kern_mutex.c revision 1.93 1 1.93 skrll /* $NetBSD: kern_mutex.c,v 1.93 2020/12/14 19:42:51 skrll Exp $ */
2 1.2 ad
3 1.2 ad /*-
4 1.92 ad * Copyright (c) 2002, 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
5 1.2 ad * All rights reserved.
6 1.2 ad *
7 1.2 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.2 ad * by Jason R. Thorpe and Andrew Doran.
9 1.2 ad *
10 1.2 ad * Redistribution and use in source and binary forms, with or without
11 1.2 ad * modification, are permitted provided that the following conditions
12 1.2 ad * are met:
13 1.2 ad * 1. Redistributions of source code must retain the above copyright
14 1.2 ad * notice, this list of conditions and the following disclaimer.
15 1.2 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.2 ad * notice, this list of conditions and the following disclaimer in the
17 1.2 ad * documentation and/or other materials provided with the distribution.
18 1.2 ad *
19 1.2 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.2 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.2 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.2 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.2 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.2 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.2 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.2 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.2 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.2 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.2 ad * POSSIBILITY OF SUCH DAMAGE.
30 1.2 ad */
31 1.2 ad
32 1.2 ad /*
33 1.2 ad * Kernel mutex implementation, modeled after those found in Solaris,
34 1.2 ad * a description of which can be found in:
35 1.2 ad *
36 1.2 ad * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 1.2 ad * Richard McDougall.
38 1.2 ad */
39 1.2 ad
40 1.2 ad #define __MUTEX_PRIVATE
41 1.2 ad
42 1.2 ad #include <sys/cdefs.h>
43 1.93 skrll __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.93 2020/12/14 19:42:51 skrll Exp $");
44 1.2 ad
45 1.2 ad #include <sys/param.h>
46 1.46 pooka #include <sys/atomic.h>
47 1.2 ad #include <sys/proc.h>
48 1.2 ad #include <sys/mutex.h>
49 1.2 ad #include <sys/sched.h>
50 1.2 ad #include <sys/sleepq.h>
51 1.2 ad #include <sys/systm.h>
52 1.2 ad #include <sys/lockdebug.h>
53 1.2 ad #include <sys/kernel.h>
54 1.24 ad #include <sys/intr.h>
55 1.29 xtraeme #include <sys/lock.h>
56 1.50 rmind #include <sys/types.h>
57 1.72 ozaki #include <sys/cpu.h>
58 1.74 ozaki #include <sys/pserialize.h>
59 1.2 ad
60 1.2 ad #include <dev/lockstat.h>
61 1.2 ad
62 1.28 ad #include <machine/lock.h>
63 1.28 ad
64 1.2 ad /*
65 1.2 ad * When not running a debug kernel, spin mutexes are not much
66 1.2 ad * more than an splraiseipl() and splx() pair.
67 1.2 ad */
68 1.2 ad
69 1.2 ad #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
70 1.2 ad #define FULL
71 1.2 ad #endif
72 1.2 ad
73 1.2 ad /*
74 1.2 ad * Debugging support.
75 1.2 ad */
76 1.2 ad
77 1.2 ad #define MUTEX_WANTLOCK(mtx) \
78 1.23 yamt LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
79 1.54 mlelstv (uintptr_t)__builtin_return_address(0), 0)
80 1.65 pgoyette #define MUTEX_TESTLOCK(mtx) \
81 1.65 pgoyette LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
82 1.65 pgoyette (uintptr_t)__builtin_return_address(0), -1)
83 1.2 ad #define MUTEX_LOCKED(mtx) \
84 1.42 ad LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
85 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
86 1.2 ad #define MUTEX_UNLOCKED(mtx) \
87 1.23 yamt LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
88 1.2 ad (uintptr_t)__builtin_return_address(0), 0)
89 1.2 ad #define MUTEX_ABORT(mtx, msg) \
90 1.64 christos mutex_abort(__func__, __LINE__, mtx, msg)
91 1.2 ad
92 1.2 ad #if defined(LOCKDEBUG)
93 1.2 ad
94 1.2 ad #define MUTEX_DASSERT(mtx, cond) \
95 1.2 ad do { \
96 1.75 ozaki if (__predict_false(!(cond))) \
97 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
98 1.76 skrll } while (/* CONSTCOND */ 0)
99 1.2 ad
100 1.2 ad #else /* LOCKDEBUG */
101 1.2 ad
102 1.2 ad #define MUTEX_DASSERT(mtx, cond) /* nothing */
103 1.2 ad
104 1.2 ad #endif /* LOCKDEBUG */
105 1.2 ad
106 1.2 ad #if defined(DIAGNOSTIC)
107 1.2 ad
108 1.2 ad #define MUTEX_ASSERT(mtx, cond) \
109 1.2 ad do { \
110 1.75 ozaki if (__predict_false(!(cond))) \
111 1.2 ad MUTEX_ABORT(mtx, "assertion failed: " #cond); \
112 1.2 ad } while (/* CONSTCOND */ 0)
113 1.2 ad
114 1.2 ad #else /* DIAGNOSTIC */
115 1.2 ad
116 1.2 ad #define MUTEX_ASSERT(mtx, cond) /* nothing */
117 1.2 ad
118 1.2 ad #endif /* DIAGNOSTIC */
119 1.2 ad
120 1.2 ad /*
121 1.60 matt * Some architectures can't use __cpu_simple_lock as is so allow a way
122 1.60 matt * for them to use an alternate definition.
123 1.60 matt */
124 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_INIT
125 1.60 matt #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
126 1.60 matt #endif
127 1.60 matt #ifndef MUTEX_SPINBIT_LOCKED_P
128 1.60 matt #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
129 1.60 matt #endif
130 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_TRY
131 1.60 matt #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
132 1.60 matt #endif
133 1.60 matt #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
134 1.60 matt #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
135 1.60 matt #endif
136 1.60 matt
137 1.60 matt #ifndef MUTEX_INITIALIZE_SPIN_IPL
138 1.60 matt #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
139 1.60 matt ((mtx)->mtx_ipl = makeiplcookie((ipl)))
140 1.60 matt #endif
141 1.60 matt
142 1.60 matt /*
143 1.2 ad * Spin mutex SPL save / restore.
144 1.2 ad */
145 1.2 ad
146 1.2 ad #define MUTEX_SPIN_SPLRAISE(mtx) \
147 1.2 ad do { \
148 1.36 ad struct cpu_info *x__ci; \
149 1.2 ad int x__cnt, s; \
150 1.60 matt s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
151 1.36 ad x__ci = curcpu(); \
152 1.2 ad x__cnt = x__ci->ci_mtx_count--; \
153 1.37 ad __insn_barrier(); \
154 1.51 rmind if (x__cnt == 0) \
155 1.2 ad x__ci->ci_mtx_oldspl = (s); \
156 1.2 ad } while (/* CONSTCOND */ 0)
157 1.2 ad
158 1.2 ad #define MUTEX_SPIN_SPLRESTORE(mtx) \
159 1.2 ad do { \
160 1.2 ad struct cpu_info *x__ci = curcpu(); \
161 1.2 ad int s = x__ci->ci_mtx_oldspl; \
162 1.2 ad __insn_barrier(); \
163 1.51 rmind if (++(x__ci->ci_mtx_count) == 0) \
164 1.2 ad splx(s); \
165 1.2 ad } while (/* CONSTCOND */ 0)
166 1.2 ad
167 1.2 ad /*
168 1.80 ad * Memory barriers.
169 1.80 ad */
170 1.80 ad #ifdef __HAVE_ATOMIC_AS_MEMBAR
171 1.80 ad #define MUTEX_MEMBAR_ENTER()
172 1.80 ad #define MUTEX_MEMBAR_EXIT()
173 1.80 ad #else
174 1.80 ad #define MUTEX_MEMBAR_ENTER() membar_enter()
175 1.80 ad #define MUTEX_MEMBAR_EXIT() membar_exit()
176 1.80 ad #endif
177 1.80 ad
178 1.80 ad /*
179 1.2 ad * For architectures that provide 'simple' mutexes: they provide a
180 1.2 ad * CAS function that is either MP-safe, or does not need to be MP
181 1.2 ad * safe. Adaptive mutexes on these architectures do not require an
182 1.2 ad * additional interlock.
183 1.2 ad */
184 1.2 ad
185 1.2 ad #ifdef __HAVE_SIMPLE_MUTEXES
186 1.2 ad
187 1.2 ad #define MUTEX_OWNER(owner) \
188 1.2 ad (owner & MUTEX_THREAD)
189 1.88 ad #define MUTEX_HAS_WAITERS(mtx) \
190 1.88 ad (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
191 1.2 ad
192 1.23 yamt #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
193 1.76 skrll do { \
194 1.49 skrll if (!dodebug) \
195 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
196 1.76 skrll } while (/* CONSTCOND */ 0)
197 1.2 ad
198 1.23 yamt #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
199 1.2 ad do { \
200 1.2 ad (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
201 1.49 skrll if (!dodebug) \
202 1.49 skrll (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
203 1.60 matt MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
204 1.60 matt MUTEX_SPINBIT_LOCK_INIT((mtx)); \
205 1.2 ad } while (/* CONSTCOND */ 0)
206 1.2 ad
207 1.2 ad #define MUTEX_DESTROY(mtx) \
208 1.2 ad do { \
209 1.2 ad (mtx)->mtx_owner = MUTEX_THREAD; \
210 1.76 skrll } while (/* CONSTCOND */ 0)
211 1.2 ad
212 1.87 ad #define MUTEX_SPIN_P(owner) \
213 1.87 ad (((owner) & MUTEX_BIT_SPIN) != 0)
214 1.87 ad #define MUTEX_ADAPTIVE_P(owner) \
215 1.87 ad (((owner) & MUTEX_BIT_SPIN) == 0)
216 1.2 ad
217 1.49 skrll #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
218 1.23 yamt #if defined(LOCKDEBUG)
219 1.49 skrll #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
220 1.59 matt #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
221 1.23 yamt #else /* defined(LOCKDEBUG) */
222 1.23 yamt #define MUTEX_OWNED(owner) ((owner) != 0)
223 1.59 matt #define MUTEX_INHERITDEBUG(n, o) /* nothing */
224 1.23 yamt #endif /* defined(LOCKDEBUG) */
225 1.2 ad
226 1.2 ad static inline int
227 1.2 ad MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
228 1.2 ad {
229 1.2 ad int rv;
230 1.59 matt uintptr_t oldown = 0;
231 1.59 matt uintptr_t newown = curthread;
232 1.23 yamt
233 1.59 matt MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
234 1.59 matt MUTEX_INHERITDEBUG(newown, oldown);
235 1.59 matt rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
236 1.80 ad MUTEX_MEMBAR_ENTER();
237 1.2 ad return rv;
238 1.2 ad }
239 1.2 ad
240 1.2 ad static inline int
241 1.2 ad MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
242 1.2 ad {
243 1.2 ad int rv;
244 1.2 ad rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
245 1.80 ad MUTEX_MEMBAR_ENTER();
246 1.2 ad return rv;
247 1.2 ad }
248 1.2 ad
249 1.2 ad static inline void
250 1.2 ad MUTEX_RELEASE(kmutex_t *mtx)
251 1.2 ad {
252 1.59 matt uintptr_t newown;
253 1.23 yamt
254 1.80 ad MUTEX_MEMBAR_EXIT();
255 1.59 matt newown = 0;
256 1.59 matt MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
257 1.59 matt mtx->mtx_owner = newown;
258 1.2 ad }
259 1.2 ad #endif /* __HAVE_SIMPLE_MUTEXES */
260 1.2 ad
261 1.2 ad /*
262 1.2 ad * Patch in stubs via strong alias where they are not available.
263 1.2 ad */
264 1.2 ad
265 1.2 ad #if defined(LOCKDEBUG)
266 1.2 ad #undef __HAVE_MUTEX_STUBS
267 1.2 ad #undef __HAVE_SPIN_MUTEX_STUBS
268 1.2 ad #endif
269 1.2 ad
270 1.2 ad #ifndef __HAVE_MUTEX_STUBS
271 1.8 itohy __strong_alias(mutex_enter,mutex_vector_enter);
272 1.8 itohy __strong_alias(mutex_exit,mutex_vector_exit);
273 1.2 ad #endif
274 1.2 ad
275 1.2 ad #ifndef __HAVE_SPIN_MUTEX_STUBS
276 1.8 itohy __strong_alias(mutex_spin_enter,mutex_vector_enter);
277 1.8 itohy __strong_alias(mutex_spin_exit,mutex_vector_exit);
278 1.2 ad #endif
279 1.2 ad
280 1.67 christos static void mutex_abort(const char *, size_t, const kmutex_t *,
281 1.67 christos const char *);
282 1.79 ozaki static void mutex_dump(const volatile void *, lockop_printer_t);
283 1.2 ad
284 1.2 ad lockops_t mutex_spin_lockops = {
285 1.68 ozaki .lo_name = "Mutex",
286 1.68 ozaki .lo_type = LOCKOPS_SPIN,
287 1.68 ozaki .lo_dump = mutex_dump,
288 1.2 ad };
289 1.2 ad
290 1.2 ad lockops_t mutex_adaptive_lockops = {
291 1.68 ozaki .lo_name = "Mutex",
292 1.68 ozaki .lo_type = LOCKOPS_SLEEP,
293 1.68 ozaki .lo_dump = mutex_dump,
294 1.2 ad };
295 1.2 ad
296 1.5 yamt syncobj_t mutex_syncobj = {
297 1.70 ozaki .sobj_flag = SOBJ_SLEEPQ_SORTED,
298 1.70 ozaki .sobj_unsleep = turnstile_unsleep,
299 1.70 ozaki .sobj_changepri = turnstile_changepri,
300 1.70 ozaki .sobj_lendpri = sleepq_lendpri,
301 1.70 ozaki .sobj_owner = (void *)mutex_owner,
302 1.5 yamt };
303 1.5 yamt
304 1.2 ad /*
305 1.2 ad * mutex_dump:
306 1.2 ad *
307 1.2 ad * Dump the contents of a mutex structure.
308 1.2 ad */
309 1.78 ozaki static void
310 1.79 ozaki mutex_dump(const volatile void *cookie, lockop_printer_t pr)
311 1.2 ad {
312 1.67 christos const volatile kmutex_t *mtx = cookie;
313 1.87 ad uintptr_t owner = mtx->mtx_owner;
314 1.2 ad
315 1.79 ozaki pr("owner field : %#018lx wait/spin: %16d/%d\n",
316 1.88 ad (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
317 1.87 ad MUTEX_SPIN_P(owner));
318 1.2 ad }
319 1.2 ad
320 1.2 ad /*
321 1.2 ad * mutex_abort:
322 1.2 ad *
323 1.3 ad * Dump information about an error and panic the system. This
324 1.3 ad * generates a lot of machine code in the DIAGNOSTIC case, so
325 1.3 ad * we ask the compiler to not inline it.
326 1.2 ad */
327 1.78 ozaki static void __noinline
328 1.67 christos mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
329 1.2 ad {
330 1.2 ad
331 1.87 ad LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
332 1.64 christos &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
333 1.2 ad }
334 1.2 ad
335 1.2 ad /*
336 1.2 ad * mutex_init:
337 1.2 ad *
338 1.2 ad * Initialize a mutex for use. Note that adaptive mutexes are in
339 1.2 ad * essence spin mutexes that can sleep to avoid deadlock and wasting
340 1.2 ad * CPU time. We can't easily provide a type of mutex that always
341 1.2 ad * sleeps - see comments in mutex_vector_enter() about releasing
342 1.2 ad * mutexes unlocked.
343 1.2 ad */
344 1.71 ozaki void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
345 1.2 ad void
346 1.71 ozaki _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
347 1.71 ozaki uintptr_t return_address)
348 1.2 ad {
349 1.81 ad lockops_t *lockops __unused;
350 1.23 yamt bool dodebug;
351 1.2 ad
352 1.2 ad memset(mtx, 0, sizeof(*mtx));
353 1.2 ad
354 1.81 ad if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
355 1.81 ad ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
356 1.81 ad ipl == IPL_SOFTSERIAL) {
357 1.81 ad lockops = (type == MUTEX_NODEBUG ?
358 1.81 ad NULL : &mutex_adaptive_lockops);
359 1.81 ad dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
360 1.23 yamt MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
361 1.81 ad } else {
362 1.81 ad lockops = (type == MUTEX_NODEBUG ?
363 1.81 ad NULL : &mutex_spin_lockops);
364 1.81 ad dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
365 1.23 yamt MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
366 1.2 ad }
367 1.2 ad }
368 1.2 ad
369 1.71 ozaki void
370 1.71 ozaki mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
371 1.71 ozaki {
372 1.71 ozaki
373 1.71 ozaki _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
374 1.71 ozaki }
375 1.71 ozaki
376 1.2 ad /*
377 1.2 ad * mutex_destroy:
378 1.2 ad *
379 1.2 ad * Tear down a mutex.
380 1.2 ad */
381 1.2 ad void
382 1.2 ad mutex_destroy(kmutex_t *mtx)
383 1.2 ad {
384 1.87 ad uintptr_t owner = mtx->mtx_owner;
385 1.2 ad
386 1.87 ad if (MUTEX_ADAPTIVE_P(owner)) {
387 1.90 chs MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
388 1.90 chs MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
389 1.2 ad } else {
390 1.60 matt MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
391 1.2 ad }
392 1.2 ad
393 1.23 yamt LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
394 1.2 ad MUTEX_DESTROY(mtx);
395 1.2 ad }
396 1.2 ad
397 1.50 rmind #ifdef MULTIPROCESSOR
398 1.2 ad /*
399 1.50 rmind * mutex_oncpu:
400 1.2 ad *
401 1.2 ad * Return true if an adaptive mutex owner is running on a CPU in the
402 1.2 ad * system. If the target is waiting on the kernel big lock, then we
403 1.15 ad * must release it. This is necessary to avoid deadlock.
404 1.2 ad */
405 1.50 rmind static bool
406 1.50 rmind mutex_oncpu(uintptr_t owner)
407 1.2 ad {
408 1.2 ad struct cpu_info *ci;
409 1.50 rmind lwp_t *l;
410 1.2 ad
411 1.50 rmind KASSERT(kpreempt_disabled());
412 1.50 rmind
413 1.50 rmind if (!MUTEX_OWNED(owner)) {
414 1.50 rmind return false;
415 1.50 rmind }
416 1.2 ad
417 1.50 rmind /*
418 1.50 rmind * See lwp_dtor() why dereference of the LWP pointer is safe.
419 1.50 rmind * We must have kernel preemption disabled for that.
420 1.50 rmind */
421 1.50 rmind l = (lwp_t *)MUTEX_OWNER(owner);
422 1.50 rmind ci = l->l_cpu;
423 1.2 ad
424 1.50 rmind if (ci && ci->ci_curlwp == l) {
425 1.50 rmind /* Target is running; do we need to block? */
426 1.50 rmind return (ci->ci_biglock_wanted != l);
427 1.50 rmind }
428 1.15 ad
429 1.50 rmind /* Not running. It may be safe to block now. */
430 1.50 rmind return false;
431 1.2 ad }
432 1.15 ad #endif /* MULTIPROCESSOR */
433 1.2 ad
434 1.2 ad /*
435 1.2 ad * mutex_vector_enter:
436 1.2 ad *
437 1.45 rmind * Support routine for mutex_enter() that must handle all cases. In
438 1.2 ad * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
439 1.62 prlw1 * fast-path stubs are available. If a mutex_spin_enter() stub is
440 1.2 ad * not available, then it is also aliased directly here.
441 1.2 ad */
442 1.2 ad void
443 1.2 ad mutex_vector_enter(kmutex_t *mtx)
444 1.2 ad {
445 1.2 ad uintptr_t owner, curthread;
446 1.2 ad turnstile_t *ts;
447 1.2 ad #ifdef MULTIPROCESSOR
448 1.2 ad u_int count;
449 1.2 ad #endif
450 1.2 ad LOCKSTAT_COUNTER(spincnt);
451 1.2 ad LOCKSTAT_COUNTER(slpcnt);
452 1.2 ad LOCKSTAT_TIMER(spintime);
453 1.2 ad LOCKSTAT_TIMER(slptime);
454 1.2 ad LOCKSTAT_FLAG(lsflag);
455 1.2 ad
456 1.2 ad /*
457 1.2 ad * Handle spin mutexes.
458 1.2 ad */
459 1.92 ad KPREEMPT_DISABLE(curlwp);
460 1.87 ad owner = mtx->mtx_owner;
461 1.87 ad if (MUTEX_SPIN_P(owner)) {
462 1.2 ad #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
463 1.2 ad u_int spins = 0;
464 1.2 ad #endif
465 1.92 ad KPREEMPT_ENABLE(curlwp);
466 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
467 1.2 ad MUTEX_WANTLOCK(mtx);
468 1.2 ad #ifdef FULL
469 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
470 1.2 ad MUTEX_LOCKED(mtx);
471 1.2 ad return;
472 1.2 ad }
473 1.2 ad #if !defined(MULTIPROCESSOR)
474 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
475 1.2 ad #else /* !MULTIPROCESSOR */
476 1.2 ad
477 1.2 ad LOCKSTAT_ENTER(lsflag);
478 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
479 1.2 ad count = SPINLOCK_BACKOFF_MIN;
480 1.2 ad
481 1.2 ad /*
482 1.2 ad * Spin testing the lock word and do exponential backoff
483 1.2 ad * to reduce cache line ping-ponging between CPUs.
484 1.2 ad */
485 1.2 ad do {
486 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
487 1.63 msaitoh SPINLOCK_BACKOFF(count);
488 1.2 ad #ifdef LOCKDEBUG
489 1.2 ad if (SPINLOCK_SPINOUT(spins))
490 1.2 ad MUTEX_ABORT(mtx, "spinout");
491 1.2 ad #endif /* LOCKDEBUG */
492 1.2 ad }
493 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
494 1.2 ad
495 1.2 ad if (count != SPINLOCK_BACKOFF_MIN) {
496 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
497 1.2 ad LOCKSTAT_EVENT(lsflag, mtx,
498 1.2 ad LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
499 1.2 ad }
500 1.2 ad LOCKSTAT_EXIT(lsflag);
501 1.2 ad #endif /* !MULTIPROCESSOR */
502 1.2 ad #endif /* FULL */
503 1.2 ad MUTEX_LOCKED(mtx);
504 1.2 ad return;
505 1.2 ad }
506 1.2 ad
507 1.2 ad curthread = (uintptr_t)curlwp;
508 1.2 ad
509 1.87 ad MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
510 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
511 1.72 ozaki MUTEX_ASSERT(mtx, !cpu_intr_p());
512 1.2 ad MUTEX_WANTLOCK(mtx);
513 1.2 ad
514 1.2 ad if (panicstr == NULL) {
515 1.77 ozaki KDASSERT(pserialize_not_in_read_section());
516 1.2 ad LOCKDEBUG_BARRIER(&kernel_lock, 1);
517 1.2 ad }
518 1.2 ad
519 1.2 ad LOCKSTAT_ENTER(lsflag);
520 1.2 ad
521 1.2 ad /*
522 1.2 ad * Adaptive mutex; spin trying to acquire the mutex. If we
523 1.2 ad * determine that the owner is not running on a processor,
524 1.2 ad * then we stop spinning, and sleep instead.
525 1.2 ad */
526 1.87 ad for (;;) {
527 1.2 ad if (!MUTEX_OWNED(owner)) {
528 1.2 ad /*
529 1.2 ad * Mutex owner clear could mean two things:
530 1.2 ad *
531 1.2 ad * * The mutex has been released.
532 1.2 ad * * The owner field hasn't been set yet.
533 1.2 ad *
534 1.2 ad * Try to acquire it again. If that fails,
535 1.2 ad * we'll just loop again.
536 1.2 ad */
537 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread))
538 1.2 ad break;
539 1.34 ad owner = mtx->mtx_owner;
540 1.2 ad continue;
541 1.2 ad }
542 1.50 rmind if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
543 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
544 1.50 rmind }
545 1.2 ad #ifdef MULTIPROCESSOR
546 1.2 ad /*
547 1.2 ad * Check to see if the owner is running on a processor.
548 1.2 ad * If so, then we should just spin, as the owner will
549 1.92 ad * likely release the lock very soon.
550 1.2 ad */
551 1.50 rmind if (mutex_oncpu(owner)) {
552 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
553 1.2 ad count = SPINLOCK_BACKOFF_MIN;
554 1.50 rmind do {
555 1.53 rmind KPREEMPT_ENABLE(curlwp);
556 1.34 ad SPINLOCK_BACKOFF(count);
557 1.53 rmind KPREEMPT_DISABLE(curlwp);
558 1.2 ad owner = mtx->mtx_owner;
559 1.50 rmind } while (mutex_oncpu(owner));
560 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
561 1.2 ad LOCKSTAT_COUNT(spincnt, 1);
562 1.2 ad if (!MUTEX_OWNED(owner))
563 1.2 ad continue;
564 1.2 ad }
565 1.2 ad #endif
566 1.2 ad
567 1.2 ad ts = turnstile_lookup(mtx);
568 1.2 ad
569 1.2 ad /*
570 1.2 ad * Once we have the turnstile chain interlock, mark the
571 1.69 skrll * mutex as having waiters. If that fails, spin again:
572 1.2 ad * chances are that the mutex has been released.
573 1.2 ad */
574 1.2 ad if (!MUTEX_SET_WAITERS(mtx, owner)) {
575 1.2 ad turnstile_exit(mtx);
576 1.34 ad owner = mtx->mtx_owner;
577 1.2 ad continue;
578 1.2 ad }
579 1.2 ad
580 1.2 ad #ifdef MULTIPROCESSOR
581 1.2 ad /*
582 1.2 ad * mutex_exit() is permitted to release the mutex without
583 1.2 ad * any interlocking instructions, and the following can
584 1.2 ad * occur as a result:
585 1.2 ad *
586 1.2 ad * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
587 1.2 ad * ---------------------------- ----------------------------
588 1.2 ad * .. acquire cache line
589 1.2 ad * .. test for waiters
590 1.2 ad * acquire cache line <- lose cache line
591 1.2 ad * lock cache line ..
592 1.2 ad * verify mutex is held ..
593 1.2 ad * set waiters ..
594 1.2 ad * unlock cache line ..
595 1.2 ad * lose cache line -> acquire cache line
596 1.93 skrll * .. clear lock word, waiters
597 1.2 ad * return success
598 1.2 ad *
599 1.50 rmind * There is another race that can occur: a third CPU could
600 1.2 ad * acquire the mutex as soon as it is released. Since
601 1.2 ad * adaptive mutexes are primarily spin mutexes, this is not
602 1.2 ad * something that we need to worry about too much. What we
603 1.2 ad * do need to ensure is that the waiters bit gets set.
604 1.2 ad *
605 1.2 ad * To allow the unlocked release, we need to make some
606 1.2 ad * assumptions here:
607 1.2 ad *
608 1.2 ad * o Release is the only non-atomic/unlocked operation
609 1.2 ad * that can be performed on the mutex. (It must still
610 1.2 ad * be atomic on the local CPU, e.g. in case interrupted
611 1.2 ad * or preempted).
612 1.2 ad *
613 1.2 ad * o At any given time, MUTEX_SET_WAITERS() can only ever
614 1.21 pooka * be in progress on one CPU in the system - guaranteed
615 1.2 ad * by the turnstile chain lock.
616 1.2 ad *
617 1.2 ad * o No other operations other than MUTEX_SET_WAITERS()
618 1.2 ad * and release can modify a mutex with a non-zero
619 1.2 ad * owner field.
620 1.2 ad *
621 1.2 ad * o The result of a successful MUTEX_SET_WAITERS() call
622 1.2 ad * is an unbuffered write that is immediately visible
623 1.2 ad * to all other processors in the system.
624 1.2 ad *
625 1.2 ad * o If the holding LWP switches away, it posts a store
626 1.2 ad * fence before changing curlwp, ensuring that any
627 1.2 ad * overwrite of the mutex waiters flag by mutex_exit()
628 1.2 ad * completes before the modification of curlwp becomes
629 1.2 ad * visible to this CPU.
630 1.2 ad *
631 1.14 yamt * o mi_switch() posts a store fence before setting curlwp
632 1.2 ad * and before resuming execution of an LWP.
633 1.93 skrll *
634 1.2 ad * o _kernel_lock() posts a store fence before setting
635 1.93 skrll * curcpu()->ci_biglock_wanted, and after clearing it.
636 1.2 ad * This ensures that any overwrite of the mutex waiters
637 1.2 ad * flag by mutex_exit() completes before the modification
638 1.2 ad * of ci_biglock_wanted becomes visible.
639 1.2 ad *
640 1.2 ad * We now post a read memory barrier (after setting the
641 1.2 ad * waiters field) and check the lock holder's status again.
642 1.2 ad * Some of the possible outcomes (not an exhaustive list):
643 1.2 ad *
644 1.50 rmind * 1. The on-CPU check returns true: the holding LWP is
645 1.2 ad * running again. The lock may be released soon and
646 1.2 ad * we should spin. Importantly, we can't trust the
647 1.2 ad * value of the waiters flag.
648 1.2 ad *
649 1.50 rmind * 2. The on-CPU check returns false: the holding LWP is
650 1.39 yamt * not running. We now have the opportunity to check
651 1.2 ad * if mutex_exit() has blatted the modifications made
652 1.2 ad * by MUTEX_SET_WAITERS().
653 1.2 ad *
654 1.50 rmind * 3. The on-CPU check returns false: the holding LWP may
655 1.2 ad * or may not be running. It has context switched at
656 1.2 ad * some point during our check. Again, we have the
657 1.2 ad * chance to see if the waiters bit is still set or
658 1.2 ad * has been overwritten.
659 1.2 ad *
660 1.50 rmind * 4. The on-CPU check returns false: the holding LWP is
661 1.2 ad * running on a CPU, but wants the big lock. It's OK
662 1.2 ad * to check the waiters field in this case.
663 1.2 ad *
664 1.2 ad * 5. The has-waiters check fails: the mutex has been
665 1.2 ad * released, the waiters flag cleared and another LWP
666 1.2 ad * now owns the mutex.
667 1.2 ad *
668 1.2 ad * 6. The has-waiters check fails: the mutex has been
669 1.2 ad * released.
670 1.2 ad *
671 1.2 ad * If the waiters bit is not set it's unsafe to go asleep,
672 1.2 ad * as we might never be awoken.
673 1.2 ad */
674 1.87 ad membar_consumer();
675 1.87 ad if (mutex_oncpu(owner)) {
676 1.2 ad turnstile_exit(mtx);
677 1.34 ad owner = mtx->mtx_owner;
678 1.2 ad continue;
679 1.2 ad }
680 1.87 ad membar_consumer();
681 1.88 ad if (!MUTEX_HAS_WAITERS(mtx)) {
682 1.87 ad turnstile_exit(mtx);
683 1.88 ad owner = mtx->mtx_owner;
684 1.87 ad continue;
685 1.87 ad }
686 1.2 ad #endif /* MULTIPROCESSOR */
687 1.2 ad
688 1.2 ad LOCKSTAT_START_TIMER(lsflag, slptime);
689 1.2 ad
690 1.5 yamt turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
691 1.2 ad
692 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, slptime);
693 1.2 ad LOCKSTAT_COUNT(slpcnt, 1);
694 1.34 ad
695 1.34 ad owner = mtx->mtx_owner;
696 1.2 ad }
697 1.50 rmind KPREEMPT_ENABLE(curlwp);
698 1.2 ad
699 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
700 1.2 ad slpcnt, slptime);
701 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
702 1.2 ad spincnt, spintime);
703 1.2 ad LOCKSTAT_EXIT(lsflag);
704 1.2 ad
705 1.2 ad MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
706 1.2 ad MUTEX_LOCKED(mtx);
707 1.2 ad }
708 1.2 ad
709 1.2 ad /*
710 1.2 ad * mutex_vector_exit:
711 1.2 ad *
712 1.2 ad * Support routine for mutex_exit() that handles all cases.
713 1.2 ad */
714 1.2 ad void
715 1.2 ad mutex_vector_exit(kmutex_t *mtx)
716 1.2 ad {
717 1.2 ad turnstile_t *ts;
718 1.2 ad uintptr_t curthread;
719 1.2 ad
720 1.87 ad if (MUTEX_SPIN_P(mtx->mtx_owner)) {
721 1.2 ad #ifdef FULL
722 1.60 matt if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
723 1.2 ad MUTEX_ABORT(mtx, "exiting unheld spin mutex");
724 1.33 ad }
725 1.2 ad MUTEX_UNLOCKED(mtx);
726 1.60 matt MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
727 1.2 ad #endif
728 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
729 1.2 ad return;
730 1.2 ad }
731 1.2 ad
732 1.85 ad #ifndef __HAVE_MUTEX_STUBS
733 1.86 ad /*
734 1.86 ad * On some architectures without mutex stubs, we can enter here to
735 1.93 skrll * release mutexes before interrupts and whatnot are up and running.
736 1.86 ad * We need this hack to keep them sweet.
737 1.86 ad */
738 1.85 ad if (__predict_false(cold)) {
739 1.85 ad MUTEX_UNLOCKED(mtx);
740 1.85 ad MUTEX_RELEASE(mtx);
741 1.85 ad return;
742 1.85 ad }
743 1.85 ad #endif
744 1.85 ad
745 1.2 ad curthread = (uintptr_t)curlwp;
746 1.2 ad MUTEX_DASSERT(mtx, curthread != 0);
747 1.2 ad MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
748 1.2 ad MUTEX_UNLOCKED(mtx);
749 1.58 mrg #if !defined(LOCKDEBUG)
750 1.58 mrg __USE(curthread);
751 1.58 mrg #endif
752 1.2 ad
753 1.15 ad #ifdef LOCKDEBUG
754 1.15 ad /*
755 1.15 ad * Avoid having to take the turnstile chain lock every time
756 1.15 ad * around. Raise the priority level to splhigh() in order
757 1.15 ad * to disable preemption and so make the following atomic.
758 1.15 ad */
759 1.15 ad {
760 1.15 ad int s = splhigh();
761 1.88 ad if (!MUTEX_HAS_WAITERS(mtx)) {
762 1.15 ad MUTEX_RELEASE(mtx);
763 1.15 ad splx(s);
764 1.15 ad return;
765 1.15 ad }
766 1.15 ad splx(s);
767 1.15 ad }
768 1.15 ad #endif
769 1.15 ad
770 1.2 ad /*
771 1.2 ad * Get this lock's turnstile. This gets the interlock on
772 1.2 ad * the sleep queue. Once we have that, we can clear the
773 1.2 ad * lock. If there was no turnstile for the lock, there
774 1.2 ad * were no waiters remaining.
775 1.2 ad */
776 1.2 ad ts = turnstile_lookup(mtx);
777 1.2 ad
778 1.2 ad if (ts == NULL) {
779 1.2 ad MUTEX_RELEASE(mtx);
780 1.2 ad turnstile_exit(mtx);
781 1.2 ad } else {
782 1.2 ad MUTEX_RELEASE(mtx);
783 1.2 ad turnstile_wakeup(ts, TS_WRITER_Q,
784 1.2 ad TS_WAITERS(ts, TS_WRITER_Q), NULL);
785 1.2 ad }
786 1.2 ad }
787 1.2 ad
788 1.4 ad #ifndef __HAVE_SIMPLE_MUTEXES
789 1.4 ad /*
790 1.4 ad * mutex_wakeup:
791 1.4 ad *
792 1.4 ad * Support routine for mutex_exit() that wakes up all waiters.
793 1.4 ad * We assume that the mutex has been released, but it need not
794 1.4 ad * be.
795 1.4 ad */
796 1.4 ad void
797 1.4 ad mutex_wakeup(kmutex_t *mtx)
798 1.4 ad {
799 1.4 ad turnstile_t *ts;
800 1.4 ad
801 1.4 ad ts = turnstile_lookup(mtx);
802 1.4 ad if (ts == NULL) {
803 1.4 ad turnstile_exit(mtx);
804 1.4 ad return;
805 1.4 ad }
806 1.4 ad MUTEX_CLEAR_WAITERS(mtx);
807 1.4 ad turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
808 1.4 ad }
809 1.4 ad #endif /* !__HAVE_SIMPLE_MUTEXES */
810 1.4 ad
811 1.2 ad /*
812 1.2 ad * mutex_owned:
813 1.2 ad *
814 1.3 ad * Return true if the current LWP (adaptive) or CPU (spin)
815 1.3 ad * holds the mutex.
816 1.2 ad */
817 1.2 ad int
818 1.66 christos mutex_owned(const kmutex_t *mtx)
819 1.2 ad {
820 1.2 ad
821 1.35 ad if (mtx == NULL)
822 1.35 ad return 0;
823 1.87 ad if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
824 1.2 ad return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
825 1.2 ad #ifdef FULL
826 1.60 matt return MUTEX_SPINBIT_LOCKED_P(mtx);
827 1.2 ad #else
828 1.2 ad return 1;
829 1.2 ad #endif
830 1.2 ad }
831 1.2 ad
832 1.2 ad /*
833 1.2 ad * mutex_owner:
834 1.2 ad *
835 1.6 ad * Return the current owner of an adaptive mutex. Used for
836 1.6 ad * priority inheritance.
837 1.2 ad */
838 1.27 ad lwp_t *
839 1.66 christos mutex_owner(const kmutex_t *mtx)
840 1.2 ad {
841 1.2 ad
842 1.87 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
843 1.2 ad return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
844 1.2 ad }
845 1.2 ad
846 1.2 ad /*
847 1.81 ad * mutex_owner_running:
848 1.81 ad *
849 1.82 ad * Return true if an adaptive mutex is unheld, or held and the owner is
850 1.89 ad * running on a CPU. For the pagedaemon only - do not document or use
851 1.89 ad * in other code.
852 1.81 ad */
853 1.81 ad bool
854 1.81 ad mutex_owner_running(const kmutex_t *mtx)
855 1.81 ad {
856 1.82 ad #ifdef MULTIPROCESSOR
857 1.82 ad uintptr_t owner;
858 1.81 ad bool rv;
859 1.81 ad
860 1.87 ad MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
861 1.81 ad kpreempt_disable();
862 1.82 ad owner = mtx->mtx_owner;
863 1.84 kre rv = !MUTEX_OWNED(owner) || mutex_oncpu(MUTEX_OWNER(owner));
864 1.81 ad kpreempt_enable();
865 1.81 ad return rv;
866 1.82 ad #else
867 1.82 ad return mutex_owner(mtx) == curlwp;
868 1.82 ad #endif
869 1.81 ad }
870 1.81 ad
871 1.81 ad /*
872 1.65 pgoyette * mutex_ownable:
873 1.65 pgoyette *
874 1.65 pgoyette * When compiled with DEBUG and LOCKDEBUG defined, ensure that
875 1.65 pgoyette * the mutex is available. We cannot use !mutex_owned() since
876 1.65 pgoyette * that won't work correctly for spin mutexes.
877 1.65 pgoyette */
878 1.65 pgoyette int
879 1.66 christos mutex_ownable(const kmutex_t *mtx)
880 1.65 pgoyette {
881 1.65 pgoyette
882 1.65 pgoyette #ifdef LOCKDEBUG
883 1.65 pgoyette MUTEX_TESTLOCK(mtx);
884 1.65 pgoyette #endif
885 1.65 pgoyette return 1;
886 1.65 pgoyette }
887 1.65 pgoyette
888 1.65 pgoyette /*
889 1.2 ad * mutex_tryenter:
890 1.2 ad *
891 1.2 ad * Try to acquire the mutex; return non-zero if we did.
892 1.2 ad */
893 1.2 ad int
894 1.2 ad mutex_tryenter(kmutex_t *mtx)
895 1.2 ad {
896 1.2 ad uintptr_t curthread;
897 1.2 ad
898 1.2 ad /*
899 1.2 ad * Handle spin mutexes.
900 1.2 ad */
901 1.87 ad if (MUTEX_SPIN_P(mtx->mtx_owner)) {
902 1.2 ad MUTEX_SPIN_SPLRAISE(mtx);
903 1.2 ad #ifdef FULL
904 1.60 matt if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
905 1.4 ad MUTEX_WANTLOCK(mtx);
906 1.2 ad MUTEX_LOCKED(mtx);
907 1.2 ad return 1;
908 1.2 ad }
909 1.2 ad MUTEX_SPIN_SPLRESTORE(mtx);
910 1.2 ad #else
911 1.4 ad MUTEX_WANTLOCK(mtx);
912 1.2 ad MUTEX_LOCKED(mtx);
913 1.2 ad return 1;
914 1.2 ad #endif
915 1.2 ad } else {
916 1.2 ad curthread = (uintptr_t)curlwp;
917 1.2 ad MUTEX_ASSERT(mtx, curthread != 0);
918 1.2 ad if (MUTEX_ACQUIRE(mtx, curthread)) {
919 1.4 ad MUTEX_WANTLOCK(mtx);
920 1.2 ad MUTEX_LOCKED(mtx);
921 1.2 ad MUTEX_DASSERT(mtx,
922 1.2 ad MUTEX_OWNER(mtx->mtx_owner) == curthread);
923 1.2 ad return 1;
924 1.2 ad }
925 1.2 ad }
926 1.2 ad
927 1.2 ad return 0;
928 1.2 ad }
929 1.2 ad
930 1.2 ad #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
931 1.2 ad /*
932 1.2 ad * mutex_spin_retry:
933 1.2 ad *
934 1.2 ad * Support routine for mutex_spin_enter(). Assumes that the caller
935 1.2 ad * has already raised the SPL, and adjusted counters.
936 1.2 ad */
937 1.2 ad void
938 1.2 ad mutex_spin_retry(kmutex_t *mtx)
939 1.2 ad {
940 1.2 ad #ifdef MULTIPROCESSOR
941 1.2 ad u_int count;
942 1.2 ad LOCKSTAT_TIMER(spintime);
943 1.2 ad LOCKSTAT_FLAG(lsflag);
944 1.2 ad #ifdef LOCKDEBUG
945 1.2 ad u_int spins = 0;
946 1.2 ad #endif /* LOCKDEBUG */
947 1.2 ad
948 1.2 ad MUTEX_WANTLOCK(mtx);
949 1.2 ad
950 1.2 ad LOCKSTAT_ENTER(lsflag);
951 1.2 ad LOCKSTAT_START_TIMER(lsflag, spintime);
952 1.2 ad count = SPINLOCK_BACKOFF_MIN;
953 1.2 ad
954 1.2 ad /*
955 1.2 ad * Spin testing the lock word and do exponential backoff
956 1.2 ad * to reduce cache line ping-ponging between CPUs.
957 1.2 ad */
958 1.2 ad do {
959 1.60 matt while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
960 1.63 msaitoh SPINLOCK_BACKOFF(count);
961 1.2 ad #ifdef LOCKDEBUG
962 1.2 ad if (SPINLOCK_SPINOUT(spins))
963 1.2 ad MUTEX_ABORT(mtx, "spinout");
964 1.2 ad #endif /* LOCKDEBUG */
965 1.2 ad }
966 1.60 matt } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
967 1.2 ad
968 1.2 ad LOCKSTAT_STOP_TIMER(lsflag, spintime);
969 1.2 ad LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
970 1.2 ad LOCKSTAT_EXIT(lsflag);
971 1.2 ad
972 1.2 ad MUTEX_LOCKED(mtx);
973 1.2 ad #else /* MULTIPROCESSOR */
974 1.2 ad MUTEX_ABORT(mtx, "locking against myself");
975 1.2 ad #endif /* MULTIPROCESSOR */
976 1.2 ad }
977 1.2 ad #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
978