kern_mutex.c revision 1.23 1 /* $NetBSD: kern_mutex.c,v 1.23 2007/11/21 10:19:10 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel mutex implementation, modeled after those found in Solaris,
41 * a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #define __MUTEX_PRIVATE
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.23 2007/11/21 10:19:10 yamt Exp $");
51
52 #include "opt_multiprocessor.h"
53
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62
63 #include <dev/lockstat.h>
64
65 #include <sys/intr.h>
66
67 /*
68 * When not running a debug kernel, spin mutexes are not much
69 * more than an splraiseipl() and splx() pair.
70 */
71
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define FULL
74 #endif
75
76 /*
77 * Debugging support.
78 */
79
80 #define MUTEX_WANTLOCK(mtx) \
81 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_LOCKED(mtx) \
84 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
85 (uintptr_t)__builtin_return_address(0), 0)
86 #define MUTEX_UNLOCKED(mtx) \
87 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
88 (uintptr_t)__builtin_return_address(0), 0)
89 #define MUTEX_ABORT(mtx, msg) \
90 mutex_abort(mtx, __func__, msg)
91
92 #if defined(LOCKDEBUG)
93
94 #define MUTEX_DASSERT(mtx, cond) \
95 do { \
96 if (!(cond)) \
97 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0);
99
100 #else /* LOCKDEBUG */
101
102 #define MUTEX_DASSERT(mtx, cond) /* nothing */
103
104 #endif /* LOCKDEBUG */
105
106 #if defined(DIAGNOSTIC)
107
108 #define MUTEX_ASSERT(mtx, cond) \
109 do { \
110 if (!(cond)) \
111 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
112 } while (/* CONSTCOND */ 0)
113
114 #else /* DIAGNOSTIC */
115
116 #define MUTEX_ASSERT(mtx, cond) /* nothing */
117
118 #endif /* DIAGNOSTIC */
119
120 /*
121 * Spin mutex SPL save / restore.
122 */
123 #ifndef MUTEX_COUNT_BIAS
124 #define MUTEX_COUNT_BIAS 0
125 #endif
126
127 #define MUTEX_SPIN_SPLRAISE(mtx) \
128 do { \
129 struct cpu_info *x__ci = curcpu(); \
130 int x__cnt, s; \
131 x__cnt = x__ci->ci_mtx_count--; \
132 s = splraiseipl(mtx->mtx_ipl); \
133 if (x__cnt == MUTEX_COUNT_BIAS) \
134 x__ci->ci_mtx_oldspl = (s); \
135 } while (/* CONSTCOND */ 0)
136
137 #define MUTEX_SPIN_SPLRESTORE(mtx) \
138 do { \
139 struct cpu_info *x__ci = curcpu(); \
140 int s = x__ci->ci_mtx_oldspl; \
141 __insn_barrier(); \
142 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
143 splx(s); \
144 } while (/* CONSTCOND */ 0)
145
146 /*
147 * For architectures that provide 'simple' mutexes: they provide a
148 * CAS function that is either MP-safe, or does not need to be MP
149 * safe. Adaptive mutexes on these architectures do not require an
150 * additional interlock.
151 */
152
153 #ifdef __HAVE_SIMPLE_MUTEXES
154
155 #define MUTEX_OWNER(owner) \
156 (owner & MUTEX_THREAD)
157 #define MUTEX_HAS_WAITERS(mtx) \
158 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
159
160 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
161 do { \
162 if (dodebug) \
163 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
164 } while (/* CONSTCOND */ 0);
165
166 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
167 do { \
168 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
169 if (dodebug) \
170 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
171 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
172 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
173 } while (/* CONSTCOND */ 0)
174
175 #define MUTEX_DESTROY(mtx) \
176 do { \
177 (mtx)->mtx_owner = MUTEX_THREAD; \
178 } while (/* CONSTCOND */ 0);
179
180 #define MUTEX_SPIN_P(mtx) \
181 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
182 #define MUTEX_ADAPTIVE_P(mtx) \
183 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
184
185 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
186 #if defined(LOCKDEBUG)
187 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
188 #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
189 #else /* defined(LOCKDEBUG) */
190 #define MUTEX_OWNED(owner) ((owner) != 0)
191 #define MUTEX_INHERITDEBUG(new, old) /* nothing */
192 #endif /* defined(LOCKDEBUG) */
193
194 static inline int
195 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
196 {
197 int rv;
198 uintptr_t old = 0;
199 uintptr_t new = curthread;
200
201 MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
202 MUTEX_INHERITDEBUG(new, old);
203 rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
204 MUTEX_RECEIVE(mtx);
205 return rv;
206 }
207
208 static inline int
209 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
210 {
211 int rv;
212 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
213 MUTEX_RECEIVE(mtx);
214 return rv;
215 }
216
217 static inline void
218 MUTEX_RELEASE(kmutex_t *mtx)
219 {
220 uintptr_t new;
221
222 MUTEX_GIVE(mtx);
223 new = 0;
224 MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
225 mtx->mtx_owner = new;
226 }
227
228 static inline void
229 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
230 {
231 /* nothing */
232 }
233 #endif /* __HAVE_SIMPLE_MUTEXES */
234
235 /*
236 * Patch in stubs via strong alias where they are not available.
237 */
238
239 #if defined(LOCKDEBUG)
240 #undef __HAVE_MUTEX_STUBS
241 #undef __HAVE_SPIN_MUTEX_STUBS
242 #endif
243
244 #ifndef __HAVE_MUTEX_STUBS
245 __strong_alias(mutex_enter,mutex_vector_enter);
246 __strong_alias(mutex_exit,mutex_vector_exit);
247 #endif
248
249 #ifndef __HAVE_SPIN_MUTEX_STUBS
250 __strong_alias(mutex_spin_enter,mutex_vector_enter);
251 __strong_alias(mutex_spin_exit,mutex_vector_exit);
252 #endif
253
254 void mutex_abort(kmutex_t *, const char *, const char *);
255 void mutex_dump(volatile void *);
256 int mutex_onproc(uintptr_t, struct cpu_info **);
257 static struct lwp *mutex_owner(wchan_t);
258
259 lockops_t mutex_spin_lockops = {
260 "Mutex",
261 0,
262 mutex_dump
263 };
264
265 lockops_t mutex_adaptive_lockops = {
266 "Mutex",
267 1,
268 mutex_dump
269 };
270
271 syncobj_t mutex_syncobj = {
272 SOBJ_SLEEPQ_SORTED,
273 turnstile_unsleep,
274 turnstile_changepri,
275 sleepq_lendpri,
276 mutex_owner,
277 };
278
279 /*
280 * mutex_dump:
281 *
282 * Dump the contents of a mutex structure.
283 */
284 void
285 mutex_dump(volatile void *cookie)
286 {
287 volatile kmutex_t *mtx = cookie;
288
289 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
290 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
291 MUTEX_SPIN_P(mtx));
292 }
293
294 /*
295 * mutex_abort:
296 *
297 * Dump information about an error and panic the system. This
298 * generates a lot of machine code in the DIAGNOSTIC case, so
299 * we ask the compiler to not inline it.
300 */
301
302 #if __GNUC_PREREQ__(3, 0)
303 __attribute ((noinline)) __attribute ((noreturn))
304 #endif
305 void
306 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
307 {
308
309 LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
310 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
311 /* NOTREACHED */
312 }
313
314 /*
315 * mutex_init:
316 *
317 * Initialize a mutex for use. Note that adaptive mutexes are in
318 * essence spin mutexes that can sleep to avoid deadlock and wasting
319 * CPU time. We can't easily provide a type of mutex that always
320 * sleeps - see comments in mutex_vector_enter() about releasing
321 * mutexes unlocked.
322 */
323 void
324 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
325 {
326 bool dodebug;
327
328 memset(mtx, 0, sizeof(*mtx));
329
330 switch (type) {
331 case MUTEX_ADAPTIVE:
332 KASSERT(ipl == IPL_NONE);
333 break;
334 case MUTEX_DEFAULT:
335 case MUTEX_DRIVER:
336 switch (ipl) {
337 case IPL_NONE:
338 type = MUTEX_ADAPTIVE;
339 break;
340 default:
341 type = MUTEX_SPIN;
342 break;
343 }
344 break;
345 default:
346 break;
347 }
348
349 switch (type) {
350 case MUTEX_NODEBUG:
351 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
352 (uintptr_t)__builtin_return_address(0));
353 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
354 break;
355 case MUTEX_ADAPTIVE:
356 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
357 (uintptr_t)__builtin_return_address(0));
358 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
359 break;
360 case MUTEX_SPIN:
361 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
362 (uintptr_t)__builtin_return_address(0));
363 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
364 break;
365 default:
366 panic("mutex_init: impossible type");
367 break;
368 }
369 }
370
371 /*
372 * mutex_destroy:
373 *
374 * Tear down a mutex.
375 */
376 void
377 mutex_destroy(kmutex_t *mtx)
378 {
379
380 if (MUTEX_ADAPTIVE_P(mtx)) {
381 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
382 !MUTEX_HAS_WAITERS(mtx));
383 } else {
384 MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
385 }
386
387 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
388 MUTEX_DESTROY(mtx);
389 }
390
391 /*
392 * mutex_onproc:
393 *
394 * Return true if an adaptive mutex owner is running on a CPU in the
395 * system. If the target is waiting on the kernel big lock, then we
396 * must release it. This is necessary to avoid deadlock.
397 *
398 * Note that we can't use the mutex owner field as an LWP pointer. We
399 * don't have full control over the timing of our execution, and so the
400 * pointer could be completely invalid by the time we dereference it.
401 */
402 #ifdef MULTIPROCESSOR
403 int
404 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
405 {
406 CPU_INFO_ITERATOR cii;
407 struct cpu_info *ci;
408 struct lwp *l;
409
410 if (!MUTEX_OWNED(owner))
411 return 0;
412 l = (struct lwp *)MUTEX_OWNER(owner);
413
414 /* See if the target is running on a CPU somewhere. */
415 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
416 goto run;
417 for (CPU_INFO_FOREACH(cii, ci))
418 if (ci->ci_curlwp == l)
419 goto run;
420
421 /* No: it may be safe to block now. */
422 *cip = NULL;
423 return 0;
424
425 run:
426 /* Target is running; do we need to block? */
427 *cip = ci;
428 return ci->ci_biglock_wanted != l;
429 }
430 #endif /* MULTIPROCESSOR */
431
432 /*
433 * mutex_vector_enter:
434 *
435 * Support routine for mutex_enter() that must handles all cases. In
436 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
437 * fast-path stubs are available. If an mutex_spin_enter() stub is
438 * not available, then it is also aliased directly here.
439 */
440 void
441 mutex_vector_enter(kmutex_t *mtx)
442 {
443 uintptr_t owner, curthread;
444 turnstile_t *ts;
445 #ifdef MULTIPROCESSOR
446 struct cpu_info *ci = NULL;
447 u_int count;
448 #endif
449 LOCKSTAT_COUNTER(spincnt);
450 LOCKSTAT_COUNTER(slpcnt);
451 LOCKSTAT_TIMER(spintime);
452 LOCKSTAT_TIMER(slptime);
453 LOCKSTAT_FLAG(lsflag);
454
455 /*
456 * Handle spin mutexes.
457 */
458 if (MUTEX_SPIN_P(mtx)) {
459 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
460 u_int spins = 0;
461 #endif
462 MUTEX_SPIN_SPLRAISE(mtx);
463 MUTEX_WANTLOCK(mtx);
464 #ifdef FULL
465 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
466 MUTEX_LOCKED(mtx);
467 return;
468 }
469 #if !defined(MULTIPROCESSOR)
470 MUTEX_ABORT(mtx, "locking against myself");
471 #else /* !MULTIPROCESSOR */
472
473 LOCKSTAT_ENTER(lsflag);
474 LOCKSTAT_START_TIMER(lsflag, spintime);
475 count = SPINLOCK_BACKOFF_MIN;
476
477 /*
478 * Spin testing the lock word and do exponential backoff
479 * to reduce cache line ping-ponging between CPUs.
480 */
481 do {
482 if (panicstr != NULL)
483 break;
484 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
485 SPINLOCK_BACKOFF(count);
486 #ifdef LOCKDEBUG
487 if (SPINLOCK_SPINOUT(spins))
488 MUTEX_ABORT(mtx, "spinout");
489 #endif /* LOCKDEBUG */
490 }
491 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
492
493 if (count != SPINLOCK_BACKOFF_MIN) {
494 LOCKSTAT_STOP_TIMER(lsflag, spintime);
495 LOCKSTAT_EVENT(lsflag, mtx,
496 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
497 }
498 LOCKSTAT_EXIT(lsflag);
499 #endif /* !MULTIPROCESSOR */
500 #endif /* FULL */
501 MUTEX_LOCKED(mtx);
502 return;
503 }
504
505 curthread = (uintptr_t)curlwp;
506
507 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
508 MUTEX_ASSERT(mtx, curthread != 0);
509 MUTEX_WANTLOCK(mtx);
510
511 #ifdef LOCKDEBUG
512 if (panicstr == NULL) {
513 simple_lock_only_held(NULL, "mutex_enter");
514 #ifdef MULTIPROCESSOR
515 LOCKDEBUG_BARRIER(&kernel_lock, 1);
516 #else
517 LOCKDEBUG_BARRIER(NULL, 1);
518 #endif
519 }
520 #endif
521
522 LOCKSTAT_ENTER(lsflag);
523
524 /*
525 * Adaptive mutex; spin trying to acquire the mutex. If we
526 * determine that the owner is not running on a processor,
527 * then we stop spinning, and sleep instead.
528 */
529 for (;;) {
530 owner = mtx->mtx_owner;
531 if (!MUTEX_OWNED(owner)) {
532 /*
533 * Mutex owner clear could mean two things:
534 *
535 * * The mutex has been released.
536 * * The owner field hasn't been set yet.
537 *
538 * Try to acquire it again. If that fails,
539 * we'll just loop again.
540 */
541 if (MUTEX_ACQUIRE(mtx, curthread))
542 break;
543 continue;
544 }
545
546 if (panicstr != NULL)
547 return;
548 if (MUTEX_OWNER(owner) == curthread)
549 MUTEX_ABORT(mtx, "locking against myself");
550
551 #ifdef MULTIPROCESSOR
552 /*
553 * Check to see if the owner is running on a processor.
554 * If so, then we should just spin, as the owner will
555 * likely release the lock very soon.
556 */
557 if (mutex_onproc(owner, &ci)) {
558 LOCKSTAT_START_TIMER(lsflag, spintime);
559 count = SPINLOCK_BACKOFF_MIN;
560 for (;;) {
561 owner = mtx->mtx_owner;
562 if (!mutex_onproc(owner, &ci))
563 break;
564 SPINLOCK_BACKOFF(count);
565 }
566 LOCKSTAT_STOP_TIMER(lsflag, spintime);
567 LOCKSTAT_COUNT(spincnt, 1);
568 if (!MUTEX_OWNED(owner))
569 continue;
570 }
571 #endif
572
573 ts = turnstile_lookup(mtx);
574
575 /*
576 * Once we have the turnstile chain interlock, mark the
577 * mutex has having waiters. If that fails, spin again:
578 * chances are that the mutex has been released.
579 */
580 if (!MUTEX_SET_WAITERS(mtx, owner)) {
581 turnstile_exit(mtx);
582 continue;
583 }
584
585 #ifdef MULTIPROCESSOR
586 /*
587 * mutex_exit() is permitted to release the mutex without
588 * any interlocking instructions, and the following can
589 * occur as a result:
590 *
591 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
592 * ---------------------------- ----------------------------
593 * .. acquire cache line
594 * .. test for waiters
595 * acquire cache line <- lose cache line
596 * lock cache line ..
597 * verify mutex is held ..
598 * set waiters ..
599 * unlock cache line ..
600 * lose cache line -> acquire cache line
601 * .. clear lock word, waiters
602 * return success
603 *
604 * There is a another race that can occur: a third CPU could
605 * acquire the mutex as soon as it is released. Since
606 * adaptive mutexes are primarily spin mutexes, this is not
607 * something that we need to worry about too much. What we
608 * do need to ensure is that the waiters bit gets set.
609 *
610 * To allow the unlocked release, we need to make some
611 * assumptions here:
612 *
613 * o Release is the only non-atomic/unlocked operation
614 * that can be performed on the mutex. (It must still
615 * be atomic on the local CPU, e.g. in case interrupted
616 * or preempted).
617 *
618 * o At any given time, MUTEX_SET_WAITERS() can only ever
619 * be in progress on one CPU in the system - guaranteed
620 * by the turnstile chain lock.
621 *
622 * o No other operations other than MUTEX_SET_WAITERS()
623 * and release can modify a mutex with a non-zero
624 * owner field.
625 *
626 * o The result of a successful MUTEX_SET_WAITERS() call
627 * is an unbuffered write that is immediately visible
628 * to all other processors in the system.
629 *
630 * o If the holding LWP switches away, it posts a store
631 * fence before changing curlwp, ensuring that any
632 * overwrite of the mutex waiters flag by mutex_exit()
633 * completes before the modification of curlwp becomes
634 * visible to this CPU.
635 *
636 * o mi_switch() posts a store fence before setting curlwp
637 * and before resuming execution of an LWP.
638 *
639 * o _kernel_lock() posts a store fence before setting
640 * curcpu()->ci_biglock_wanted, and after clearing it.
641 * This ensures that any overwrite of the mutex waiters
642 * flag by mutex_exit() completes before the modification
643 * of ci_biglock_wanted becomes visible.
644 *
645 * We now post a read memory barrier (after setting the
646 * waiters field) and check the lock holder's status again.
647 * Some of the possible outcomes (not an exhaustive list):
648 *
649 * 1. The onproc check returns true: the holding LWP is
650 * running again. The lock may be released soon and
651 * we should spin. Importantly, we can't trust the
652 * value of the waiters flag.
653 *
654 * 2. The onproc check returns false: the holding LWP is
655 * not running. We now have the oppertunity to check
656 * if mutex_exit() has blatted the modifications made
657 * by MUTEX_SET_WAITERS().
658 *
659 * 3. The onproc check returns false: the holding LWP may
660 * or may not be running. It has context switched at
661 * some point during our check. Again, we have the
662 * chance to see if the waiters bit is still set or
663 * has been overwritten.
664 *
665 * 4. The onproc check returns false: the holding LWP is
666 * running on a CPU, but wants the big lock. It's OK
667 * to check the waiters field in this case.
668 *
669 * 5. The has-waiters check fails: the mutex has been
670 * released, the waiters flag cleared and another LWP
671 * now owns the mutex.
672 *
673 * 6. The has-waiters check fails: the mutex has been
674 * released.
675 *
676 * If the waiters bit is not set it's unsafe to go asleep,
677 * as we might never be awoken.
678 */
679 if ((mb_read(), mutex_onproc(owner, &ci)) ||
680 (mb_read(), !MUTEX_HAS_WAITERS(mtx))) {
681 turnstile_exit(mtx);
682 continue;
683 }
684 #endif /* MULTIPROCESSOR */
685
686 LOCKSTAT_START_TIMER(lsflag, slptime);
687
688 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
689
690 LOCKSTAT_STOP_TIMER(lsflag, slptime);
691 LOCKSTAT_COUNT(slpcnt, 1);
692 }
693
694 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
695 slpcnt, slptime);
696 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
697 spincnt, spintime);
698 LOCKSTAT_EXIT(lsflag);
699
700 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
701 MUTEX_LOCKED(mtx);
702 }
703
704 /*
705 * mutex_vector_exit:
706 *
707 * Support routine for mutex_exit() that handles all cases.
708 */
709 void
710 mutex_vector_exit(kmutex_t *mtx)
711 {
712 turnstile_t *ts;
713 uintptr_t curthread;
714
715 if (MUTEX_SPIN_P(mtx)) {
716 #ifdef FULL
717 if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
718 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
719 MUTEX_UNLOCKED(mtx);
720 __cpu_simple_unlock(&mtx->mtx_lock);
721 #endif
722 MUTEX_SPIN_SPLRESTORE(mtx);
723 return;
724 }
725
726 if (__predict_false((uintptr_t)panicstr | cold)) {
727 MUTEX_UNLOCKED(mtx);
728 MUTEX_RELEASE(mtx);
729 return;
730 }
731
732 curthread = (uintptr_t)curlwp;
733 MUTEX_DASSERT(mtx, curthread != 0);
734 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
735 MUTEX_UNLOCKED(mtx);
736
737 #ifdef LOCKDEBUG
738 /*
739 * Avoid having to take the turnstile chain lock every time
740 * around. Raise the priority level to splhigh() in order
741 * to disable preemption and so make the following atomic.
742 */
743 {
744 int s = splhigh();
745 if (!MUTEX_HAS_WAITERS(mtx)) {
746 MUTEX_RELEASE(mtx);
747 splx(s);
748 return;
749 }
750 splx(s);
751 }
752 #endif
753
754 /*
755 * Get this lock's turnstile. This gets the interlock on
756 * the sleep queue. Once we have that, we can clear the
757 * lock. If there was no turnstile for the lock, there
758 * were no waiters remaining.
759 */
760 ts = turnstile_lookup(mtx);
761
762 if (ts == NULL) {
763 MUTEX_RELEASE(mtx);
764 turnstile_exit(mtx);
765 } else {
766 MUTEX_RELEASE(mtx);
767 turnstile_wakeup(ts, TS_WRITER_Q,
768 TS_WAITERS(ts, TS_WRITER_Q), NULL);
769 }
770 }
771
772 #ifndef __HAVE_SIMPLE_MUTEXES
773 /*
774 * mutex_wakeup:
775 *
776 * Support routine for mutex_exit() that wakes up all waiters.
777 * We assume that the mutex has been released, but it need not
778 * be.
779 */
780 void
781 mutex_wakeup(kmutex_t *mtx)
782 {
783 turnstile_t *ts;
784
785 ts = turnstile_lookup(mtx);
786 if (ts == NULL) {
787 turnstile_exit(mtx);
788 return;
789 }
790 MUTEX_CLEAR_WAITERS(mtx);
791 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
792 }
793 #endif /* !__HAVE_SIMPLE_MUTEXES */
794
795 /*
796 * mutex_owned:
797 *
798 * Return true if the current LWP (adaptive) or CPU (spin)
799 * holds the mutex.
800 */
801 int
802 mutex_owned(kmutex_t *mtx)
803 {
804
805 if (MUTEX_ADAPTIVE_P(mtx))
806 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
807 #ifdef FULL
808 return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
809 #else
810 return 1;
811 #endif
812 }
813
814 /*
815 * mutex_owner:
816 *
817 * Return the current owner of an adaptive mutex. Used for
818 * priority inheritance.
819 */
820 static struct lwp *
821 mutex_owner(wchan_t obj)
822 {
823 kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
824
825 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
826 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
827 }
828
829 /*
830 * mutex_tryenter:
831 *
832 * Try to acquire the mutex; return non-zero if we did.
833 */
834 int
835 mutex_tryenter(kmutex_t *mtx)
836 {
837 uintptr_t curthread;
838
839 /*
840 * Handle spin mutexes.
841 */
842 if (MUTEX_SPIN_P(mtx)) {
843 MUTEX_SPIN_SPLRAISE(mtx);
844 #ifdef FULL
845 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
846 MUTEX_WANTLOCK(mtx);
847 MUTEX_LOCKED(mtx);
848 return 1;
849 }
850 MUTEX_SPIN_SPLRESTORE(mtx);
851 #else
852 MUTEX_WANTLOCK(mtx);
853 MUTEX_LOCKED(mtx);
854 return 1;
855 #endif
856 } else {
857 curthread = (uintptr_t)curlwp;
858 MUTEX_ASSERT(mtx, curthread != 0);
859 if (MUTEX_ACQUIRE(mtx, curthread)) {
860 MUTEX_WANTLOCK(mtx);
861 MUTEX_LOCKED(mtx);
862 MUTEX_DASSERT(mtx,
863 MUTEX_OWNER(mtx->mtx_owner) == curthread);
864 return 1;
865 }
866 }
867
868 return 0;
869 }
870
871 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
872 /*
873 * mutex_spin_retry:
874 *
875 * Support routine for mutex_spin_enter(). Assumes that the caller
876 * has already raised the SPL, and adjusted counters.
877 */
878 void
879 mutex_spin_retry(kmutex_t *mtx)
880 {
881 #ifdef MULTIPROCESSOR
882 u_int count;
883 LOCKSTAT_TIMER(spintime);
884 LOCKSTAT_FLAG(lsflag);
885 #ifdef LOCKDEBUG
886 u_int spins = 0;
887 #endif /* LOCKDEBUG */
888
889 MUTEX_WANTLOCK(mtx);
890
891 LOCKSTAT_ENTER(lsflag);
892 LOCKSTAT_START_TIMER(lsflag, spintime);
893 count = SPINLOCK_BACKOFF_MIN;
894
895 /*
896 * Spin testing the lock word and do exponential backoff
897 * to reduce cache line ping-ponging between CPUs.
898 */
899 do {
900 if (panicstr != NULL)
901 break;
902 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
903 SPINLOCK_BACKOFF(count);
904 #ifdef LOCKDEBUG
905 if (SPINLOCK_SPINOUT(spins))
906 MUTEX_ABORT(mtx, "spinout");
907 #endif /* LOCKDEBUG */
908 }
909 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
910
911 LOCKSTAT_STOP_TIMER(lsflag, spintime);
912 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
913 LOCKSTAT_EXIT(lsflag);
914
915 MUTEX_LOCKED(mtx);
916 #else /* MULTIPROCESSOR */
917 MUTEX_ABORT(mtx, "locking against myself");
918 #endif /* MULTIPROCESSOR */
919 }
920 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
921