Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.13
      1 /*	$NetBSD: kern_mutex.c,v 1.13 2007/03/12 22:34:08 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Kernel mutex implementation, modeled after those found in Solaris,
     41  * a description of which can be found in:
     42  *
     43  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44  *	    Richard McDougall.
     45  */
     46 
     47 #include "opt_multiprocessor.h"
     48 
     49 #define	__MUTEX_PRIVATE
     50 
     51 #include <sys/cdefs.h>
     52 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.13 2007/03/12 22:34:08 ad Exp $");
     53 
     54 #include <sys/param.h>
     55 #include <sys/proc.h>
     56 #include <sys/mutex.h>
     57 #include <sys/sched.h>
     58 #include <sys/sleepq.h>
     59 #include <sys/systm.h>
     60 #include <sys/lockdebug.h>
     61 #include <sys/kernel.h>
     62 
     63 #include <dev/lockstat.h>
     64 
     65 #include <machine/intr.h>
     66 
     67 /*
     68  * When not running a debug kernel, spin mutexes are not much
     69  * more than an splraiseipl() and splx() pair.
     70  */
     71 
     72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     73 #define	FULL
     74 #endif
     75 
     76 /*
     77  * Debugging support.
     78  */
     79 
     80 #define	MUTEX_WANTLOCK(mtx)					\
     81     LOCKDEBUG_WANTLOCK(MUTEX_GETID(mtx),			\
     82         (uintptr_t)__builtin_return_address(0), 0)
     83 #define	MUTEX_LOCKED(mtx)					\
     84     LOCKDEBUG_LOCKED(MUTEX_GETID(mtx),				\
     85         (uintptr_t)__builtin_return_address(0), 0)
     86 #define	MUTEX_UNLOCKED(mtx)					\
     87     LOCKDEBUG_UNLOCKED(MUTEX_GETID(mtx),			\
     88         (uintptr_t)__builtin_return_address(0), 0)
     89 #define	MUTEX_ABORT(mtx, msg)					\
     90     mutex_abort(mtx, __FUNCTION__, msg)
     91 
     92 #if defined(LOCKDEBUG)
     93 
     94 #define	MUTEX_DASSERT(mtx, cond)				\
     95 do {								\
     96 	if (!(cond))						\
     97 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     98 } while (/* CONSTCOND */ 0);
     99 
    100 #else	/* LOCKDEBUG */
    101 
    102 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    103 
    104 #endif /* LOCKDEBUG */
    105 
    106 #if defined(DIAGNOSTIC)
    107 
    108 #define	MUTEX_ASSERT(mtx, cond)					\
    109 do {								\
    110 	if (!(cond))						\
    111 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    112 } while (/* CONSTCOND */ 0)
    113 
    114 #else	/* DIAGNOSTIC */
    115 
    116 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    117 
    118 #endif	/* DIAGNOSTIC */
    119 
    120 /*
    121  * Spin mutex SPL save / restore.
    122  */
    123 #ifndef MUTEX_COUNT_BIAS
    124 #define	MUTEX_COUNT_BIAS	0
    125 #endif
    126 
    127 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    128 do {									\
    129 	struct cpu_info *x__ci = curcpu();				\
    130 	int x__cnt, s;							\
    131 	x__cnt = x__ci->ci_mtx_count--;					\
    132 	s = splraiseipl(mtx->mtx_ipl);					\
    133 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    134 		x__ci->ci_mtx_oldspl = (s);				\
    135 } while (/* CONSTCOND */ 0)
    136 
    137 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    138 do {									\
    139 	struct cpu_info *x__ci = curcpu();				\
    140 	int s = x__ci->ci_mtx_oldspl;					\
    141 	__insn_barrier();						\
    142 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    143 		splx(s);						\
    144 } while (/* CONSTCOND */ 0)
    145 
    146 /*
    147  * For architectures that provide 'simple' mutexes: they provide a
    148  * CAS function that is either MP-safe, or does not need to be MP
    149  * safe.  Adaptive mutexes on these architectures do not require an
    150  * additional interlock.
    151  */
    152 
    153 #ifdef __HAVE_SIMPLE_MUTEXES
    154 
    155 #define	MUTEX_OWNER(owner)						\
    156 	(owner & MUTEX_THREAD)
    157 #define	MUTEX_OWNED(owner)						\
    158 	(owner != 0)
    159 #define	MUTEX_HAS_WAITERS(mtx)						\
    160 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    161 
    162 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, id)				\
    163 do {									\
    164 	(mtx)->mtx_id = (id);						\
    165 } while (/* CONSTCOND */ 0);
    166 
    167 #define	MUTEX_INITIALIZE_SPIN(mtx, id, ipl)				\
    168 do {									\
    169 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    170 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    171 	(mtx)->mtx_id = (id);						\
    172 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    173 } while (/* CONSTCOND */ 0)
    174 
    175 #define	MUTEX_DESTROY(mtx)						\
    176 do {									\
    177 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    178 	(mtx)->mtx_id = -1;						\
    179 } while (/* CONSTCOND */ 0);
    180 
    181 #define	MUTEX_SPIN_P(mtx)		\
    182     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    183 #define	MUTEX_ADAPTIVE_P(mtx)		\
    184     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    185 
    186 #define	MUTEX_GETID(mtx)		((mtx)->mtx_id)
    187 
    188 static inline int
    189 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    190 {
    191 	int rv;
    192 	rv = MUTEX_CAS(&mtx->mtx_owner, 0UL, curthread);
    193 	MUTEX_RECEIVE(mtx);
    194 	return rv;
    195 }
    196 
    197 static inline int
    198 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    199 {
    200 	int rv;
    201 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    202 	MUTEX_RECEIVE(mtx);
    203 	return rv;
    204 }
    205 
    206 static inline void
    207 MUTEX_RELEASE(kmutex_t *mtx)
    208 {
    209 	MUTEX_GIVE(mtx);
    210 	mtx->mtx_owner = 0;
    211 }
    212 
    213 static inline void
    214 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    215 {
    216 	/* nothing */
    217 }
    218 #endif	/* __HAVE_SIMPLE_MUTEXES */
    219 
    220 /*
    221  * Patch in stubs via strong alias where they are not available.
    222  */
    223 
    224 #if defined(LOCKDEBUG)
    225 #undef	__HAVE_MUTEX_STUBS
    226 #undef	__HAVE_SPIN_MUTEX_STUBS
    227 #endif
    228 
    229 #ifndef __HAVE_MUTEX_STUBS
    230 __strong_alias(mutex_enter,mutex_vector_enter);
    231 __strong_alias(mutex_exit,mutex_vector_exit);
    232 #endif
    233 
    234 #ifndef __HAVE_SPIN_MUTEX_STUBS
    235 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    236 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    237 #endif
    238 
    239 void	mutex_abort(kmutex_t *, const char *, const char *);
    240 void	mutex_dump(volatile void *);
    241 int	mutex_onproc(uintptr_t, struct cpu_info **);
    242 static struct lwp *mutex_owner(wchan_t);
    243 
    244 lockops_t mutex_spin_lockops = {
    245 	"Mutex",
    246 	0,
    247 	mutex_dump
    248 };
    249 
    250 lockops_t mutex_adaptive_lockops = {
    251 	"Mutex",
    252 	1,
    253 	mutex_dump
    254 };
    255 
    256 syncobj_t mutex_syncobj = {
    257 	SOBJ_SLEEPQ_SORTED,
    258 	turnstile_unsleep,
    259 	turnstile_changepri,
    260 	sleepq_lendpri,
    261 	mutex_owner,
    262 };
    263 
    264 /*
    265  * mutex_dump:
    266  *
    267  *	Dump the contents of a mutex structure.
    268  */
    269 void
    270 mutex_dump(volatile void *cookie)
    271 {
    272 	volatile kmutex_t *mtx = cookie;
    273 
    274 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    275 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    276 	    MUTEX_SPIN_P(mtx));
    277 }
    278 
    279 /*
    280  * mutex_abort:
    281  *
    282  *	Dump information about an error and panic the system.  This
    283  *	generates a lot of machine code in the DIAGNOSTIC case, so
    284  *	we ask the compiler to not inline it.
    285  */
    286 
    287 #if __GNUC_PREREQ__(3, 0)
    288 __attribute ((noinline)) __attribute ((noreturn))
    289 #endif
    290 void
    291 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    292 {
    293 
    294 	LOCKDEBUG_ABORT(MUTEX_GETID(mtx), mtx, (MUTEX_SPIN_P(mtx) ?
    295 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    296 	/* NOTREACHED */
    297 }
    298 
    299 /*
    300  * mutex_init:
    301  *
    302  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    303  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    304  *	CPU time.  We can't easily provide a type of mutex that always
    305  *	sleeps - see comments in mutex_vector_enter() about releasing
    306  *	mutexes unlocked.
    307  */
    308 void
    309 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    310 {
    311 	u_int id;
    312 
    313 	memset(mtx, 0, sizeof(*mtx));
    314 
    315 	if (type == MUTEX_DRIVER)
    316 		type = (ipl == IPL_NONE ? MUTEX_ADAPTIVE : MUTEX_SPIN);
    317 
    318 	switch (type) {
    319 	case MUTEX_NODEBUG:
    320 		KASSERT(ipl == IPL_NONE);
    321 		id = LOCKDEBUG_ALLOC(mtx, NULL);
    322 		MUTEX_INITIALIZE_ADAPTIVE(mtx, id);
    323 		break;
    324 	case MUTEX_ADAPTIVE:
    325 	case MUTEX_DEFAULT:
    326 		KASSERT(ipl == IPL_NONE);
    327 		id = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops);
    328 		MUTEX_INITIALIZE_ADAPTIVE(mtx, id);
    329 		break;
    330 	case MUTEX_SPIN:
    331 		id = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops);
    332 		MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
    333 		break;
    334 	default:
    335 		panic("mutex_init: impossible type");
    336 		break;
    337 	}
    338 }
    339 
    340 /*
    341  * mutex_destroy:
    342  *
    343  *	Tear down a mutex.
    344  */
    345 void
    346 mutex_destroy(kmutex_t *mtx)
    347 {
    348 
    349 	if (MUTEX_ADAPTIVE_P(mtx)) {
    350 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    351 		    !MUTEX_HAS_WAITERS(mtx));
    352 	} else {
    353 		MUTEX_ASSERT(mtx, mtx->mtx_lock != __SIMPLELOCK_LOCKED);
    354 	}
    355 
    356 	LOCKDEBUG_FREE(mtx, MUTEX_GETID(mtx));
    357 	MUTEX_DESTROY(mtx);
    358 }
    359 
    360 /*
    361  * mutex_onproc:
    362  *
    363  *	Return true if an adaptive mutex owner is running on a CPU in the
    364  *	system.  If the target is waiting on the kernel big lock, then we
    365  *	return false immediately.  This is necessary to avoid deadlock
    366  *	against the big lock.
    367  *
    368  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    369  *	don't have full control over the timing of our execution, and so the
    370  *	pointer could be completely invalid by the time we dereference it.
    371  *
    372  *	XXX This should be optimised further to reduce potential cache line
    373  *	ping-ponging and skewing of the spin time while busy waiting.
    374  */
    375 #ifdef MULTIPROCESSOR
    376 int
    377 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    378 {
    379 	CPU_INFO_ITERATOR cii;
    380 	struct cpu_info *ci;
    381 	struct lwp *l;
    382 
    383 	if (!MUTEX_OWNED(owner))
    384 		return 0;
    385 	l = (struct lwp *)MUTEX_OWNER(owner);
    386 
    387 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    388 		return ci->ci_biglock_wanted != l;
    389 
    390 	for (CPU_INFO_FOREACH(cii, ci)) {
    391 		if (ci->ci_curlwp == l) {
    392 			*cip = ci;
    393 			return ci->ci_biglock_wanted != l;
    394 		}
    395 	}
    396 
    397 	*cip = NULL;
    398 	return 0;
    399 }
    400 #endif
    401 
    402 /*
    403  * mutex_vector_enter:
    404  *
    405  *	Support routine for mutex_enter() that must handles all cases.  In
    406  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    407  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    408  *	not available, then it is also aliased directly here.
    409  */
    410 void
    411 mutex_vector_enter(kmutex_t *mtx)
    412 {
    413 	uintptr_t owner, curthread;
    414 	turnstile_t *ts;
    415 #ifdef MULTIPROCESSOR
    416 	struct cpu_info *ci = NULL;
    417 	u_int count;
    418 #endif
    419 	LOCKSTAT_COUNTER(spincnt);
    420 	LOCKSTAT_COUNTER(slpcnt);
    421 	LOCKSTAT_TIMER(spintime);
    422 	LOCKSTAT_TIMER(slptime);
    423 	LOCKSTAT_FLAG(lsflag);
    424 
    425 	/*
    426 	 * Handle spin mutexes.
    427 	 */
    428 	if (MUTEX_SPIN_P(mtx)) {
    429 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    430 		u_int spins = 0;
    431 #endif
    432 		MUTEX_SPIN_SPLRAISE(mtx);
    433 		MUTEX_WANTLOCK(mtx);
    434 #ifdef FULL
    435 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    436 			MUTEX_LOCKED(mtx);
    437 			return;
    438 		}
    439 #if !defined(MULTIPROCESSOR)
    440 		MUTEX_ABORT(mtx, "locking against myself");
    441 #else /* !MULTIPROCESSOR */
    442 
    443 		LOCKSTAT_ENTER(lsflag);
    444 		LOCKSTAT_START_TIMER(lsflag, spintime);
    445 		count = SPINLOCK_BACKOFF_MIN;
    446 
    447 		/*
    448 		 * Spin testing the lock word and do exponential backoff
    449 		 * to reduce cache line ping-ponging between CPUs.
    450 		 */
    451 		do {
    452 			if (panicstr != NULL)
    453 				break;
    454 			while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
    455 				SPINLOCK_BACKOFF(count);
    456 #ifdef LOCKDEBUG
    457 				if (SPINLOCK_SPINOUT(spins))
    458 					MUTEX_ABORT(mtx, "spinout");
    459 #endif	/* LOCKDEBUG */
    460 			}
    461 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    462 
    463 		if (count != SPINLOCK_BACKOFF_MIN) {
    464 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    465 			LOCKSTAT_EVENT(lsflag, mtx,
    466 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    467 		}
    468 		LOCKSTAT_EXIT(lsflag);
    469 #endif	/* !MULTIPROCESSOR */
    470 #endif	/* FULL */
    471 		MUTEX_LOCKED(mtx);
    472 		return;
    473 	}
    474 
    475 	curthread = (uintptr_t)curlwp;
    476 
    477 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    478 	MUTEX_ASSERT(mtx, curthread != 0);
    479 	MUTEX_WANTLOCK(mtx);
    480 
    481 #ifdef LOCKDEBUG
    482 	if (panicstr == NULL) {
    483 		simple_lock_only_held(NULL, "mutex_enter");
    484 #ifdef MULTIPROCESSOR
    485 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    486 #else
    487 		LOCKDEBUG_BARRIER(NULL, 1);
    488 #endif
    489 	}
    490 #endif
    491 
    492 	LOCKSTAT_ENTER(lsflag);
    493 
    494 	/*
    495 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    496 	 * determine that the owner is not running on a processor,
    497 	 * then we stop spinning, and sleep instead.
    498 	 */
    499 	for (;;) {
    500 		owner = mtx->mtx_owner;
    501 		if (!MUTEX_OWNED(owner)) {
    502 			/*
    503 			 * Mutex owner clear could mean two things:
    504 			 *
    505 			 *	* The mutex has been released.
    506 			 *	* The owner field hasn't been set yet.
    507 			 *
    508 			 * Try to acquire it again.  If that fails,
    509 			 * we'll just loop again.
    510 			 */
    511 			if (MUTEX_ACQUIRE(mtx, curthread))
    512 				break;
    513 			continue;
    514 		}
    515 
    516 		if (panicstr != NULL)
    517 			return;
    518 		if (MUTEX_OWNER(owner) == curthread)
    519 			MUTEX_ABORT(mtx, "locking against myself");
    520 
    521 #ifdef MULTIPROCESSOR
    522 		/*
    523 		 * Check to see if the owner is running on a processor.
    524 		 * If so, then we should just spin, as the owner will
    525 		 * likely release the lock very soon.
    526 		 */
    527 		if (mutex_onproc(owner, &ci)) {
    528 			LOCKSTAT_START_TIMER(lsflag, spintime);
    529 			count = SPINLOCK_BACKOFF_MIN;
    530 			for (;;) {
    531 				owner = mtx->mtx_owner;
    532 				if (!mutex_onproc(owner, &ci))
    533 					break;
    534 				SPINLOCK_BACKOFF(count);
    535 			}
    536 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    537 			LOCKSTAT_COUNT(spincnt, 1);
    538 			if (!MUTEX_OWNED(owner))
    539 				continue;
    540 		}
    541 #endif
    542 
    543 		ts = turnstile_lookup(mtx);
    544 
    545 		/*
    546 		 * Once we have the turnstile chain interlock, mark the
    547 		 * mutex has having waiters.  If that fails, spin again:
    548 		 * chances are that the mutex has been released.
    549 		 */
    550 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    551 			turnstile_exit(mtx);
    552 			continue;
    553 		}
    554 
    555 #ifdef MULTIPROCESSOR
    556 		/*
    557 		 * mutex_exit() is permitted to release the mutex without
    558 		 * any interlocking instructions, and the following can
    559 		 * occur as a result:
    560 		 *
    561 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    562 		 * ---------------------------- ----------------------------
    563 		 *		..		    acquire cache line
    564 		 *		..                   test for waiters
    565 		 *	acquire cache line    <-      lose cache line
    566 		 *	 lock cache line	           ..
    567 		 *     verify mutex is held                ..
    568 		 *	    set waiters  	           ..
    569 		 *	 unlock cache line		   ..
    570 		 *	  lose cache line     ->    acquire cache line
    571 		 *		..	          clear lock word, waiters
    572 		 *	  return success
    573 		 *
    574 		 * There is a another race that can occur: a third CPU could
    575 		 * acquire the mutex as soon as it is released.  Since
    576 		 * adaptive mutexes are primarily spin mutexes, this is not
    577 		 * something that we need to worry about too much.  What we
    578 		 * do need to ensure is that the waiters bit gets set.
    579 		 *
    580 		 * To allow the unlocked release, we need to make some
    581 		 * assumptions here:
    582 		 *
    583 		 * o Release is the only non-atomic/unlocked operation
    584 		 *   that can be performed on the mutex.  (It must still
    585 		 *   be atomic on the local CPU, e.g. in case interrupted
    586 		 *   or preempted).
    587 		 *
    588 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    589 		 *   be in progress on one CPU in the system - guarenteed
    590 		 *   by the turnstile chain lock.
    591 		 *
    592 		 * o No other operations other than MUTEX_SET_WAITERS()
    593 		 *   and release can modify a mutex with a non-zero
    594 		 *   owner field.
    595 		 *
    596 		 * o The result of a successful MUTEX_SET_WAITERS() call
    597 		 *   is an unbuffered write that is immediately visible
    598 		 *   to all other processors in the system.
    599 		 *
    600 		 * o If the holding LWP switches away, it posts a store
    601 		 *   fence before changing curlwp, ensuring that any
    602 		 *   overwrite of the mutex waiters flag by mutex_exit()
    603 		 *   completes before the modification of curlwp becomes
    604 		 *   visible to this CPU.
    605 		 *
    606 		 * o cpu_switch() posts a store fence before setting curlwp
    607 		 *   and before resuming execution of an LWP.
    608 		 *
    609 		 * o _kernel_lock() posts a store fence before setting
    610 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    611 		 *   This ensures that any overwrite of the mutex waiters
    612 		 *   flag by mutex_exit() completes before the modification
    613 		 *   of ci_biglock_wanted becomes visible.
    614 		 *
    615 		 * We now post a read memory barrier (after setting the
    616 		 * waiters field) and check the lock holder's status again.
    617 		 * Some of the possible outcomes (not an exhaustive list):
    618 		 *
    619 		 * 1. The onproc check returns true: the holding LWP is
    620 		 *    running again.  The lock may be released soon and
    621 		 *    we should spin.  Importantly, we can't trust the
    622 		 *    value of the waiters flag.
    623 		 *
    624 		 * 2. The onproc check returns false: the holding LWP is
    625 		 *    not running.  We now have the oppertunity to check
    626 		 *    if mutex_exit() has blatted the modifications made
    627 		 *    by MUTEX_SET_WAITERS().
    628 		 *
    629 		 * 3. The onproc check returns false: the holding LWP may
    630 		 *    or may not be running.  It has context switched at
    631 		 *    some point during our check.  Again, we have the
    632 		 *    chance to see if the waiters bit is still set or
    633 		 *    has been overwritten.
    634 		 *
    635 		 * 4. The onproc check returns false: the holding LWP is
    636 		 *    running on a CPU, but wants the big lock.  It's OK
    637 		 *    to check the waiters field in this case.
    638 		 *
    639 		 * 5. The has-waiters check fails: the mutex has been
    640 		 *    released, the waiters flag cleared and another LWP
    641 		 *    now owns the mutex.
    642 		 *
    643 		 * 6. The has-waiters check fails: the mutex has been
    644 		 *    released.
    645 		 *
    646 		 * If the waiters bit is not set it's unsafe to go asleep,
    647 		 * as we might never be awoken.
    648 		 */
    649 		if ((mb_read(), mutex_onproc(owner, &ci)) ||
    650 		    (mb_read(), !MUTEX_HAS_WAITERS(mtx))) {
    651 			turnstile_exit(mtx);
    652 			continue;
    653 		}
    654 #endif	/* MULTIPROCESSOR */
    655 
    656 		LOCKSTAT_START_TIMER(lsflag, slptime);
    657 
    658 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    659 
    660 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    661 		LOCKSTAT_COUNT(slpcnt, 1);
    662 
    663 		turnstile_unblock();
    664 	}
    665 
    666 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    667 	    slpcnt, slptime);
    668 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    669 	    spincnt, spintime);
    670 	LOCKSTAT_EXIT(lsflag);
    671 
    672 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    673 	MUTEX_LOCKED(mtx);
    674 }
    675 
    676 /*
    677  * mutex_vector_exit:
    678  *
    679  *	Support routine for mutex_exit() that handles all cases.
    680  */
    681 void
    682 mutex_vector_exit(kmutex_t *mtx)
    683 {
    684 	turnstile_t *ts;
    685 	uintptr_t curthread;
    686 
    687 	if (MUTEX_SPIN_P(mtx)) {
    688 #ifdef FULL
    689 		if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
    690 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    691 		MUTEX_UNLOCKED(mtx);
    692 		__cpu_simple_unlock(&mtx->mtx_lock);
    693 #endif
    694 		MUTEX_SPIN_SPLRESTORE(mtx);
    695 		return;
    696 	}
    697 
    698 	if (__predict_false((uintptr_t)panicstr | cold)) {
    699 		MUTEX_UNLOCKED(mtx);
    700 		MUTEX_RELEASE(mtx);
    701 		return;
    702 	}
    703 
    704 	curthread = (uintptr_t)curlwp;
    705 	MUTEX_DASSERT(mtx, curthread != 0);
    706 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    707 	MUTEX_UNLOCKED(mtx);
    708 
    709 	/*
    710 	 * Get this lock's turnstile.  This gets the interlock on
    711 	 * the sleep queue.  Once we have that, we can clear the
    712 	 * lock.  If there was no turnstile for the lock, there
    713 	 * were no waiters remaining.
    714 	 */
    715 	ts = turnstile_lookup(mtx);
    716 
    717 	if (ts == NULL) {
    718 		MUTEX_RELEASE(mtx);
    719 		turnstile_exit(mtx);
    720 	} else {
    721 		MUTEX_RELEASE(mtx);
    722 		turnstile_wakeup(ts, TS_WRITER_Q,
    723 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    724 	}
    725 }
    726 
    727 #ifndef __HAVE_SIMPLE_MUTEXES
    728 /*
    729  * mutex_wakeup:
    730  *
    731  *	Support routine for mutex_exit() that wakes up all waiters.
    732  *	We assume that the mutex has been released, but it need not
    733  *	be.
    734  */
    735 void
    736 mutex_wakeup(kmutex_t *mtx)
    737 {
    738 	turnstile_t *ts;
    739 
    740 	ts = turnstile_lookup(mtx);
    741 	if (ts == NULL) {
    742 		turnstile_exit(mtx);
    743 		return;
    744 	}
    745 	MUTEX_CLEAR_WAITERS(mtx);
    746 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    747 }
    748 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    749 
    750 /*
    751  * mutex_owned:
    752  *
    753  *	Return true if the current LWP (adaptive) or CPU (spin)
    754  *	holds the mutex.
    755  */
    756 int
    757 mutex_owned(kmutex_t *mtx)
    758 {
    759 
    760 	if (MUTEX_ADAPTIVE_P(mtx))
    761 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    762 #ifdef FULL
    763 	return mtx->mtx_lock == __SIMPLELOCK_LOCKED;
    764 #else
    765 	return 1;
    766 #endif
    767 }
    768 
    769 /*
    770  * mutex_owner:
    771  *
    772  *	Return the current owner of an adaptive mutex.  Used for
    773  *	priority inheritance.
    774  */
    775 static struct lwp *
    776 mutex_owner(wchan_t obj)
    777 {
    778 	kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
    779 
    780 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    781 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    782 }
    783 
    784 /*
    785  * mutex_tryenter:
    786  *
    787  *	Try to acquire the mutex; return non-zero if we did.
    788  */
    789 int
    790 mutex_tryenter(kmutex_t *mtx)
    791 {
    792 	uintptr_t curthread;
    793 
    794 	/*
    795 	 * Handle spin mutexes.
    796 	 */
    797 	if (MUTEX_SPIN_P(mtx)) {
    798 		MUTEX_SPIN_SPLRAISE(mtx);
    799 #ifdef FULL
    800 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    801 			MUTEX_WANTLOCK(mtx);
    802 			MUTEX_LOCKED(mtx);
    803 			return 1;
    804 		}
    805 		MUTEX_SPIN_SPLRESTORE(mtx);
    806 #else
    807 		MUTEX_WANTLOCK(mtx);
    808 		MUTEX_LOCKED(mtx);
    809 		return 1;
    810 #endif
    811 	} else {
    812 		curthread = (uintptr_t)curlwp;
    813 		MUTEX_ASSERT(mtx, curthread != 0);
    814 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    815 			MUTEX_WANTLOCK(mtx);
    816 			MUTEX_LOCKED(mtx);
    817 			MUTEX_DASSERT(mtx,
    818 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    819 			return 1;
    820 		}
    821 	}
    822 
    823 	return 0;
    824 }
    825 
    826 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    827 /*
    828  * mutex_spin_retry:
    829  *
    830  *	Support routine for mutex_spin_enter().  Assumes that the caller
    831  *	has already raised the SPL, and adjusted counters.
    832  */
    833 void
    834 mutex_spin_retry(kmutex_t *mtx)
    835 {
    836 #ifdef MULTIPROCESSOR
    837 	u_int count;
    838 	LOCKSTAT_TIMER(spintime);
    839 	LOCKSTAT_FLAG(lsflag);
    840 #ifdef LOCKDEBUG
    841 	u_int spins = 0;
    842 #endif	/* LOCKDEBUG */
    843 
    844 	MUTEX_WANTLOCK(mtx);
    845 
    846 	LOCKSTAT_ENTER(lsflag);
    847 	LOCKSTAT_START_TIMER(lsflag, spintime);
    848 	count = SPINLOCK_BACKOFF_MIN;
    849 
    850 	/*
    851 	 * Spin testing the lock word and do exponential backoff
    852 	 * to reduce cache line ping-ponging between CPUs.
    853 	 */
    854 	do {
    855 		if (panicstr != NULL)
    856 			break;
    857 		while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
    858 			SPINLOCK_BACKOFF(count);
    859 #ifdef LOCKDEBUG
    860 			if (SPINLOCK_SPINOUT(spins))
    861 				MUTEX_ABORT(mtx, "spinout");
    862 #endif	/* LOCKDEBUG */
    863 		}
    864 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    865 
    866 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    867 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    868 	LOCKSTAT_EXIT(lsflag);
    869 
    870 	MUTEX_LOCKED(mtx);
    871 #else	/* MULTIPROCESSOR */
    872 	MUTEX_ABORT(mtx, "locking against myself");
    873 #endif	/* MULTIPROCESSOR */
    874 }
    875 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    876 
    877 /*
    878  * sched_lock_idle:
    879  *
    880  *	XXX Ugly hack for cpu_switch().
    881  */
    882 void
    883 sched_lock_idle(void)
    884 {
    885 #ifdef FULL
    886 	kmutex_t *mtx = &sched_mutex;
    887 
    888 	curcpu()->ci_mtx_count--;
    889 
    890 	if (!__cpu_simple_lock_try(&mtx->mtx_lock)) {
    891 		mutex_spin_retry(mtx);
    892 		return;
    893 	}
    894 
    895 	MUTEX_LOCKED(mtx);
    896 #else
    897 	curcpu()->ci_mtx_count--;
    898 #endif	/* FULL */
    899 }
    900 
    901 /*
    902  * sched_unlock_idle:
    903  *
    904  *	XXX Ugly hack for cpu_switch().
    905  */
    906 void
    907 sched_unlock_idle(void)
    908 {
    909 #ifdef FULL
    910 	kmutex_t *mtx = &sched_mutex;
    911 
    912 	if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
    913 		MUTEX_ABORT(mtx, "sched_mutex not locked");
    914 
    915 	MUTEX_UNLOCKED(mtx);
    916 	__cpu_simple_unlock(&mtx->mtx_lock);
    917 #endif	/* FULL */
    918 	curcpu()->ci_mtx_count++;
    919 }
    920