kern_mutex.c revision 1.21 1 /* $NetBSD: kern_mutex.c,v 1.21 2007/11/04 17:26:02 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel mutex implementation, modeled after those found in Solaris,
41 * a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #define __MUTEX_PRIVATE
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.21 2007/11/04 17:26:02 pooka Exp $");
51
52 #include "opt_multiprocessor.h"
53
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62
63 #include <dev/lockstat.h>
64
65 #include <sys/intr.h>
66
67 /*
68 * When not running a debug kernel, spin mutexes are not much
69 * more than an splraiseipl() and splx() pair.
70 */
71
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define FULL
74 #endif
75
76 /*
77 * Debugging support.
78 */
79
80 #define MUTEX_WANTLOCK(mtx) \
81 LOCKDEBUG_WANTLOCK(MUTEX_GETID(mtx), \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_LOCKED(mtx) \
84 LOCKDEBUG_LOCKED(MUTEX_GETID(mtx), \
85 (uintptr_t)__builtin_return_address(0), 0)
86 #define MUTEX_UNLOCKED(mtx) \
87 LOCKDEBUG_UNLOCKED(MUTEX_GETID(mtx), \
88 (uintptr_t)__builtin_return_address(0), 0)
89 #define MUTEX_ABORT(mtx, msg) \
90 mutex_abort(mtx, __func__, msg)
91
92 #if defined(LOCKDEBUG)
93
94 #define MUTEX_DASSERT(mtx, cond) \
95 do { \
96 if (!(cond)) \
97 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0);
99
100 #else /* LOCKDEBUG */
101
102 #define MUTEX_DASSERT(mtx, cond) /* nothing */
103
104 #endif /* LOCKDEBUG */
105
106 #if defined(DIAGNOSTIC)
107
108 #define MUTEX_ASSERT(mtx, cond) \
109 do { \
110 if (!(cond)) \
111 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
112 } while (/* CONSTCOND */ 0)
113
114 #else /* DIAGNOSTIC */
115
116 #define MUTEX_ASSERT(mtx, cond) /* nothing */
117
118 #endif /* DIAGNOSTIC */
119
120 /*
121 * Spin mutex SPL save / restore.
122 */
123 #ifndef MUTEX_COUNT_BIAS
124 #define MUTEX_COUNT_BIAS 0
125 #endif
126
127 #define MUTEX_SPIN_SPLRAISE(mtx) \
128 do { \
129 struct cpu_info *x__ci = curcpu(); \
130 int x__cnt, s; \
131 x__cnt = x__ci->ci_mtx_count--; \
132 s = splraiseipl(mtx->mtx_ipl); \
133 if (x__cnt == MUTEX_COUNT_BIAS) \
134 x__ci->ci_mtx_oldspl = (s); \
135 } while (/* CONSTCOND */ 0)
136
137 #define MUTEX_SPIN_SPLRESTORE(mtx) \
138 do { \
139 struct cpu_info *x__ci = curcpu(); \
140 int s = x__ci->ci_mtx_oldspl; \
141 __insn_barrier(); \
142 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
143 splx(s); \
144 } while (/* CONSTCOND */ 0)
145
146 /*
147 * For architectures that provide 'simple' mutexes: they provide a
148 * CAS function that is either MP-safe, or does not need to be MP
149 * safe. Adaptive mutexes on these architectures do not require an
150 * additional interlock.
151 */
152
153 #ifdef __HAVE_SIMPLE_MUTEXES
154
155 #define MUTEX_OWNER(owner) \
156 (owner & MUTEX_THREAD)
157 #define MUTEX_OWNED(owner) \
158 (owner != 0)
159 #define MUTEX_HAS_WAITERS(mtx) \
160 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
161
162 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, id) \
163 do { \
164 (mtx)->mtx_id = (id); \
165 } while (/* CONSTCOND */ 0);
166
167 #define MUTEX_INITIALIZE_SPIN(mtx, id, ipl) \
168 do { \
169 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
170 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
171 (mtx)->mtx_id = (id); \
172 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
173 } while (/* CONSTCOND */ 0)
174
175 #define MUTEX_DESTROY(mtx) \
176 do { \
177 (mtx)->mtx_owner = MUTEX_THREAD; \
178 (mtx)->mtx_id = -1; \
179 } while (/* CONSTCOND */ 0);
180
181 #define MUTEX_SPIN_P(mtx) \
182 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
183 #define MUTEX_ADAPTIVE_P(mtx) \
184 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
185
186 #define MUTEX_GETID(mtx) ((mtx)->mtx_id)
187
188 static inline int
189 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
190 {
191 int rv;
192 rv = MUTEX_CAS(&mtx->mtx_owner, 0UL, curthread);
193 MUTEX_RECEIVE(mtx);
194 return rv;
195 }
196
197 static inline int
198 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
199 {
200 int rv;
201 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
202 MUTEX_RECEIVE(mtx);
203 return rv;
204 }
205
206 static inline void
207 MUTEX_RELEASE(kmutex_t *mtx)
208 {
209 MUTEX_GIVE(mtx);
210 mtx->mtx_owner = 0;
211 }
212
213 static inline void
214 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
215 {
216 /* nothing */
217 }
218 #endif /* __HAVE_SIMPLE_MUTEXES */
219
220 /*
221 * Patch in stubs via strong alias where they are not available.
222 */
223
224 #if defined(LOCKDEBUG)
225 #undef __HAVE_MUTEX_STUBS
226 #undef __HAVE_SPIN_MUTEX_STUBS
227 #endif
228
229 #ifndef __HAVE_MUTEX_STUBS
230 __strong_alias(mutex_enter,mutex_vector_enter);
231 __strong_alias(mutex_exit,mutex_vector_exit);
232 #endif
233
234 #ifndef __HAVE_SPIN_MUTEX_STUBS
235 __strong_alias(mutex_spin_enter,mutex_vector_enter);
236 __strong_alias(mutex_spin_exit,mutex_vector_exit);
237 #endif
238
239 void mutex_abort(kmutex_t *, const char *, const char *);
240 void mutex_dump(volatile void *);
241 int mutex_onproc(uintptr_t, struct cpu_info **);
242 static struct lwp *mutex_owner(wchan_t);
243
244 lockops_t mutex_spin_lockops = {
245 "Mutex",
246 0,
247 mutex_dump
248 };
249
250 lockops_t mutex_adaptive_lockops = {
251 "Mutex",
252 1,
253 mutex_dump
254 };
255
256 syncobj_t mutex_syncobj = {
257 SOBJ_SLEEPQ_SORTED,
258 turnstile_unsleep,
259 turnstile_changepri,
260 sleepq_lendpri,
261 mutex_owner,
262 };
263
264 /*
265 * mutex_dump:
266 *
267 * Dump the contents of a mutex structure.
268 */
269 void
270 mutex_dump(volatile void *cookie)
271 {
272 volatile kmutex_t *mtx = cookie;
273
274 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
275 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
276 MUTEX_SPIN_P(mtx));
277 }
278
279 /*
280 * mutex_abort:
281 *
282 * Dump information about an error and panic the system. This
283 * generates a lot of machine code in the DIAGNOSTIC case, so
284 * we ask the compiler to not inline it.
285 */
286
287 #if __GNUC_PREREQ__(3, 0)
288 __attribute ((noinline)) __attribute ((noreturn))
289 #endif
290 void
291 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
292 {
293
294 LOCKDEBUG_ABORT(MUTEX_GETID(mtx), mtx, (MUTEX_SPIN_P(mtx) ?
295 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
296 /* NOTREACHED */
297 }
298
299 /*
300 * mutex_init:
301 *
302 * Initialize a mutex for use. Note that adaptive mutexes are in
303 * essence spin mutexes that can sleep to avoid deadlock and wasting
304 * CPU time. We can't easily provide a type of mutex that always
305 * sleeps - see comments in mutex_vector_enter() about releasing
306 * mutexes unlocked.
307 */
308 void
309 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
310 {
311 u_int id;
312
313 memset(mtx, 0, sizeof(*mtx));
314
315 switch (type) {
316 case MUTEX_ADAPTIVE:
317 case MUTEX_DEFAULT:
318 KASSERT(ipl == IPL_NONE);
319 break;
320 case MUTEX_DRIVER:
321 type = (ipl == IPL_NONE ? MUTEX_ADAPTIVE : MUTEX_SPIN);
322 break;
323 default:
324 break;
325 }
326
327 switch (type) {
328 case MUTEX_NODEBUG:
329 id = LOCKDEBUG_ALLOC(mtx, NULL,
330 (uintptr_t)__builtin_return_address(0));
331 MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
332 break;
333 case MUTEX_ADAPTIVE:
334 case MUTEX_DEFAULT:
335 id = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
336 (uintptr_t)__builtin_return_address(0));
337 MUTEX_INITIALIZE_ADAPTIVE(mtx, id);
338 break;
339 case MUTEX_SPIN:
340 id = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
341 (uintptr_t)__builtin_return_address(0));
342 MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
343 break;
344 default:
345 panic("mutex_init: impossible type");
346 break;
347 }
348 }
349
350 /*
351 * mutex_destroy:
352 *
353 * Tear down a mutex.
354 */
355 void
356 mutex_destroy(kmutex_t *mtx)
357 {
358
359 if (MUTEX_ADAPTIVE_P(mtx)) {
360 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
361 !MUTEX_HAS_WAITERS(mtx));
362 } else {
363 MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
364 }
365
366 LOCKDEBUG_FREE(mtx, MUTEX_GETID(mtx));
367 MUTEX_DESTROY(mtx);
368 }
369
370 /*
371 * mutex_onproc:
372 *
373 * Return true if an adaptive mutex owner is running on a CPU in the
374 * system. If the target is waiting on the kernel big lock, then we
375 * must release it. This is necessary to avoid deadlock.
376 *
377 * Note that we can't use the mutex owner field as an LWP pointer. We
378 * don't have full control over the timing of our execution, and so the
379 * pointer could be completely invalid by the time we dereference it.
380 */
381 #ifdef MULTIPROCESSOR
382 int
383 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
384 {
385 CPU_INFO_ITERATOR cii;
386 struct cpu_info *ci;
387 struct lwp *l;
388
389 if (!MUTEX_OWNED(owner))
390 return 0;
391 l = (struct lwp *)MUTEX_OWNER(owner);
392
393 /* See if the target is running on a CPU somewhere. */
394 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
395 goto run;
396 for (CPU_INFO_FOREACH(cii, ci))
397 if (ci->ci_curlwp == l)
398 goto run;
399
400 /* No: it may be safe to block now. */
401 *cip = NULL;
402 return 0;
403
404 run:
405 /* Target is running; do we need to block? */
406 *cip = ci;
407 return ci->ci_biglock_wanted != l;
408 }
409 #endif /* MULTIPROCESSOR */
410
411 /*
412 * mutex_vector_enter:
413 *
414 * Support routine for mutex_enter() that must handles all cases. In
415 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
416 * fast-path stubs are available. If an mutex_spin_enter() stub is
417 * not available, then it is also aliased directly here.
418 */
419 void
420 mutex_vector_enter(kmutex_t *mtx)
421 {
422 uintptr_t owner, curthread;
423 turnstile_t *ts;
424 #ifdef MULTIPROCESSOR
425 struct cpu_info *ci = NULL;
426 u_int count;
427 #endif
428 LOCKSTAT_COUNTER(spincnt);
429 LOCKSTAT_COUNTER(slpcnt);
430 LOCKSTAT_TIMER(spintime);
431 LOCKSTAT_TIMER(slptime);
432 LOCKSTAT_FLAG(lsflag);
433
434 /*
435 * Handle spin mutexes.
436 */
437 if (MUTEX_SPIN_P(mtx)) {
438 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
439 u_int spins = 0;
440 #endif
441 MUTEX_SPIN_SPLRAISE(mtx);
442 MUTEX_WANTLOCK(mtx);
443 #ifdef FULL
444 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
445 MUTEX_LOCKED(mtx);
446 return;
447 }
448 #if !defined(MULTIPROCESSOR)
449 MUTEX_ABORT(mtx, "locking against myself");
450 #else /* !MULTIPROCESSOR */
451
452 LOCKSTAT_ENTER(lsflag);
453 LOCKSTAT_START_TIMER(lsflag, spintime);
454 count = SPINLOCK_BACKOFF_MIN;
455
456 /*
457 * Spin testing the lock word and do exponential backoff
458 * to reduce cache line ping-ponging between CPUs.
459 */
460 do {
461 if (panicstr != NULL)
462 break;
463 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
464 SPINLOCK_BACKOFF(count);
465 #ifdef LOCKDEBUG
466 if (SPINLOCK_SPINOUT(spins))
467 MUTEX_ABORT(mtx, "spinout");
468 #endif /* LOCKDEBUG */
469 }
470 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
471
472 if (count != SPINLOCK_BACKOFF_MIN) {
473 LOCKSTAT_STOP_TIMER(lsflag, spintime);
474 LOCKSTAT_EVENT(lsflag, mtx,
475 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
476 }
477 LOCKSTAT_EXIT(lsflag);
478 #endif /* !MULTIPROCESSOR */
479 #endif /* FULL */
480 MUTEX_LOCKED(mtx);
481 return;
482 }
483
484 curthread = (uintptr_t)curlwp;
485
486 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
487 MUTEX_ASSERT(mtx, curthread != 0);
488 MUTEX_WANTLOCK(mtx);
489
490 #ifdef LOCKDEBUG
491 if (panicstr == NULL) {
492 simple_lock_only_held(NULL, "mutex_enter");
493 #ifdef MULTIPROCESSOR
494 LOCKDEBUG_BARRIER(&kernel_lock, 1);
495 #else
496 LOCKDEBUG_BARRIER(NULL, 1);
497 #endif
498 }
499 #endif
500
501 LOCKSTAT_ENTER(lsflag);
502
503 /*
504 * Adaptive mutex; spin trying to acquire the mutex. If we
505 * determine that the owner is not running on a processor,
506 * then we stop spinning, and sleep instead.
507 */
508 for (;;) {
509 owner = mtx->mtx_owner;
510 if (!MUTEX_OWNED(owner)) {
511 /*
512 * Mutex owner clear could mean two things:
513 *
514 * * The mutex has been released.
515 * * The owner field hasn't been set yet.
516 *
517 * Try to acquire it again. If that fails,
518 * we'll just loop again.
519 */
520 if (MUTEX_ACQUIRE(mtx, curthread))
521 break;
522 continue;
523 }
524
525 if (panicstr != NULL)
526 return;
527 if (MUTEX_OWNER(owner) == curthread)
528 MUTEX_ABORT(mtx, "locking against myself");
529
530 #ifdef MULTIPROCESSOR
531 /*
532 * Check to see if the owner is running on a processor.
533 * If so, then we should just spin, as the owner will
534 * likely release the lock very soon.
535 */
536 if (mutex_onproc(owner, &ci)) {
537 LOCKSTAT_START_TIMER(lsflag, spintime);
538 count = SPINLOCK_BACKOFF_MIN;
539 for (;;) {
540 owner = mtx->mtx_owner;
541 if (!mutex_onproc(owner, &ci))
542 break;
543 SPINLOCK_BACKOFF(count);
544 }
545 LOCKSTAT_STOP_TIMER(lsflag, spintime);
546 LOCKSTAT_COUNT(spincnt, 1);
547 if (!MUTEX_OWNED(owner))
548 continue;
549 }
550 #endif
551
552 ts = turnstile_lookup(mtx);
553
554 /*
555 * Once we have the turnstile chain interlock, mark the
556 * mutex has having waiters. If that fails, spin again:
557 * chances are that the mutex has been released.
558 */
559 if (!MUTEX_SET_WAITERS(mtx, owner)) {
560 turnstile_exit(mtx);
561 continue;
562 }
563
564 #ifdef MULTIPROCESSOR
565 /*
566 * mutex_exit() is permitted to release the mutex without
567 * any interlocking instructions, and the following can
568 * occur as a result:
569 *
570 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
571 * ---------------------------- ----------------------------
572 * .. acquire cache line
573 * .. test for waiters
574 * acquire cache line <- lose cache line
575 * lock cache line ..
576 * verify mutex is held ..
577 * set waiters ..
578 * unlock cache line ..
579 * lose cache line -> acquire cache line
580 * .. clear lock word, waiters
581 * return success
582 *
583 * There is a another race that can occur: a third CPU could
584 * acquire the mutex as soon as it is released. Since
585 * adaptive mutexes are primarily spin mutexes, this is not
586 * something that we need to worry about too much. What we
587 * do need to ensure is that the waiters bit gets set.
588 *
589 * To allow the unlocked release, we need to make some
590 * assumptions here:
591 *
592 * o Release is the only non-atomic/unlocked operation
593 * that can be performed on the mutex. (It must still
594 * be atomic on the local CPU, e.g. in case interrupted
595 * or preempted).
596 *
597 * o At any given time, MUTEX_SET_WAITERS() can only ever
598 * be in progress on one CPU in the system - guaranteed
599 * by the turnstile chain lock.
600 *
601 * o No other operations other than MUTEX_SET_WAITERS()
602 * and release can modify a mutex with a non-zero
603 * owner field.
604 *
605 * o The result of a successful MUTEX_SET_WAITERS() call
606 * is an unbuffered write that is immediately visible
607 * to all other processors in the system.
608 *
609 * o If the holding LWP switches away, it posts a store
610 * fence before changing curlwp, ensuring that any
611 * overwrite of the mutex waiters flag by mutex_exit()
612 * completes before the modification of curlwp becomes
613 * visible to this CPU.
614 *
615 * o mi_switch() posts a store fence before setting curlwp
616 * and before resuming execution of an LWP.
617 *
618 * o _kernel_lock() posts a store fence before setting
619 * curcpu()->ci_biglock_wanted, and after clearing it.
620 * This ensures that any overwrite of the mutex waiters
621 * flag by mutex_exit() completes before the modification
622 * of ci_biglock_wanted becomes visible.
623 *
624 * We now post a read memory barrier (after setting the
625 * waiters field) and check the lock holder's status again.
626 * Some of the possible outcomes (not an exhaustive list):
627 *
628 * 1. The onproc check returns true: the holding LWP is
629 * running again. The lock may be released soon and
630 * we should spin. Importantly, we can't trust the
631 * value of the waiters flag.
632 *
633 * 2. The onproc check returns false: the holding LWP is
634 * not running. We now have the oppertunity to check
635 * if mutex_exit() has blatted the modifications made
636 * by MUTEX_SET_WAITERS().
637 *
638 * 3. The onproc check returns false: the holding LWP may
639 * or may not be running. It has context switched at
640 * some point during our check. Again, we have the
641 * chance to see if the waiters bit is still set or
642 * has been overwritten.
643 *
644 * 4. The onproc check returns false: the holding LWP is
645 * running on a CPU, but wants the big lock. It's OK
646 * to check the waiters field in this case.
647 *
648 * 5. The has-waiters check fails: the mutex has been
649 * released, the waiters flag cleared and another LWP
650 * now owns the mutex.
651 *
652 * 6. The has-waiters check fails: the mutex has been
653 * released.
654 *
655 * If the waiters bit is not set it's unsafe to go asleep,
656 * as we might never be awoken.
657 */
658 if ((mb_read(), mutex_onproc(owner, &ci)) ||
659 (mb_read(), !MUTEX_HAS_WAITERS(mtx))) {
660 turnstile_exit(mtx);
661 continue;
662 }
663 #endif /* MULTIPROCESSOR */
664
665 LOCKSTAT_START_TIMER(lsflag, slptime);
666
667 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
668
669 LOCKSTAT_STOP_TIMER(lsflag, slptime);
670 LOCKSTAT_COUNT(slpcnt, 1);
671 }
672
673 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
674 slpcnt, slptime);
675 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
676 spincnt, spintime);
677 LOCKSTAT_EXIT(lsflag);
678
679 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
680 MUTEX_LOCKED(mtx);
681 }
682
683 /*
684 * mutex_vector_exit:
685 *
686 * Support routine for mutex_exit() that handles all cases.
687 */
688 void
689 mutex_vector_exit(kmutex_t *mtx)
690 {
691 turnstile_t *ts;
692 uintptr_t curthread;
693
694 if (MUTEX_SPIN_P(mtx)) {
695 #ifdef FULL
696 if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
697 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
698 MUTEX_UNLOCKED(mtx);
699 __cpu_simple_unlock(&mtx->mtx_lock);
700 #endif
701 MUTEX_SPIN_SPLRESTORE(mtx);
702 return;
703 }
704
705 if (__predict_false((uintptr_t)panicstr | cold)) {
706 MUTEX_UNLOCKED(mtx);
707 MUTEX_RELEASE(mtx);
708 return;
709 }
710
711 curthread = (uintptr_t)curlwp;
712 MUTEX_DASSERT(mtx, curthread != 0);
713 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
714 MUTEX_UNLOCKED(mtx);
715
716 #ifdef LOCKDEBUG
717 /*
718 * Avoid having to take the turnstile chain lock every time
719 * around. Raise the priority level to splhigh() in order
720 * to disable preemption and so make the following atomic.
721 */
722 {
723 int s = splhigh();
724 if (!MUTEX_HAS_WAITERS(mtx)) {
725 MUTEX_RELEASE(mtx);
726 splx(s);
727 return;
728 }
729 splx(s);
730 }
731 #endif
732
733 /*
734 * Get this lock's turnstile. This gets the interlock on
735 * the sleep queue. Once we have that, we can clear the
736 * lock. If there was no turnstile for the lock, there
737 * were no waiters remaining.
738 */
739 ts = turnstile_lookup(mtx);
740
741 if (ts == NULL) {
742 MUTEX_RELEASE(mtx);
743 turnstile_exit(mtx);
744 } else {
745 MUTEX_RELEASE(mtx);
746 turnstile_wakeup(ts, TS_WRITER_Q,
747 TS_WAITERS(ts, TS_WRITER_Q), NULL);
748 }
749 }
750
751 #ifndef __HAVE_SIMPLE_MUTEXES
752 /*
753 * mutex_wakeup:
754 *
755 * Support routine for mutex_exit() that wakes up all waiters.
756 * We assume that the mutex has been released, but it need not
757 * be.
758 */
759 void
760 mutex_wakeup(kmutex_t *mtx)
761 {
762 turnstile_t *ts;
763
764 ts = turnstile_lookup(mtx);
765 if (ts == NULL) {
766 turnstile_exit(mtx);
767 return;
768 }
769 MUTEX_CLEAR_WAITERS(mtx);
770 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
771 }
772 #endif /* !__HAVE_SIMPLE_MUTEXES */
773
774 /*
775 * mutex_owned:
776 *
777 * Return true if the current LWP (adaptive) or CPU (spin)
778 * holds the mutex.
779 */
780 int
781 mutex_owned(kmutex_t *mtx)
782 {
783
784 if (MUTEX_ADAPTIVE_P(mtx))
785 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
786 #ifdef FULL
787 return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
788 #else
789 return 1;
790 #endif
791 }
792
793 /*
794 * mutex_owner:
795 *
796 * Return the current owner of an adaptive mutex. Used for
797 * priority inheritance.
798 */
799 static struct lwp *
800 mutex_owner(wchan_t obj)
801 {
802 kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
803
804 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
805 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
806 }
807
808 /*
809 * mutex_tryenter:
810 *
811 * Try to acquire the mutex; return non-zero if we did.
812 */
813 int
814 mutex_tryenter(kmutex_t *mtx)
815 {
816 uintptr_t curthread;
817
818 /*
819 * Handle spin mutexes.
820 */
821 if (MUTEX_SPIN_P(mtx)) {
822 MUTEX_SPIN_SPLRAISE(mtx);
823 #ifdef FULL
824 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
825 MUTEX_WANTLOCK(mtx);
826 MUTEX_LOCKED(mtx);
827 return 1;
828 }
829 MUTEX_SPIN_SPLRESTORE(mtx);
830 #else
831 MUTEX_WANTLOCK(mtx);
832 MUTEX_LOCKED(mtx);
833 return 1;
834 #endif
835 } else {
836 curthread = (uintptr_t)curlwp;
837 MUTEX_ASSERT(mtx, curthread != 0);
838 if (MUTEX_ACQUIRE(mtx, curthread)) {
839 MUTEX_WANTLOCK(mtx);
840 MUTEX_LOCKED(mtx);
841 MUTEX_DASSERT(mtx,
842 MUTEX_OWNER(mtx->mtx_owner) == curthread);
843 return 1;
844 }
845 }
846
847 return 0;
848 }
849
850 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
851 /*
852 * mutex_spin_retry:
853 *
854 * Support routine for mutex_spin_enter(). Assumes that the caller
855 * has already raised the SPL, and adjusted counters.
856 */
857 void
858 mutex_spin_retry(kmutex_t *mtx)
859 {
860 #ifdef MULTIPROCESSOR
861 u_int count;
862 LOCKSTAT_TIMER(spintime);
863 LOCKSTAT_FLAG(lsflag);
864 #ifdef LOCKDEBUG
865 u_int spins = 0;
866 #endif /* LOCKDEBUG */
867
868 MUTEX_WANTLOCK(mtx);
869
870 LOCKSTAT_ENTER(lsflag);
871 LOCKSTAT_START_TIMER(lsflag, spintime);
872 count = SPINLOCK_BACKOFF_MIN;
873
874 /*
875 * Spin testing the lock word and do exponential backoff
876 * to reduce cache line ping-ponging between CPUs.
877 */
878 do {
879 if (panicstr != NULL)
880 break;
881 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
882 SPINLOCK_BACKOFF(count);
883 #ifdef LOCKDEBUG
884 if (SPINLOCK_SPINOUT(spins))
885 MUTEX_ABORT(mtx, "spinout");
886 #endif /* LOCKDEBUG */
887 }
888 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
889
890 LOCKSTAT_STOP_TIMER(lsflag, spintime);
891 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
892 LOCKSTAT_EXIT(lsflag);
893
894 MUTEX_LOCKED(mtx);
895 #else /* MULTIPROCESSOR */
896 MUTEX_ABORT(mtx, "locking against myself");
897 #endif /* MULTIPROCESSOR */
898 }
899 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
900