Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.109
      1 /*	$NetBSD: kern_mutex.c,v 1.109 2023/09/07 20:05:42 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.109 2023/09/07 20:05:42 ad Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/atomic.h>
     47 #include <sys/proc.h>
     48 #include <sys/mutex.h>
     49 #include <sys/sched.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/systm.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/kernel.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 #include <sys/types.h>
     57 #include <sys/cpu.h>
     58 #include <sys/pserialize.h>
     59 
     60 #include <dev/lockstat.h>
     61 
     62 #include <machine/lock.h>
     63 
     64 /*
     65  * When not running a debug kernel, spin mutexes are not much
     66  * more than an splraiseipl() and splx() pair.
     67  */
     68 
     69 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     70 #define	FULL
     71 #endif
     72 
     73 /*
     74  * Debugging support.
     75  */
     76 
     77 #define	MUTEX_WANTLOCK(mtx)					\
     78     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     79         (uintptr_t)__builtin_return_address(0), 0)
     80 #define	MUTEX_TESTLOCK(mtx)					\
     81     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     82         (uintptr_t)__builtin_return_address(0), -1)
     83 #define	MUTEX_LOCKED(mtx)					\
     84     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     85         (uintptr_t)__builtin_return_address(0), 0)
     86 #define	MUTEX_UNLOCKED(mtx)					\
     87     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     88         (uintptr_t)__builtin_return_address(0), 0)
     89 #define	MUTEX_ABORT(mtx, msg)					\
     90     mutex_abort(__func__, __LINE__, mtx, msg)
     91 
     92 #if defined(LOCKDEBUG)
     93 
     94 #define	MUTEX_DASSERT(mtx, cond)				\
     95 do {								\
     96 	if (__predict_false(!(cond)))				\
     97 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     98 } while (/* CONSTCOND */ 0)
     99 
    100 #else	/* LOCKDEBUG */
    101 
    102 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    103 
    104 #endif /* LOCKDEBUG */
    105 
    106 #if defined(DIAGNOSTIC)
    107 
    108 #define	MUTEX_ASSERT(mtx, cond)					\
    109 do {								\
    110 	if (__predict_false(!(cond)))				\
    111 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    112 } while (/* CONSTCOND */ 0)
    113 
    114 #else	/* DIAGNOSTIC */
    115 
    116 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    117 
    118 #endif	/* DIAGNOSTIC */
    119 
    120 /*
    121  * Some architectures can't use __cpu_simple_lock as is so allow a way
    122  * for them to use an alternate definition.
    123  */
    124 #ifndef MUTEX_SPINBIT_LOCK_INIT
    125 #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    126 #endif
    127 #ifndef MUTEX_SPINBIT_LOCKED_P
    128 #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    129 #endif
    130 #ifndef MUTEX_SPINBIT_LOCK_TRY
    131 #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    132 #endif
    133 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    134 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    135 #endif
    136 
    137 #ifndef MUTEX_INITIALIZE_SPIN_IPL
    138 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    139 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    140 #endif
    141 
    142 /*
    143  * Spin mutex SPL save / restore.
    144  */
    145 
    146 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    147 do {									\
    148 	const int s = splraiseipl(MUTEX_SPIN_IPL(mtx));			\
    149 	struct cpu_info * const x__ci = curcpu();			\
    150 	const int x__cnt = x__ci->ci_mtx_count--;			\
    151 	__insn_barrier();						\
    152 	if (x__cnt == 0)						\
    153 		x__ci->ci_mtx_oldspl = s;				\
    154 } while (/* CONSTCOND */ 0)
    155 
    156 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    157 do {									\
    158 	struct cpu_info * const x__ci = curcpu();			\
    159 	const int s = x__ci->ci_mtx_oldspl;				\
    160 	__insn_barrier();						\
    161 	if (++(x__ci->ci_mtx_count) == 0)				\
    162 		splx(s);						\
    163 } while (/* CONSTCOND */ 0)
    164 
    165 /*
    166  * Memory barriers.
    167  */
    168 #ifdef __HAVE_ATOMIC_AS_MEMBAR
    169 #define	MUTEX_MEMBAR_ENTER()
    170 #else
    171 #define	MUTEX_MEMBAR_ENTER()		membar_enter()
    172 #endif
    173 
    174 /*
    175  * For architectures that provide 'simple' mutexes: they provide a
    176  * CAS function that is either MP-safe, or does not need to be MP
    177  * safe.  Adaptive mutexes on these architectures do not require an
    178  * additional interlock.
    179  */
    180 
    181 #ifdef __HAVE_SIMPLE_MUTEXES
    182 
    183 #define	MUTEX_OWNER(owner)						\
    184 	(owner & MUTEX_THREAD)
    185 #define	MUTEX_HAS_WAITERS(mtx)						\
    186 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    187 
    188 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    189 do {									\
    190 	if (!dodebug)							\
    191 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    192 } while (/* CONSTCOND */ 0)
    193 
    194 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    195 do {									\
    196 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    197 	if (!dodebug)							\
    198 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    199 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    200 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    201 } while (/* CONSTCOND */ 0)
    202 
    203 #define	MUTEX_DESTROY(mtx)						\
    204 do {									\
    205 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    206 } while (/* CONSTCOND */ 0)
    207 
    208 #define	MUTEX_SPIN_P(owner)		\
    209     (((owner) & MUTEX_BIT_SPIN) != 0)
    210 #define	MUTEX_ADAPTIVE_P(owner)		\
    211     (((owner) & MUTEX_BIT_SPIN) == 0)
    212 
    213 #ifndef MUTEX_CAS
    214 #define	MUTEX_CAS(p, o, n)		\
    215 	(atomic_cas_ulong((volatile unsigned long *)(p), (o), (n)) == (o))
    216 #endif /* MUTEX_CAS */
    217 
    218 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    219 #if defined(LOCKDEBUG)
    220 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    221 #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    222 #else /* defined(LOCKDEBUG) */
    223 #define	MUTEX_OWNED(owner)		((owner) != 0)
    224 #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    225 #endif /* defined(LOCKDEBUG) */
    226 
    227 static inline int
    228 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    229 {
    230 	int rv;
    231 	uintptr_t oldown = 0;
    232 	uintptr_t newown = curthread;
    233 
    234 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    235 	MUTEX_INHERITDEBUG(newown, oldown);
    236 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    237 	membar_acquire();
    238 	return rv;
    239 }
    240 
    241 static inline int
    242 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    243 {
    244 	int rv;
    245 
    246 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    247 	MUTEX_MEMBAR_ENTER();
    248 	return rv;
    249 }
    250 
    251 static inline void
    252 MUTEX_RELEASE(kmutex_t *mtx)
    253 {
    254 	uintptr_t newown;
    255 
    256 	newown = 0;
    257 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    258 	atomic_store_release(&mtx->mtx_owner, newown);
    259 }
    260 #endif	/* __HAVE_SIMPLE_MUTEXES */
    261 
    262 /*
    263  * Patch in stubs via strong alias where they are not available.
    264  */
    265 
    266 #if defined(LOCKDEBUG)
    267 #undef	__HAVE_MUTEX_STUBS
    268 #undef	__HAVE_SPIN_MUTEX_STUBS
    269 #endif
    270 
    271 #ifndef __HAVE_MUTEX_STUBS
    272 __strong_alias(mutex_enter,mutex_vector_enter);
    273 __strong_alias(mutex_exit,mutex_vector_exit);
    274 #endif
    275 
    276 #ifndef __HAVE_SPIN_MUTEX_STUBS
    277 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    278 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    279 #endif
    280 
    281 static void	mutex_abort(const char *, size_t, volatile const kmutex_t *,
    282 		    const char *);
    283 static void	mutex_dump(const volatile void *, lockop_printer_t);
    284 static lwp_t	*mutex_owner(wchan_t);
    285 
    286 lockops_t mutex_spin_lockops = {
    287 	.lo_name = "Mutex",
    288 	.lo_type = LOCKOPS_SPIN,
    289 	.lo_dump = mutex_dump,
    290 };
    291 
    292 lockops_t mutex_adaptive_lockops = {
    293 	.lo_name = "Mutex",
    294 	.lo_type = LOCKOPS_SLEEP,
    295 	.lo_dump = mutex_dump,
    296 };
    297 
    298 syncobj_t mutex_syncobj = {
    299 	.sobj_name	= "mutex",
    300 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    301 	.sobj_unsleep	= turnstile_unsleep,
    302 	.sobj_changepri	= turnstile_changepri,
    303 	.sobj_lendpri	= sleepq_lendpri,
    304 	.sobj_owner	= mutex_owner,
    305 };
    306 
    307 /*
    308  * mutex_dump:
    309  *
    310  *	Dump the contents of a mutex structure.
    311  */
    312 static void
    313 mutex_dump(const volatile void *cookie, lockop_printer_t pr)
    314 {
    315 	const volatile kmutex_t *mtx = cookie;
    316 	uintptr_t owner = mtx->mtx_owner;
    317 
    318 	pr("owner field  : %#018lx wait/spin: %16d/%d\n",
    319 	    (long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
    320 	    MUTEX_SPIN_P(owner));
    321 }
    322 
    323 /*
    324  * mutex_abort:
    325  *
    326  *	Dump information about an error and panic the system.  This
    327  *	generates a lot of machine code in the DIAGNOSTIC case, so
    328  *	we ask the compiler to not inline it.
    329  */
    330 static void __noinline
    331 mutex_abort(const char *func, size_t line, volatile const kmutex_t *mtx,
    332     const char *msg)
    333 {
    334 
    335 	LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
    336 	    &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
    337 }
    338 
    339 /*
    340  * mutex_init:
    341  *
    342  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    343  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    344  *	CPU time.  We can't easily provide a type of mutex that always
    345  *	sleeps - see comments in mutex_vector_enter() about releasing
    346  *	mutexes unlocked.
    347  */
    348 void
    349 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
    350     uintptr_t return_address)
    351 {
    352 	lockops_t *lockops __unused;
    353 	bool dodebug;
    354 
    355 	memset(mtx, 0, sizeof(*mtx));
    356 
    357 	if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    358 	    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    359 	    ipl == IPL_SOFTSERIAL) {
    360 		lockops = (type == MUTEX_NODEBUG ?
    361 		    NULL : &mutex_adaptive_lockops);
    362 		dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
    363 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    364 	} else {
    365 		lockops = (type == MUTEX_NODEBUG ?
    366 		    NULL : &mutex_spin_lockops);
    367 		dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
    368 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    369 	}
    370 }
    371 
    372 void
    373 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    374 {
    375 
    376 	_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
    377 }
    378 
    379 /*
    380  * mutex_destroy:
    381  *
    382  *	Tear down a mutex.
    383  */
    384 void
    385 mutex_destroy(kmutex_t *mtx)
    386 {
    387 	uintptr_t owner = mtx->mtx_owner;
    388 
    389 	if (MUTEX_ADAPTIVE_P(owner)) {
    390 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
    391 		MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
    392 	} else {
    393 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    394 	}
    395 
    396 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    397 	MUTEX_DESTROY(mtx);
    398 }
    399 
    400 #ifdef MULTIPROCESSOR
    401 /*
    402  * mutex_oncpu:
    403  *
    404  *	Return true if an adaptive mutex owner is running on a CPU in the
    405  *	system.  If the target is waiting on the kernel big lock, then we
    406  *	must release it.  This is necessary to avoid deadlock.
    407  */
    408 static bool
    409 mutex_oncpu(uintptr_t owner)
    410 {
    411 	struct cpu_info *ci;
    412 	lwp_t *l;
    413 
    414 	KASSERT(kpreempt_disabled());
    415 
    416 	if (!MUTEX_OWNED(owner)) {
    417 		return false;
    418 	}
    419 
    420 	/*
    421 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    422 	 * We must have kernel preemption disabled for that.
    423 	 */
    424 	l = (lwp_t *)MUTEX_OWNER(owner);
    425 	ci = l->l_cpu;
    426 
    427 	if (ci && ci->ci_curlwp == l) {
    428 		/* Target is running; do we need to block? */
    429 		return (atomic_load_relaxed(&ci->ci_biglock_wanted) != l);
    430 	}
    431 
    432 	/* Not running.  It may be safe to block now. */
    433 	return false;
    434 }
    435 #endif	/* MULTIPROCESSOR */
    436 
    437 /*
    438  * mutex_vector_enter:
    439  *
    440  *	Support routine for mutex_enter() that must handle all cases.  In
    441  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    442  *	fast-path stubs are available.  If a mutex_spin_enter() stub is
    443  *	not available, then it is also aliased directly here.
    444  */
    445 void
    446 mutex_vector_enter(kmutex_t *mtx)
    447 {
    448 	uintptr_t owner, curthread;
    449 	turnstile_t *ts;
    450 #ifdef MULTIPROCESSOR
    451 	u_int count;
    452 #endif
    453 	LOCKSTAT_COUNTER(spincnt);
    454 	LOCKSTAT_COUNTER(slpcnt);
    455 	LOCKSTAT_TIMER(spintime);
    456 	LOCKSTAT_TIMER(slptime);
    457 	LOCKSTAT_FLAG(lsflag);
    458 
    459 	/*
    460 	 * Handle spin mutexes.
    461 	 */
    462 	KPREEMPT_DISABLE(curlwp);
    463 	owner = mtx->mtx_owner;
    464 	if (MUTEX_SPIN_P(owner)) {
    465 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    466 		u_int spins = 0;
    467 #endif
    468 		KPREEMPT_ENABLE(curlwp);
    469 		MUTEX_SPIN_SPLRAISE(mtx);
    470 		MUTEX_WANTLOCK(mtx);
    471 #ifdef FULL
    472 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    473 			MUTEX_LOCKED(mtx);
    474 			return;
    475 		}
    476 #if !defined(MULTIPROCESSOR)
    477 		MUTEX_ABORT(mtx, "locking against myself");
    478 #else /* !MULTIPROCESSOR */
    479 
    480 		LOCKSTAT_ENTER(lsflag);
    481 		LOCKSTAT_START_TIMER(lsflag, spintime);
    482 		count = SPINLOCK_BACKOFF_MIN;
    483 
    484 		/*
    485 		 * Spin testing the lock word and do exponential backoff
    486 		 * to reduce cache line ping-ponging between CPUs.
    487 		 */
    488 		do {
    489 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    490 				SPINLOCK_SPIN_HOOK;
    491 				SPINLOCK_BACKOFF(count);
    492 #ifdef LOCKDEBUG
    493 				if (SPINLOCK_SPINOUT(spins))
    494 					MUTEX_ABORT(mtx, "spinout");
    495 #endif	/* LOCKDEBUG */
    496 			}
    497 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    498 
    499 		if (count != SPINLOCK_BACKOFF_MIN) {
    500 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    501 			LOCKSTAT_EVENT(lsflag, mtx,
    502 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    503 		}
    504 		LOCKSTAT_EXIT(lsflag);
    505 #endif	/* !MULTIPROCESSOR */
    506 #endif	/* FULL */
    507 		MUTEX_LOCKED(mtx);
    508 		return;
    509 	}
    510 
    511 	curthread = (uintptr_t)curlwp;
    512 
    513 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
    514 	MUTEX_ASSERT(mtx, curthread != 0);
    515 	MUTEX_ASSERT(mtx, !cpu_intr_p());
    516 	MUTEX_WANTLOCK(mtx);
    517 
    518 	if (__predict_true(panicstr == NULL)) {
    519 		KDASSERT(pserialize_not_in_read_section());
    520 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    521 	}
    522 
    523 	LOCKSTAT_ENTER(lsflag);
    524 
    525 	/*
    526 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    527 	 * determine that the owner is not running on a processor,
    528 	 * then we stop spinning, and sleep instead.
    529 	 */
    530 	for (;;) {
    531 		if (!MUTEX_OWNED(owner)) {
    532 			/*
    533 			 * Mutex owner clear could mean two things:
    534 			 *
    535 			 *	* The mutex has been released.
    536 			 *	* The owner field hasn't been set yet.
    537 			 *
    538 			 * Try to acquire it again.  If that fails,
    539 			 * we'll just loop again.
    540 			 */
    541 			if (MUTEX_ACQUIRE(mtx, curthread))
    542 				break;
    543 			owner = mtx->mtx_owner;
    544 			continue;
    545 		}
    546 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    547 			MUTEX_ABORT(mtx, "locking against myself");
    548 		}
    549 #ifdef MULTIPROCESSOR
    550 		/*
    551 		 * Check to see if the owner is running on a processor.
    552 		 * If so, then we should just spin, as the owner will
    553 		 * likely release the lock very soon.
    554 		 */
    555 		if (mutex_oncpu(owner)) {
    556 			LOCKSTAT_START_TIMER(lsflag, spintime);
    557 			count = SPINLOCK_BACKOFF_MIN;
    558 			do {
    559 				KPREEMPT_ENABLE(curlwp);
    560 				SPINLOCK_BACKOFF(count);
    561 				KPREEMPT_DISABLE(curlwp);
    562 				owner = mtx->mtx_owner;
    563 			} while (mutex_oncpu(owner));
    564 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    565 			LOCKSTAT_COUNT(spincnt, 1);
    566 			if (!MUTEX_OWNED(owner))
    567 				continue;
    568 		}
    569 #endif
    570 
    571 		ts = turnstile_lookup(mtx);
    572 
    573 		/*
    574 		 * Once we have the turnstile chain interlock, mark the
    575 		 * mutex as having waiters.  If that fails, spin again:
    576 		 * chances are that the mutex has been released.
    577 		 */
    578 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    579 			turnstile_exit(mtx);
    580 			owner = mtx->mtx_owner;
    581 			continue;
    582 		}
    583 
    584 #ifdef MULTIPROCESSOR
    585 		/*
    586 		 * mutex_exit() is permitted to release the mutex without
    587 		 * any interlocking instructions, and the following can
    588 		 * occur as a result:
    589 		 *
    590 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    591 		 * ---------------------------- ----------------------------
    592 		 *		..		load mtx->mtx_owner
    593 		 *		..		see has-waiters bit clear
    594 		 *	set has-waiters bit  	           ..
    595 		 *		..		store mtx->mtx_owner := 0
    596 		 *	  return success
    597 		 *
    598 		 * There is another race that can occur: a third CPU could
    599 		 * acquire the mutex as soon as it is released.  Since
    600 		 * adaptive mutexes are primarily spin mutexes, this is not
    601 		 * something that we need to worry about too much.  What we
    602 		 * do need to ensure is that the waiters bit gets set.
    603 		 *
    604 		 * To allow the unlocked release, we need to make some
    605 		 * assumptions here:
    606 		 *
    607 		 * o Release is the only non-atomic/unlocked operation
    608 		 *   that can be performed on the mutex.  (It must still
    609 		 *   be atomic on the local CPU, e.g. in case interrupted
    610 		 *   or preempted).
    611 		 *
    612 		 * o At any given time on each mutex, MUTEX_SET_WAITERS()
    613 		 *   can only ever be in progress on one CPU in the
    614 		 *   system - guaranteed by the turnstile chain lock.
    615 		 *
    616 		 * o No other operations other than MUTEX_SET_WAITERS()
    617 		 *   and release can modify a mutex with a non-zero
    618 		 *   owner field.
    619 		 *
    620 		 * o If the holding LWP switches away, it posts a store
    621 		 *   fence before changing curlwp, ensuring that any
    622 		 *   overwrite of the mutex waiters flag by mutex_exit()
    623 		 *   completes before the modification of curlwp becomes
    624 		 *   visible to this CPU.
    625 		 *
    626 		 * o cpu_switchto() posts a store fence after setting curlwp
    627 		 *   and before resuming execution of an LWP.
    628 		 *
    629 		 * o _kernel_lock() posts a store fence before setting
    630 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    631 		 *   This ensures that any overwrite of the mutex waiters
    632 		 *   flag by mutex_exit() completes before the modification
    633 		 *   of ci_biglock_wanted becomes visible.
    634 		 *
    635 		 * After MUTEX_SET_WAITERS() succeeds, simultaneously
    636 		 * confirming that the same LWP still holds the mutex
    637 		 * since we took the turnstile lock and notifying it that
    638 		 * we're waiting, we check the lock holder's status again.
    639 		 * Some of the possible outcomes (not an exhaustive list;
    640 		 * XXX this should be made exhaustive):
    641 		 *
    642 		 * 1. The on-CPU check returns true: the holding LWP is
    643 		 *    running again.  The lock may be released soon and
    644 		 *    we should spin.  Importantly, we can't trust the
    645 		 *    value of the waiters flag.
    646 		 *
    647 		 * 2. The on-CPU check returns false: the holding LWP is
    648 		 *    not running.  We now have the opportunity to check
    649 		 *    if mutex_exit() has blatted the modifications made
    650 		 *    by MUTEX_SET_WAITERS().
    651 		 *
    652 		 * 3. The on-CPU check returns false: the holding LWP may
    653 		 *    or may not be running.  It has context switched at
    654 		 *    some point during our check.  Again, we have the
    655 		 *    chance to see if the waiters bit is still set or
    656 		 *    has been overwritten.
    657 		 *
    658 		 * 4. The on-CPU check returns false: the holding LWP is
    659 		 *    running on a CPU, but wants the big lock.  It's OK
    660 		 *    to check the waiters field in this case.
    661 		 *
    662 		 * 5. The has-waiters check fails: the mutex has been
    663 		 *    released, the waiters flag cleared and another LWP
    664 		 *    now owns the mutex.
    665 		 *
    666 		 * 6. The has-waiters check fails: the mutex has been
    667 		 *    released.
    668 		 *
    669 		 * If the waiters bit is not set it's unsafe to go asleep,
    670 		 * as we might never be awoken.
    671 		 */
    672 		if (mutex_oncpu(owner)) {
    673 			turnstile_exit(mtx);
    674 			owner = mtx->mtx_owner;
    675 			continue;
    676 		}
    677 		membar_consumer();
    678 		if (!MUTEX_HAS_WAITERS(mtx)) {
    679 			turnstile_exit(mtx);
    680 			owner = mtx->mtx_owner;
    681 			continue;
    682 		}
    683 #endif	/* MULTIPROCESSOR */
    684 
    685 		LOCKSTAT_START_TIMER(lsflag, slptime);
    686 
    687 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    688 
    689 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    690 		LOCKSTAT_COUNT(slpcnt, 1);
    691 
    692 		owner = mtx->mtx_owner;
    693 	}
    694 	KPREEMPT_ENABLE(curlwp);
    695 
    696 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    697 	    slpcnt, slptime);
    698 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    699 	    spincnt, spintime);
    700 	LOCKSTAT_EXIT(lsflag);
    701 
    702 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    703 	MUTEX_LOCKED(mtx);
    704 }
    705 
    706 /*
    707  * mutex_vector_exit:
    708  *
    709  *	Support routine for mutex_exit() that handles all cases.
    710  */
    711 void
    712 mutex_vector_exit(kmutex_t *mtx)
    713 {
    714 	turnstile_t *ts;
    715 	uintptr_t curthread;
    716 
    717 	if (MUTEX_SPIN_P(mtx->mtx_owner)) {
    718 #ifdef FULL
    719 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    720 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    721 		}
    722 		MUTEX_UNLOCKED(mtx);
    723 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    724 #endif
    725 		MUTEX_SPIN_SPLRESTORE(mtx);
    726 		return;
    727 	}
    728 
    729 #ifndef __HAVE_MUTEX_STUBS
    730 	/*
    731 	 * On some architectures without mutex stubs, we can enter here to
    732 	 * release mutexes before interrupts and whatnot are up and running.
    733 	 * We need this hack to keep them sweet.
    734 	 */
    735 	if (__predict_false(cold)) {
    736 		MUTEX_UNLOCKED(mtx);
    737 		MUTEX_RELEASE(mtx);
    738 		return;
    739 	}
    740 #endif
    741 
    742 	curthread = (uintptr_t)curlwp;
    743 	MUTEX_DASSERT(mtx, curthread != 0);
    744 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    745 	MUTEX_UNLOCKED(mtx);
    746 #if !defined(LOCKDEBUG)
    747 	__USE(curthread);
    748 #endif
    749 
    750 #ifdef LOCKDEBUG
    751 	/*
    752 	 * Avoid having to take the turnstile chain lock every time
    753 	 * around.  Raise the priority level to splhigh() in order
    754 	 * to disable preemption and so make the following atomic.
    755 	 * This also blocks out soft interrupts that could set the
    756 	 * waiters bit.
    757 	 */
    758 	{
    759 		int s = splhigh();
    760 		if (!MUTEX_HAS_WAITERS(mtx)) {
    761 			MUTEX_RELEASE(mtx);
    762 			splx(s);
    763 			return;
    764 		}
    765 		splx(s);
    766 	}
    767 #endif
    768 
    769 	/*
    770 	 * Get this lock's turnstile.  This gets the interlock on
    771 	 * the sleep queue.  Once we have that, we can clear the
    772 	 * lock.  If there was no turnstile for the lock, there
    773 	 * were no waiters remaining.
    774 	 */
    775 	ts = turnstile_lookup(mtx);
    776 
    777 	if (ts == NULL) {
    778 		MUTEX_RELEASE(mtx);
    779 		turnstile_exit(mtx);
    780 	} else {
    781 		MUTEX_RELEASE(mtx);
    782 		turnstile_wakeup(ts, TS_WRITER_Q,
    783 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    784 	}
    785 }
    786 
    787 #ifndef __HAVE_SIMPLE_MUTEXES
    788 /*
    789  * mutex_wakeup:
    790  *
    791  *	Support routine for mutex_exit() that wakes up all waiters.
    792  *	We assume that the mutex has been released, but it need not
    793  *	be.
    794  */
    795 void
    796 mutex_wakeup(kmutex_t *mtx)
    797 {
    798 	turnstile_t *ts;
    799 
    800 	ts = turnstile_lookup(mtx);
    801 	if (ts == NULL) {
    802 		turnstile_exit(mtx);
    803 		return;
    804 	}
    805 	MUTEX_CLEAR_WAITERS(mtx);
    806 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    807 }
    808 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    809 
    810 /*
    811  * mutex_owned:
    812  *
    813  *	Return true if the current LWP (adaptive) or CPU (spin)
    814  *	holds the mutex.
    815  */
    816 int
    817 mutex_owned(const kmutex_t *mtx)
    818 {
    819 
    820 	if (mtx == NULL)
    821 		return 0;
    822 	if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
    823 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    824 #ifdef FULL
    825 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    826 #else
    827 	return 1;
    828 #endif
    829 }
    830 
    831 /*
    832  * mutex_owner:
    833  *
    834  *	Return the current owner of an adaptive mutex.  Used for
    835  *	priority inheritance.
    836  */
    837 static lwp_t *
    838 mutex_owner(wchan_t wchan)
    839 {
    840 	volatile const kmutex_t *mtx = wchan;
    841 
    842 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
    843 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    844 }
    845 
    846 /*
    847  * mutex_ownable:
    848  *
    849  *	When compiled with DEBUG and LOCKDEBUG defined, ensure that
    850  *	the mutex is available.  We cannot use !mutex_owned() since
    851  *	that won't work correctly for spin mutexes.
    852  */
    853 int
    854 mutex_ownable(const kmutex_t *mtx)
    855 {
    856 
    857 #ifdef LOCKDEBUG
    858 	MUTEX_TESTLOCK(mtx);
    859 #endif
    860 	return 1;
    861 }
    862 
    863 /*
    864  * mutex_tryenter:
    865  *
    866  *	Try to acquire the mutex; return non-zero if we did.
    867  */
    868 int
    869 mutex_tryenter(kmutex_t *mtx)
    870 {
    871 	uintptr_t curthread;
    872 
    873 	/*
    874 	 * Handle spin mutexes.
    875 	 */
    876 	if (MUTEX_SPIN_P(mtx->mtx_owner)) {
    877 		MUTEX_SPIN_SPLRAISE(mtx);
    878 #ifdef FULL
    879 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    880 			MUTEX_WANTLOCK(mtx);
    881 			MUTEX_LOCKED(mtx);
    882 			return 1;
    883 		}
    884 		MUTEX_SPIN_SPLRESTORE(mtx);
    885 #else
    886 		MUTEX_WANTLOCK(mtx);
    887 		MUTEX_LOCKED(mtx);
    888 		return 1;
    889 #endif
    890 	} else {
    891 		curthread = (uintptr_t)curlwp;
    892 		MUTEX_ASSERT(mtx, curthread != 0);
    893 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    894 			MUTEX_WANTLOCK(mtx);
    895 			MUTEX_LOCKED(mtx);
    896 			MUTEX_DASSERT(mtx,
    897 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    898 			return 1;
    899 		}
    900 	}
    901 
    902 	return 0;
    903 }
    904 
    905 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    906 /*
    907  * mutex_spin_retry:
    908  *
    909  *	Support routine for mutex_spin_enter().  Assumes that the caller
    910  *	has already raised the SPL, and adjusted counters.
    911  */
    912 void
    913 mutex_spin_retry(kmutex_t *mtx)
    914 {
    915 #ifdef MULTIPROCESSOR
    916 	u_int count;
    917 	LOCKSTAT_TIMER(spintime);
    918 	LOCKSTAT_FLAG(lsflag);
    919 #ifdef LOCKDEBUG
    920 	u_int spins = 0;
    921 #endif	/* LOCKDEBUG */
    922 
    923 	MUTEX_WANTLOCK(mtx);
    924 
    925 	LOCKSTAT_ENTER(lsflag);
    926 	LOCKSTAT_START_TIMER(lsflag, spintime);
    927 	count = SPINLOCK_BACKOFF_MIN;
    928 
    929 	/*
    930 	 * Spin testing the lock word and do exponential backoff
    931 	 * to reduce cache line ping-ponging between CPUs.
    932 	 */
    933 	do {
    934 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    935 			SPINLOCK_BACKOFF(count);
    936 #ifdef LOCKDEBUG
    937 			if (SPINLOCK_SPINOUT(spins))
    938 				MUTEX_ABORT(mtx, "spinout");
    939 #endif	/* LOCKDEBUG */
    940 		}
    941 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    942 
    943 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    944 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    945 	LOCKSTAT_EXIT(lsflag);
    946 
    947 	MUTEX_LOCKED(mtx);
    948 #else	/* MULTIPROCESSOR */
    949 	MUTEX_ABORT(mtx, "locking against myself");
    950 #endif	/* MULTIPROCESSOR */
    951 }
    952 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    953