kern_mutex.c revision 1.15 1 /* $NetBSD: kern_mutex.c,v 1.15 2007/07/09 21:10:53 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel mutex implementation, modeled after those found in Solaris,
41 * a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include "opt_multiprocessor.h"
48
49 #define __MUTEX_PRIVATE
50
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.15 2007/07/09 21:10:53 ad Exp $");
53
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62
63 #include <dev/lockstat.h>
64
65 #include <machine/intr.h>
66
67 /*
68 * When not running a debug kernel, spin mutexes are not much
69 * more than an splraiseipl() and splx() pair.
70 */
71
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define FULL
74 #endif
75
76 /*
77 * Debugging support.
78 */
79
80 #define MUTEX_WANTLOCK(mtx) \
81 LOCKDEBUG_WANTLOCK(MUTEX_GETID(mtx), \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_LOCKED(mtx) \
84 LOCKDEBUG_LOCKED(MUTEX_GETID(mtx), \
85 (uintptr_t)__builtin_return_address(0), 0)
86 #define MUTEX_UNLOCKED(mtx) \
87 LOCKDEBUG_UNLOCKED(MUTEX_GETID(mtx), \
88 (uintptr_t)__builtin_return_address(0), 0)
89 #define MUTEX_ABORT(mtx, msg) \
90 mutex_abort(mtx, __FUNCTION__, msg)
91
92 #if defined(LOCKDEBUG)
93
94 #define MUTEX_DASSERT(mtx, cond) \
95 do { \
96 if (!(cond)) \
97 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0);
99
100 #else /* LOCKDEBUG */
101
102 #define MUTEX_DASSERT(mtx, cond) /* nothing */
103
104 #endif /* LOCKDEBUG */
105
106 #if defined(DIAGNOSTIC)
107
108 #define MUTEX_ASSERT(mtx, cond) \
109 do { \
110 if (!(cond)) \
111 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
112 } while (/* CONSTCOND */ 0)
113
114 #else /* DIAGNOSTIC */
115
116 #define MUTEX_ASSERT(mtx, cond) /* nothing */
117
118 #endif /* DIAGNOSTIC */
119
120 /*
121 * Spin mutex SPL save / restore.
122 */
123 #ifndef MUTEX_COUNT_BIAS
124 #define MUTEX_COUNT_BIAS 0
125 #endif
126
127 #define MUTEX_SPIN_SPLRAISE(mtx) \
128 do { \
129 struct cpu_info *x__ci = curcpu(); \
130 int x__cnt, s; \
131 x__cnt = x__ci->ci_mtx_count--; \
132 s = splraiseipl(mtx->mtx_ipl); \
133 if (x__cnt == MUTEX_COUNT_BIAS) \
134 x__ci->ci_mtx_oldspl = (s); \
135 } while (/* CONSTCOND */ 0)
136
137 #define MUTEX_SPIN_SPLRESTORE(mtx) \
138 do { \
139 struct cpu_info *x__ci = curcpu(); \
140 int s = x__ci->ci_mtx_oldspl; \
141 __insn_barrier(); \
142 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
143 splx(s); \
144 } while (/* CONSTCOND */ 0)
145
146 /*
147 * For architectures that provide 'simple' mutexes: they provide a
148 * CAS function that is either MP-safe, or does not need to be MP
149 * safe. Adaptive mutexes on these architectures do not require an
150 * additional interlock.
151 */
152
153 #ifdef __HAVE_SIMPLE_MUTEXES
154
155 #define MUTEX_OWNER(owner) \
156 (owner & MUTEX_THREAD)
157 #define MUTEX_OWNED(owner) \
158 (owner != 0)
159 #define MUTEX_HAS_WAITERS(mtx) \
160 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
161
162 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, id) \
163 do { \
164 (mtx)->mtx_id = (id); \
165 } while (/* CONSTCOND */ 0);
166
167 #define MUTEX_INITIALIZE_SPIN(mtx, id, ipl) \
168 do { \
169 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
170 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
171 (mtx)->mtx_id = (id); \
172 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
173 } while (/* CONSTCOND */ 0)
174
175 #define MUTEX_DESTROY(mtx) \
176 do { \
177 (mtx)->mtx_owner = MUTEX_THREAD; \
178 (mtx)->mtx_id = -1; \
179 } while (/* CONSTCOND */ 0);
180
181 #define MUTEX_SPIN_P(mtx) \
182 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
183 #define MUTEX_ADAPTIVE_P(mtx) \
184 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
185
186 #define MUTEX_GETID(mtx) ((mtx)->mtx_id)
187
188 static inline int
189 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
190 {
191 int rv;
192 rv = MUTEX_CAS(&mtx->mtx_owner, 0UL, curthread);
193 MUTEX_RECEIVE(mtx);
194 return rv;
195 }
196
197 static inline int
198 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
199 {
200 int rv;
201 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
202 MUTEX_RECEIVE(mtx);
203 return rv;
204 }
205
206 static inline void
207 MUTEX_RELEASE(kmutex_t *mtx)
208 {
209 MUTEX_GIVE(mtx);
210 mtx->mtx_owner = 0;
211 }
212
213 static inline void
214 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
215 {
216 /* nothing */
217 }
218 #endif /* __HAVE_SIMPLE_MUTEXES */
219
220 /*
221 * Patch in stubs via strong alias where they are not available.
222 */
223
224 #if defined(LOCKDEBUG)
225 #undef __HAVE_MUTEX_STUBS
226 #undef __HAVE_SPIN_MUTEX_STUBS
227 #endif
228
229 #ifndef __HAVE_MUTEX_STUBS
230 __strong_alias(mutex_enter,mutex_vector_enter);
231 __strong_alias(mutex_exit,mutex_vector_exit);
232 #endif
233
234 #ifndef __HAVE_SPIN_MUTEX_STUBS
235 __strong_alias(mutex_spin_enter,mutex_vector_enter);
236 __strong_alias(mutex_spin_exit,mutex_vector_exit);
237 #endif
238
239 void mutex_abort(kmutex_t *, const char *, const char *);
240 void mutex_dump(volatile void *);
241 int mutex_onproc(uintptr_t, struct cpu_info **);
242 static struct lwp *mutex_owner(wchan_t);
243
244 lockops_t mutex_spin_lockops = {
245 "Mutex",
246 0,
247 mutex_dump
248 };
249
250 lockops_t mutex_adaptive_lockops = {
251 "Mutex",
252 1,
253 mutex_dump
254 };
255
256 syncobj_t mutex_syncobj = {
257 SOBJ_SLEEPQ_SORTED,
258 turnstile_unsleep,
259 turnstile_changepri,
260 sleepq_lendpri,
261 mutex_owner,
262 };
263
264 /*
265 * mutex_dump:
266 *
267 * Dump the contents of a mutex structure.
268 */
269 void
270 mutex_dump(volatile void *cookie)
271 {
272 volatile kmutex_t *mtx = cookie;
273
274 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
275 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
276 MUTEX_SPIN_P(mtx));
277 }
278
279 /*
280 * mutex_abort:
281 *
282 * Dump information about an error and panic the system. This
283 * generates a lot of machine code in the DIAGNOSTIC case, so
284 * we ask the compiler to not inline it.
285 */
286
287 #if __GNUC_PREREQ__(3, 0)
288 __attribute ((noinline)) __attribute ((noreturn))
289 #endif
290 void
291 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
292 {
293
294 LOCKDEBUG_ABORT(MUTEX_GETID(mtx), mtx, (MUTEX_SPIN_P(mtx) ?
295 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
296 /* NOTREACHED */
297 }
298
299 /*
300 * mutex_init:
301 *
302 * Initialize a mutex for use. Note that adaptive mutexes are in
303 * essence spin mutexes that can sleep to avoid deadlock and wasting
304 * CPU time. We can't easily provide a type of mutex that always
305 * sleeps - see comments in mutex_vector_enter() about releasing
306 * mutexes unlocked.
307 */
308 void
309 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
310 {
311 u_int id;
312
313 memset(mtx, 0, sizeof(*mtx));
314
315 switch (type) {
316 case MUTEX_ADAPTIVE:
317 case MUTEX_DEFAULT:
318 KASSERT(ipl == IPL_NONE);
319 break;
320 case MUTEX_DRIVER:
321 type = (ipl == IPL_NONE ? MUTEX_ADAPTIVE : MUTEX_SPIN);
322 break;
323 default:
324 break;
325 }
326
327 switch (type) {
328 case MUTEX_NODEBUG:
329 id = LOCKDEBUG_ALLOC(mtx, NULL);
330 MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
331 break;
332 case MUTEX_ADAPTIVE:
333 case MUTEX_DEFAULT:
334 id = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops);
335 MUTEX_INITIALIZE_ADAPTIVE(mtx, id);
336 break;
337 case MUTEX_SPIN:
338 id = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops);
339 MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
340 break;
341 default:
342 panic("mutex_init: impossible type");
343 break;
344 }
345 }
346
347 /*
348 * mutex_destroy:
349 *
350 * Tear down a mutex.
351 */
352 void
353 mutex_destroy(kmutex_t *mtx)
354 {
355
356 if (MUTEX_ADAPTIVE_P(mtx)) {
357 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
358 !MUTEX_HAS_WAITERS(mtx));
359 } else {
360 MUTEX_ASSERT(mtx, mtx->mtx_lock != __SIMPLELOCK_LOCKED);
361 }
362
363 LOCKDEBUG_FREE(mtx, MUTEX_GETID(mtx));
364 MUTEX_DESTROY(mtx);
365 }
366
367 /*
368 * mutex_onproc:
369 *
370 * Return true if an adaptive mutex owner is running on a CPU in the
371 * system. If the target is waiting on the kernel big lock, then we
372 * must release it. This is necessary to avoid deadlock.
373 *
374 * Note that we can't use the mutex owner field as an LWP pointer. We
375 * don't have full control over the timing of our execution, and so the
376 * pointer could be completely invalid by the time we dereference it.
377 */
378 #ifdef MULTIPROCESSOR
379 int
380 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
381 {
382 CPU_INFO_ITERATOR cii;
383 struct cpu_info *ci;
384 struct lwp *l;
385
386 if (!MUTEX_OWNED(owner))
387 return 0;
388 l = (struct lwp *)MUTEX_OWNER(owner);
389
390 /* See if the target is running on a CPU somewhere. */
391 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
392 goto run;
393 for (CPU_INFO_FOREACH(cii, ci))
394 if (ci->ci_curlwp == l)
395 goto run;
396
397 /* No: it may be safe to block now. */
398 *cip = NULL;
399 return 0;
400
401 run:
402 /* Target is running; do we need to block? */
403 *cip = ci;
404 return ci->ci_biglock_wanted != l;
405 }
406 #endif /* MULTIPROCESSOR */
407
408 /*
409 * mutex_vector_enter:
410 *
411 * Support routine for mutex_enter() that must handles all cases. In
412 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
413 * fast-path stubs are available. If an mutex_spin_enter() stub is
414 * not available, then it is also aliased directly here.
415 */
416 void
417 mutex_vector_enter(kmutex_t *mtx)
418 {
419 uintptr_t owner, curthread;
420 turnstile_t *ts;
421 #ifdef MULTIPROCESSOR
422 struct cpu_info *ci = NULL;
423 u_int count;
424 #endif
425 LOCKSTAT_COUNTER(spincnt);
426 LOCKSTAT_COUNTER(slpcnt);
427 LOCKSTAT_TIMER(spintime);
428 LOCKSTAT_TIMER(slptime);
429 LOCKSTAT_FLAG(lsflag);
430
431 /*
432 * Handle spin mutexes.
433 */
434 if (MUTEX_SPIN_P(mtx)) {
435 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
436 u_int spins = 0;
437 #endif
438 MUTEX_SPIN_SPLRAISE(mtx);
439 MUTEX_WANTLOCK(mtx);
440 #ifdef FULL
441 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
442 MUTEX_LOCKED(mtx);
443 return;
444 }
445 #if !defined(MULTIPROCESSOR)
446 MUTEX_ABORT(mtx, "locking against myself");
447 #else /* !MULTIPROCESSOR */
448
449 LOCKSTAT_ENTER(lsflag);
450 LOCKSTAT_START_TIMER(lsflag, spintime);
451 count = SPINLOCK_BACKOFF_MIN;
452
453 /*
454 * Spin testing the lock word and do exponential backoff
455 * to reduce cache line ping-ponging between CPUs.
456 */
457 do {
458 if (panicstr != NULL)
459 break;
460 while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
461 SPINLOCK_BACKOFF(count);
462 #ifdef LOCKDEBUG
463 if (SPINLOCK_SPINOUT(spins))
464 MUTEX_ABORT(mtx, "spinout");
465 #endif /* LOCKDEBUG */
466 }
467 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
468
469 if (count != SPINLOCK_BACKOFF_MIN) {
470 LOCKSTAT_STOP_TIMER(lsflag, spintime);
471 LOCKSTAT_EVENT(lsflag, mtx,
472 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
473 }
474 LOCKSTAT_EXIT(lsflag);
475 #endif /* !MULTIPROCESSOR */
476 #endif /* FULL */
477 MUTEX_LOCKED(mtx);
478 return;
479 }
480
481 curthread = (uintptr_t)curlwp;
482
483 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
484 MUTEX_ASSERT(mtx, curthread != 0);
485 MUTEX_WANTLOCK(mtx);
486
487 #ifdef LOCKDEBUG
488 if (panicstr == NULL) {
489 simple_lock_only_held(NULL, "mutex_enter");
490 #ifdef MULTIPROCESSOR
491 LOCKDEBUG_BARRIER(&kernel_lock, 1);
492 #else
493 LOCKDEBUG_BARRIER(NULL, 1);
494 #endif
495 }
496 #endif
497
498 LOCKSTAT_ENTER(lsflag);
499
500 /*
501 * Adaptive mutex; spin trying to acquire the mutex. If we
502 * determine that the owner is not running on a processor,
503 * then we stop spinning, and sleep instead.
504 */
505 for (;;) {
506 owner = mtx->mtx_owner;
507 if (!MUTEX_OWNED(owner)) {
508 /*
509 * Mutex owner clear could mean two things:
510 *
511 * * The mutex has been released.
512 * * The owner field hasn't been set yet.
513 *
514 * Try to acquire it again. If that fails,
515 * we'll just loop again.
516 */
517 if (MUTEX_ACQUIRE(mtx, curthread))
518 break;
519 continue;
520 }
521
522 if (panicstr != NULL)
523 return;
524 if (MUTEX_OWNER(owner) == curthread)
525 MUTEX_ABORT(mtx, "locking against myself");
526
527 #ifdef MULTIPROCESSOR
528 /*
529 * Check to see if the owner is running on a processor.
530 * If so, then we should just spin, as the owner will
531 * likely release the lock very soon.
532 */
533 if (mutex_onproc(owner, &ci)) {
534 LOCKSTAT_START_TIMER(lsflag, spintime);
535 count = SPINLOCK_BACKOFF_MIN;
536 for (;;) {
537 owner = mtx->mtx_owner;
538 if (!mutex_onproc(owner, &ci))
539 break;
540 SPINLOCK_BACKOFF(count);
541 }
542 LOCKSTAT_STOP_TIMER(lsflag, spintime);
543 LOCKSTAT_COUNT(spincnt, 1);
544 if (!MUTEX_OWNED(owner))
545 continue;
546 }
547 #endif
548
549 ts = turnstile_lookup(mtx);
550
551 /*
552 * Once we have the turnstile chain interlock, mark the
553 * mutex has having waiters. If that fails, spin again:
554 * chances are that the mutex has been released.
555 */
556 if (!MUTEX_SET_WAITERS(mtx, owner)) {
557 turnstile_exit(mtx);
558 continue;
559 }
560
561 #ifdef MULTIPROCESSOR
562 /*
563 * mutex_exit() is permitted to release the mutex without
564 * any interlocking instructions, and the following can
565 * occur as a result:
566 *
567 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
568 * ---------------------------- ----------------------------
569 * .. acquire cache line
570 * .. test for waiters
571 * acquire cache line <- lose cache line
572 * lock cache line ..
573 * verify mutex is held ..
574 * set waiters ..
575 * unlock cache line ..
576 * lose cache line -> acquire cache line
577 * .. clear lock word, waiters
578 * return success
579 *
580 * There is a another race that can occur: a third CPU could
581 * acquire the mutex as soon as it is released. Since
582 * adaptive mutexes are primarily spin mutexes, this is not
583 * something that we need to worry about too much. What we
584 * do need to ensure is that the waiters bit gets set.
585 *
586 * To allow the unlocked release, we need to make some
587 * assumptions here:
588 *
589 * o Release is the only non-atomic/unlocked operation
590 * that can be performed on the mutex. (It must still
591 * be atomic on the local CPU, e.g. in case interrupted
592 * or preempted).
593 *
594 * o At any given time, MUTEX_SET_WAITERS() can only ever
595 * be in progress on one CPU in the system - guarenteed
596 * by the turnstile chain lock.
597 *
598 * o No other operations other than MUTEX_SET_WAITERS()
599 * and release can modify a mutex with a non-zero
600 * owner field.
601 *
602 * o The result of a successful MUTEX_SET_WAITERS() call
603 * is an unbuffered write that is immediately visible
604 * to all other processors in the system.
605 *
606 * o If the holding LWP switches away, it posts a store
607 * fence before changing curlwp, ensuring that any
608 * overwrite of the mutex waiters flag by mutex_exit()
609 * completes before the modification of curlwp becomes
610 * visible to this CPU.
611 *
612 * o mi_switch() posts a store fence before setting curlwp
613 * and before resuming execution of an LWP.
614 *
615 * o _kernel_lock() posts a store fence before setting
616 * curcpu()->ci_biglock_wanted, and after clearing it.
617 * This ensures that any overwrite of the mutex waiters
618 * flag by mutex_exit() completes before the modification
619 * of ci_biglock_wanted becomes visible.
620 *
621 * We now post a read memory barrier (after setting the
622 * waiters field) and check the lock holder's status again.
623 * Some of the possible outcomes (not an exhaustive list):
624 *
625 * 1. The onproc check returns true: the holding LWP is
626 * running again. The lock may be released soon and
627 * we should spin. Importantly, we can't trust the
628 * value of the waiters flag.
629 *
630 * 2. The onproc check returns false: the holding LWP is
631 * not running. We now have the oppertunity to check
632 * if mutex_exit() has blatted the modifications made
633 * by MUTEX_SET_WAITERS().
634 *
635 * 3. The onproc check returns false: the holding LWP may
636 * or may not be running. It has context switched at
637 * some point during our check. Again, we have the
638 * chance to see if the waiters bit is still set or
639 * has been overwritten.
640 *
641 * 4. The onproc check returns false: the holding LWP is
642 * running on a CPU, but wants the big lock. It's OK
643 * to check the waiters field in this case.
644 *
645 * 5. The has-waiters check fails: the mutex has been
646 * released, the waiters flag cleared and another LWP
647 * now owns the mutex.
648 *
649 * 6. The has-waiters check fails: the mutex has been
650 * released.
651 *
652 * If the waiters bit is not set it's unsafe to go asleep,
653 * as we might never be awoken.
654 */
655 if ((mb_read(), mutex_onproc(owner, &ci)) ||
656 (mb_read(), !MUTEX_HAS_WAITERS(mtx))) {
657 turnstile_exit(mtx);
658 continue;
659 }
660 #endif /* MULTIPROCESSOR */
661
662 LOCKSTAT_START_TIMER(lsflag, slptime);
663
664 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
665
666 LOCKSTAT_STOP_TIMER(lsflag, slptime);
667 LOCKSTAT_COUNT(slpcnt, 1);
668 }
669
670 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
671 slpcnt, slptime);
672 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
673 spincnt, spintime);
674 LOCKSTAT_EXIT(lsflag);
675
676 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
677 MUTEX_LOCKED(mtx);
678 }
679
680 /*
681 * mutex_vector_exit:
682 *
683 * Support routine for mutex_exit() that handles all cases.
684 */
685 void
686 mutex_vector_exit(kmutex_t *mtx)
687 {
688 turnstile_t *ts;
689 uintptr_t curthread;
690
691 if (MUTEX_SPIN_P(mtx)) {
692 #ifdef FULL
693 if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
694 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
695 MUTEX_UNLOCKED(mtx);
696 __cpu_simple_unlock(&mtx->mtx_lock);
697 #endif
698 MUTEX_SPIN_SPLRESTORE(mtx);
699 return;
700 }
701
702 if (__predict_false((uintptr_t)panicstr | cold)) {
703 MUTEX_UNLOCKED(mtx);
704 MUTEX_RELEASE(mtx);
705 return;
706 }
707
708 curthread = (uintptr_t)curlwp;
709 MUTEX_DASSERT(mtx, curthread != 0);
710 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
711 MUTEX_UNLOCKED(mtx);
712
713 #ifdef LOCKDEBUG
714 /*
715 * Avoid having to take the turnstile chain lock every time
716 * around. Raise the priority level to splhigh() in order
717 * to disable preemption and so make the following atomic.
718 */
719 {
720 int s = splhigh();
721 if (!MUTEX_HAS_WAITERS(mtx)) {
722 MUTEX_RELEASE(mtx);
723 splx(s);
724 return;
725 }
726 splx(s);
727 }
728 #endif
729
730 /*
731 * Get this lock's turnstile. This gets the interlock on
732 * the sleep queue. Once we have that, we can clear the
733 * lock. If there was no turnstile for the lock, there
734 * were no waiters remaining.
735 */
736 ts = turnstile_lookup(mtx);
737
738 if (ts == NULL) {
739 MUTEX_RELEASE(mtx);
740 turnstile_exit(mtx);
741 } else {
742 MUTEX_RELEASE(mtx);
743 turnstile_wakeup(ts, TS_WRITER_Q,
744 TS_WAITERS(ts, TS_WRITER_Q), NULL);
745 }
746 }
747
748 #ifndef __HAVE_SIMPLE_MUTEXES
749 /*
750 * mutex_wakeup:
751 *
752 * Support routine for mutex_exit() that wakes up all waiters.
753 * We assume that the mutex has been released, but it need not
754 * be.
755 */
756 void
757 mutex_wakeup(kmutex_t *mtx)
758 {
759 turnstile_t *ts;
760
761 ts = turnstile_lookup(mtx);
762 if (ts == NULL) {
763 turnstile_exit(mtx);
764 return;
765 }
766 MUTEX_CLEAR_WAITERS(mtx);
767 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
768 }
769 #endif /* !__HAVE_SIMPLE_MUTEXES */
770
771 /*
772 * mutex_owned:
773 *
774 * Return true if the current LWP (adaptive) or CPU (spin)
775 * holds the mutex.
776 */
777 int
778 mutex_owned(kmutex_t *mtx)
779 {
780
781 if (MUTEX_ADAPTIVE_P(mtx))
782 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
783 #ifdef FULL
784 return mtx->mtx_lock == __SIMPLELOCK_LOCKED;
785 #else
786 return 1;
787 #endif
788 }
789
790 /*
791 * mutex_owner:
792 *
793 * Return the current owner of an adaptive mutex. Used for
794 * priority inheritance.
795 */
796 static struct lwp *
797 mutex_owner(wchan_t obj)
798 {
799 kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
800
801 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
802 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
803 }
804
805 /*
806 * mutex_tryenter:
807 *
808 * Try to acquire the mutex; return non-zero if we did.
809 */
810 int
811 mutex_tryenter(kmutex_t *mtx)
812 {
813 uintptr_t curthread;
814
815 /*
816 * Handle spin mutexes.
817 */
818 if (MUTEX_SPIN_P(mtx)) {
819 MUTEX_SPIN_SPLRAISE(mtx);
820 #ifdef FULL
821 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
822 MUTEX_WANTLOCK(mtx);
823 MUTEX_LOCKED(mtx);
824 return 1;
825 }
826 MUTEX_SPIN_SPLRESTORE(mtx);
827 #else
828 MUTEX_WANTLOCK(mtx);
829 MUTEX_LOCKED(mtx);
830 return 1;
831 #endif
832 } else {
833 curthread = (uintptr_t)curlwp;
834 MUTEX_ASSERT(mtx, curthread != 0);
835 if (MUTEX_ACQUIRE(mtx, curthread)) {
836 MUTEX_WANTLOCK(mtx);
837 MUTEX_LOCKED(mtx);
838 MUTEX_DASSERT(mtx,
839 MUTEX_OWNER(mtx->mtx_owner) == curthread);
840 return 1;
841 }
842 }
843
844 return 0;
845 }
846
847 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
848 /*
849 * mutex_spin_retry:
850 *
851 * Support routine for mutex_spin_enter(). Assumes that the caller
852 * has already raised the SPL, and adjusted counters.
853 */
854 void
855 mutex_spin_retry(kmutex_t *mtx)
856 {
857 #ifdef MULTIPROCESSOR
858 u_int count;
859 LOCKSTAT_TIMER(spintime);
860 LOCKSTAT_FLAG(lsflag);
861 #ifdef LOCKDEBUG
862 u_int spins = 0;
863 #endif /* LOCKDEBUG */
864
865 MUTEX_WANTLOCK(mtx);
866
867 LOCKSTAT_ENTER(lsflag);
868 LOCKSTAT_START_TIMER(lsflag, spintime);
869 count = SPINLOCK_BACKOFF_MIN;
870
871 /*
872 * Spin testing the lock word and do exponential backoff
873 * to reduce cache line ping-ponging between CPUs.
874 */
875 do {
876 if (panicstr != NULL)
877 break;
878 while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
879 SPINLOCK_BACKOFF(count);
880 #ifdef LOCKDEBUG
881 if (SPINLOCK_SPINOUT(spins))
882 MUTEX_ABORT(mtx, "spinout");
883 #endif /* LOCKDEBUG */
884 }
885 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
886
887 LOCKSTAT_STOP_TIMER(lsflag, spintime);
888 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
889 LOCKSTAT_EXIT(lsflag);
890
891 MUTEX_LOCKED(mtx);
892 #else /* MULTIPROCESSOR */
893 MUTEX_ABORT(mtx, "locking against myself");
894 #endif /* MULTIPROCESSOR */
895 }
896 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
897