ifdef FULL
475 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
476 1.2 ad MUTEX_LOCKED(mtx);
477 1.2 ad return;
478 1.2 ad }
479 1.2 ad #if !defined(MULTIPROCESSOR)
480 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
481 1.2 ad #else /* !MULTIPROCESSOR */
482 1.2 ad
483 1.2 ad LOCKSTAT_ENTER(lsflag);
484 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
485 1.2 ad count = SPINLOCK_BACKOFF_MIN;
486 1.2 ad
487 1.2 ad /*
488 1.2 ad * Spin testing the lock word and do exponential backoff
489 1.2 ad * to reduce cache line ping-ponging between CPUs.
490 1.2 ad */
491 1.2 ad do {
492 1.2 ad if (panicstr != NULL)
493 1.2 ad break;
494 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
495 1.63 msaitoh SPINLOCK_BACKOFF(count);
496 1.2 ad #ifdef LOCKDEBUG
497 1.2 ad if (SPINLOCK_SPINOUT(spins))
498 1.2 ad MUTEX_ABORT(mtx, "spinout");
499 1.2 ad #endif /* LOCKDEBUG */
500 1.2 ad }
501 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
502 1.2 ad
503 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
504 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
505 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
506 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
507 1.2 ad }
508 1.2 ad LOCKSTAT_EXIT(lsflag);
509 1.2 ad #endif /* !MULTIPROCESSOR */
510 1.2 ad #endif /* FULL */
511 1.2 ad MUTEX_LOCKED(mtx);
512 1.2 ad return;
513 1.2 ad }
514 1.2 ad
515 1.2 ad curthread = (uintptr_t)curlwp;
516 1.2 ad
517 1.2 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
518 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
519 1.72 ozaki MUTEX_ASSERT(mtx, !cpu_intr_p());
520 1.2 ad MUTEX_WANTLOCK(mtx);
521 1.2 ad
522 1.2 ad if (panicstr == NULL) {
523 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
524 1.2 ad }
525 1.2 ad
526 1.2 ad LOCKSTAT_ENTER(lsflag);
527 1.2 ad
528 1.2 ad /*
529 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
530 1.2 ad * determine that the owner is not running on a processor,
531 1.2 ad * then we stop spinning, and sleep instead.
532 1.2 ad */
533 1.50 rmind KPREEMPT_DISABLE(curlwp);
534 1.34 ad for (owner = mtx->mtx_owner;;) {
535 1.2 ad if (!MUTEX_OWNED(owner)) {
536 1.2 ad /*
537 1.2 ad * Mutex owner clear could mean two things:
538 1.2 ad *
539 1.2 ad * * The mutex has been released.
540 1.2 ad * * The owner field hasn't been set yet.
541 1.2 ad *
542 1.2 ad * Try to acquire it again. If that fails,
543 1.2 ad * we'll just loop again.
544 1.2 ad */
545 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
546 1.2 ad break;
547 1.34 ad owner = mtx->mtx_owner;
548 1.2 ad continue;
549 1.2 ad }
550 1.50 rmind if (__predict_false(panicstr != NULL)) {
551 1.61 uebayasi KPREEMPT_ENABLE(curlwp);
552 1.2 ad return;
553 1.50 rmind }
554 1.50 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
555 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
556 1.50 rmind }
557 1.2 ad #ifdef MULTIPROCESSOR
558 1.2 ad /*
559 1.2 ad * Check to see if the owner is running on a processor.
560 1.2 ad * If so, then we should just spin, as the owner will
561 1.2 ad * likely release the lock very soon.
562 1.2 ad */
563 1.50 rmind if (mutex_oncpu(owner)) {
564 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
565 1.2 ad count = SPINLOCK_BACKOFF_MIN;
566 1.50 rmind do {
567 1.53 rmind KPREEMPT_ENABLE(curlwp);
568 1.34 ad SPINLOCK_BACKOFF(count);
569 1.53 rmind KPREEMPT_DISABLE(curlwp);
570 1.2 ad owner = mtx->mtx_owner;
571 1.50 rmind } while (mutex_oncpu(owner));
572 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
573 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
574 1.2 ad if (!MUTEX_OWNED(owner))
575 1.2 ad continue;
576 1.2 ad }
577 1.2 ad #endif
578 1.2 ad
579 1.2 ad ts = turnstile_lookup(mtx);
580 1.2 ad
581 1.2 ad /*
582 1.2 ad * Once we have the turnstile chain interlock, mark the
583 1.69 skrll * mutex as having waiters. If that fails, spin again:
584 1.2 ad * chances are that the mutex has been released.
585 1.2 ad */
586 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
587 1.2 ad turnstile_exit(mtx);
588 1.34 ad owner = mtx->mtx_owner;
589 1.2 ad continue;
590 1.2 ad }
591 1.2 ad
592 1.2 ad #ifdef MULTIPROCESSOR
593 1.2 ad /*
594 1.2 ad * mutex_exit() is permitted to release the mutex without
595 1.2 ad * any interlocking instructions, and the following can
596 1.2 ad * occur as a result:
597 1.2 ad *
598 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
599 1.2 ad * ---------------------------- ----------------------------
600 1.2 ad * .. acquire cache line
601 1.2 ad * .. test for waiters
602 1.2 ad * acquire cache line <- lose cache line
603 1.2 ad * lock cache line ..
604 1.2 ad * verify mutex is held ..
605 1.2 ad * set waiters ..
606 1.2 ad * unlock cache line ..
607 1.2 ad * lose cache line -> acquire cache line
608 1.2 ad * .. clear lock word, waiters
609 1.2 ad * return success
610 1.2 ad *
611 1.50 rmind * There is another race that can occur: a third CPU could
612 1.2 ad * acquire the mutex as soon as it is released. Since
613 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
614 1.2 ad * something that we need to worry about too much. What we
615 1.2 ad * do need to ensure is that the waiters bit gets set.
616 1.2 ad *
617 1.2 ad * To allow the unlocked release, we need to make some
618 1.2 ad * assumptions here:
619 1.2 ad *
620 1.2 ad * o Release is the only non-atomic/unlocked operation
621 1.2 ad * that can be performed on the mutex. (It must still
622 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
623 1.2 ad * or preempted).
624 1.2 ad *
625 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
626 1.21 pooka * be in progress on one CPU in the system - guaranteed
627 1.2 ad * by the turnstile chain lock.
628 1.2 ad *
629 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
630 1.2 ad * and release can modify a mutex with a non-zero
631 1.2 ad * owner field.
632 1.2 ad *
633 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
634 1.2 ad * is an unbuffered write that is immediately visible
635 1.2 ad * to all other processors in the system.
636 1.2 ad *
637 1.2 ad * o If the holding LWP switches away, it posts a store
638 1.2 ad * fence before changing curlwp, ensuring that any
639 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
640 1.2 ad * completes before the modification of curlwp becomes
641 1.2 ad * visible to this CPU.
642 1.2 ad *
643 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
644 1.2 ad * and before resuming execution of an LWP.
645 1.2 ad *
646 1.2 ad * o _kernel_lock() posts a store fence before setting
647 1.2 ad * curcpu()->ci_biglock_wanted, and after clearing it.
648 1.2 ad * This ensures that any overwrite of the mutex waiters
649 1.2 ad * flag by mutex_exit() completes before the modification
650 1.2 ad * of ci_biglock_wanted becomes visible.
651 1.2 ad *
652 1.2 ad * We now post a read memory barrier (after setting the
653 1.2 ad * waiters field) and check the lock holder's status again.
654 1.2 ad * Some of the possible outcomes (not an exhaustive list):
655 1.2 ad *
656 1.50 rmind * 1. The on-CPU check returns true: the holding LWP is
657 1.2 ad * running again. The lock may be released soon and
658 1.2 ad * we should spin. Importantly, we can't trust the
659 1.2 ad * value of the waiters flag.
660 1.2 ad *
661 1.50 rmind * 2. The on-CPU check returns false: the holding LWP is
662 1.39 yamt * not running. We now have the opportunity to check
663 1.2 ad * if mutex_exit() has blatted the modifications made
664 1.2 ad * by MUTEX_SET_WAITERS().
665 1.2 ad *
666 1.50 rmind * 3. The on-CPU check returns false: the holding LWP may
667 1.2 ad * or may not be running. It has context switched at
668 1.2 ad * some point during our check. Again, we have the
669 1.2 ad * chance to see if the waiters bit is still set or
670 1.2 ad * has been overwritten.
671 1.2 ad *
672 1.50 rmind * 4. The on-CPU check returns false: the holding LWP is
673 1.2 ad * running on a CPU, but wants the big lock. It's OK
674 1.2 ad * to check the waiters field in this case.
675 1.2 ad *
676 1.2 ad * 5. The has-waiters check fails: the mutex has been
677 1.2 ad * released, the waiters flag cleared and another LWP
678 1.2 ad * now owns the mutex.
679 1.2 ad *
680 1.2 ad * 6. The has-waiters check fails: the mutex has been
681 1.2 ad * released.
682 1.2 ad *
683 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
684 1.2 ad * as we might never be awoken.
685 1.2 ad */
686 1.50 rmind if ((membar_consumer(), mutex_oncpu(owner)) ||
687 1.24 ad (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
688 1.2 ad turnstile_exit(mtx);
689 1.34 ad owner = mtx->mtx_owner;
690 1.2 ad continue;
691 1.2 ad }
692 1.2 ad #endif /* MULTIPROCESSOR */
693 1.2 ad
694 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
695 1.2 ad
696 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
697 1.2 ad
698 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
699 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
700 1.34 ad
701 1.34 ad owner = mtx->mtx_owner;
702 1.2 ad }
703 1.50 rmind KPREEMPT_ENABLE(curlwp);
704 1.2 ad
705 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
706 1.2 ad slpcnt, slptime);
707 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
708 1.2 ad spincnt, spintime);
709 1.2 ad LOCKSTAT_EXIT(lsflag);
710 1.2 ad
711 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
712 1.2 ad MUTEX_LOCKED(mtx);
713 1.2 ad }
714 1.2 ad
715 1.2 ad /*
716 1.2 ad * mutex_vector_exit:
717 1.2 ad *
718 1.2 ad * Support routine for mutex_exit() that handles all cases.
719 1.2 ad */
720 1.2 ad void
721 1.2 ad mutex_vector_exit(kmutex_t *mtx)
722 1.2 ad {
723 1.2 ad turnstile_t *ts;
724 1.2 ad uintptr_t curthread;
725 1.2 ad
726 1.2 ad if (MUTEX_SPIN_P(mtx)) {
727 1.2 ad #ifdef FULL
728 1.60 matt if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
729 1.33 ad if (panicstr != NULL)
730 1.33 ad return;
731 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
732 1.33 ad }
733 1.2 ad MUTEX_UNLOCKED(mtx);
734 1.60 matt MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
735 1.2 ad #endif
736 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
737 1.2 ad return;
738 1.2 ad }
739 1.2 ad
740 1.11 ad if (__predict_false((uintptr_t)panicstr | cold)) {
741 1.2 ad MUTEX_UNLOCKED(mtx);
742 1.2 ad MUTEX_RELEASE(mtx);
743 1.2 ad return;
744 1.2 ad }
745 1.2 ad
746 1.2 ad curthread = (uintptr_t)curlwp;
747 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
748 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
749 1.2 ad MUTEX_UNLOCKED(mtx);
750 1.58 mrg #if !defined(LOCKDEBUG)
751 1.58 mrg __USE(curthread);
752 1.58 mrg #endif
753 1.2 ad
754 1.15 ad #ifdef LOCKDEBUG
755 1.15 ad /*
756 1.15 ad * Avoid having to take the turnstile chain lock every time
757 1.15 ad * around. Raise the priority level to splhigh() in order
758 1.15 ad * to disable preemption and so make the following atomic.
759 1.15 ad */
760 1.15 ad {
761 1.15 ad int s = splhigh();
762 1.15 ad if (!MUTEX_HAS_WAITERS(mtx)) {
763 1.15 ad MUTEX_RELEASE(mtx);
764 1.15 ad splx(s);
765 1.15 ad return;
766 1.15 ad }
767 1.15 ad splx(s);
768 1.15 ad }
769 1.15 ad #endif
770 1.15 ad
771 1.2 ad /*
772 1.2 ad * Get this lock's turnstile. This gets the interlock on
773 1.2 ad * the sleep queue. Once we have that, we can clear the
774 1.2 ad * lock. If there was no turnstile for the lock, there
775 1.2 ad * were no waiters remaining.
776 1.2 ad */
777 1.2 ad ts = turnstile_lookup(mtx);
778 1.2 ad
779 1.2 ad if (ts == NULL) {
780 1.2 ad MUTEX_RELEASE(mtx);
781 1.2 ad turnstile_exit(mtx);
782 1.2 ad } else {
783 1.2 ad MUTEX_RELEASE(mtx);
784 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
785 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
786 1.2 ad }
787 1.2 ad }
788 1.2 ad
789 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
790 1.4 ad /*
791 1.4 ad * mutex_wakeup:
792 1.4 ad *
793 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
794 1.4 ad * We assume that the mutex has been released, but it need not
795 1.4 ad * be.
796 1.4 ad */
797 1.4 ad void
798 1.4 ad mutex_wakeup(kmutex_t *mtx)
799 1.4 ad {
800 1.4 ad turnstile_t *ts;
801 1.4 ad
802 1.4 ad ts = turnstile_lookup(mtx);
803 1.4 ad if (ts == NULL) {
804 1.4 ad turnstile_exit(mtx);
805 1.4 ad return;
806 1.4 ad }
807 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
808 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
809 1.4 ad }
810 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
811 1.4 ad
812 1.2 ad /*
813 1.2 ad * mutex_owned:
814 1.2 ad *
815 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
816 1.3 ad * holds the mutex.
817 1.2 ad */
818 1.2 ad int
819 1.66 christos mutex_owned(const kmutex_t *mtx)
820 1.2 ad {
821 1.2 ad
822 1.35 ad if (mtx == NULL)
823 1.35 ad return 0;
824 1.2 ad if (MUTEX_ADAPTIVE_P(mtx))
825 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
826 1.2 ad #ifdef FULL
827 1.60 matt return MUTEX_SPINBIT_LOCKED_P(mtx);
828 1.2 ad #else
829 1.2 ad return 1;
830 1.2 ad #endif
831 1.2 ad }
832 1.2 ad
833 1.2 ad /*
834 1.2 ad * mutex_owner:
835 1.2 ad *
836 1.6 ad * Return the current owner of an adaptive mutex. Used for
837 1.6 ad * priority inheritance.
838 1.2 ad */
839 1.27 ad lwp_t *
840 1.66 christos mutex_owner(const kmutex_t *mtx)
841 1.2 ad {
842 1.2 ad
843 1.2 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
844 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
845 1.2 ad }
846 1.2 ad
847 1.2 ad /*
848 1.65 pgoyette * mutex_ownable:
849 1.65 pgoyette *
850 1.65 pgoyette * When compiled with DEBUG and LOCKDEBUG defined, ensure that
851 1.65 pgoyette * the mutex is available. We cannot use !mutex_owned() since
852 1.65 pgoyette * that won't work correctly for spin mutexes.
853 1.65 pgoyette */
854 1.65 pgoyette int
855 1.66 christos mutex_ownable(const kmutex_t *mtx)
856 1.65 pgoyette {
857 1.65 pgoyette
858 1.65 pgoyette #ifdef LOCKDEBUG
859 1.65 pgoyette MUTEX_TESTLOCK(mtx);
860 1.65 pgoyette #endif
861 1.65 pgoyette return 1;
862 1.65 pgoyette }
863 1.65 pgoyette
864 1.65 pgoyette /*
865 1.2 ad * mutex_tryenter:
866 1.2 ad *
867 1.2 ad * Try to acquire the mutex; return non-zero if we did.
868 1.2 ad */
869 1.2 ad int
870 1.2 ad mutex_tryenter(kmutex_t *mtx)
871 1.2 ad {
872 1.2 ad uintptr_t curthread;
873 1.2 ad
874 1.2 ad /*
875 1.2 ad * Handle spin mutexes.
876 1.2 ad */
877 1.2 ad if (MUTEX_SPIN_P(mtx)) {
878 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
879 1.2 ad #ifdef FULL
880 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
881 1.4 ad MUTEX_WANTLOCK(mtx);
882 1.2 ad MUTEX_LOCKED(mtx);
883 1.2 ad return 1;
884 1.2 ad }
885 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
886 1.2 ad #else
887 1.4 ad MUTEX_WANTLOCK(mtx);
888 1.2 ad MUTEX_LOCKED(mtx);
889 1.2 ad return 1;
890 1.2 ad #endif
891 1.2 ad } else {
892 1.2 ad curthread = (uintptr_t)curlwp;
893 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
894 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
895 1.4 ad MUTEX_WANTLOCK(mtx);
896 1.2 ad MUTEX_LOCKED(mtx);
897 1.2 ad MUTEX_DASSERT(mtx,
898 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
899 1.2 ad return 1;
900 1.2 ad }
901 1.2 ad }
902 1.2 ad
903 1.2 ad return 0;
904 1.2 ad }
905 1.2 ad
906 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
907 1.2 ad /*
908 1.2 ad * mutex_spin_retry:
909 1.2 ad *
910 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
911 1.2 ad * has already raised the SPL, and adjusted counters.
912 1.2 ad */
913 1.2 ad void
914 1.2 ad mutex_spin_retry(kmutex_t *mtx)
915 1.2 ad {
916 1.2 ad #ifdef MULTIPROCESSOR
917 1.2 ad u_int count;
918 1.2 ad LOCKSTAT_TIMER(spintime);
919 1.2 ad LOCKSTAT_FLAG(lsflag);
920 1.2 ad #ifdef LOCKDEBUG
921 1.2 ad u_int spins = 0;
922 1.2 ad #endif /* LOCKDEBUG */
923 1.2 ad
924 1.2 ad MUTEX_WANTLOCK(mtx);
925 1.2 ad
926 1.2 ad LOCKSTAT_ENTER(lsflag);
927 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
928 1.2 ad count = SPINLOCK_BACKOFF_MIN;
929 1.2 ad
930 1.2 ad /*
931 1.2 ad * Spin testing the lock word and do exponential backoff
932 1.2 ad * to reduce cache line ping-ponging between CPUs.
933 1.2 ad */
934 1.2 ad do {
935 1.2 ad if (panicstr != NULL)
936 1.2 ad break;
937 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
938 1.63 msaitoh SPINLOCK_BACKOFF(count);
939 1.2 ad #ifdef LOCKDEBUG
940 1.2 ad if (SPINLOCK_SPINOUT(spins))
941 1.2 ad MUTEX_ABORT(mtx, "spinout");
942 1.2 ad #endif /* LOCKDEBUG */
943 1.2 ad }
944 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
945 1.2 ad
946 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
947 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
948 1.2 ad LOCKSTAT_EXIT(lsflag);
949 1.2 ad
950 1.2 ad MUTEX_LOCKED(mtx);
951 1.2 ad #else /* MULTIPROCESSOR */
952 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
953 1.2 ad #endif /* MULTIPROCESSOR */
954 1.2 ad }
955 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
956