Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.26
      1 /*	$NetBSD: kern_mutex.c,v 1.26 2007/12/06 01:18:46 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Kernel mutex implementation, modeled after those found in Solaris,
     41  * a description of which can be found in:
     42  *
     43  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44  *	    Richard McDougall.
     45  */
     46 
     47 #define	__MUTEX_PRIVATE
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.26 2007/12/06 01:18:46 ad Exp $");
     51 
     52 #include "opt_multiprocessor.h"
     53 
     54 #include <sys/param.h>
     55 #include <sys/proc.h>
     56 #include <sys/mutex.h>
     57 #include <sys/sched.h>
     58 #include <sys/sleepq.h>
     59 #include <sys/systm.h>
     60 #include <sys/lockdebug.h>
     61 #include <sys/kernel.h>
     62 #include <sys/atomic.h>
     63 #include <sys/intr.h>
     64 
     65 #include <dev/lockstat.h>
     66 
     67 /*
     68  * When not running a debug kernel, spin mutexes are not much
     69  * more than an splraiseipl() and splx() pair.
     70  */
     71 
     72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     73 #define	FULL
     74 #endif
     75 
     76 /*
     77  * Debugging support.
     78  */
     79 
     80 #define	MUTEX_WANTLOCK(mtx)					\
     81     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     82         (uintptr_t)__builtin_return_address(0), 0)
     83 #define	MUTEX_LOCKED(mtx)					\
     84     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx),			\
     85         (uintptr_t)__builtin_return_address(0), 0)
     86 #define	MUTEX_UNLOCKED(mtx)					\
     87     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     88         (uintptr_t)__builtin_return_address(0), 0)
     89 #define	MUTEX_ABORT(mtx, msg)					\
     90     mutex_abort(mtx, __func__, msg)
     91 
     92 #if defined(LOCKDEBUG)
     93 
     94 #define	MUTEX_DASSERT(mtx, cond)				\
     95 do {								\
     96 	if (!(cond))						\
     97 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     98 } while (/* CONSTCOND */ 0);
     99 
    100 #else	/* LOCKDEBUG */
    101 
    102 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    103 
    104 #endif /* LOCKDEBUG */
    105 
    106 #if defined(DIAGNOSTIC)
    107 
    108 #define	MUTEX_ASSERT(mtx, cond)					\
    109 do {								\
    110 	if (!(cond))						\
    111 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    112 } while (/* CONSTCOND */ 0)
    113 
    114 #else	/* DIAGNOSTIC */
    115 
    116 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    117 
    118 #endif	/* DIAGNOSTIC */
    119 
    120 /*
    121  * Spin mutex SPL save / restore.
    122  */
    123 #ifndef MUTEX_COUNT_BIAS
    124 #define	MUTEX_COUNT_BIAS	0
    125 #endif
    126 
    127 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    128 do {									\
    129 	struct cpu_info *x__ci = curcpu();				\
    130 	int x__cnt, s;							\
    131 	x__cnt = x__ci->ci_mtx_count--;					\
    132 	s = splraiseipl(mtx->mtx_ipl);					\
    133 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    134 		x__ci->ci_mtx_oldspl = (s);				\
    135 } while (/* CONSTCOND */ 0)
    136 
    137 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    138 do {									\
    139 	struct cpu_info *x__ci = curcpu();				\
    140 	int s = x__ci->ci_mtx_oldspl;					\
    141 	__insn_barrier();						\
    142 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    143 		splx(s);						\
    144 } while (/* CONSTCOND */ 0)
    145 
    146 /*
    147  * For architectures that provide 'simple' mutexes: they provide a
    148  * CAS function that is either MP-safe, or does not need to be MP
    149  * safe.  Adaptive mutexes on these architectures do not require an
    150  * additional interlock.
    151  */
    152 
    153 #ifdef __HAVE_SIMPLE_MUTEXES
    154 
    155 #define	MUTEX_OWNER(owner)						\
    156 	(owner & MUTEX_THREAD)
    157 #define	MUTEX_HAS_WAITERS(mtx)						\
    158 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    159 
    160 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    161 do {									\
    162 	if (dodebug)							\
    163 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    164 } while (/* CONSTCOND */ 0);
    165 
    166 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    167 do {									\
    168 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    169 	if (dodebug)							\
    170 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    171 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    172 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    173 } while (/* CONSTCOND */ 0)
    174 
    175 #define	MUTEX_DESTROY(mtx)						\
    176 do {									\
    177 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    178 } while (/* CONSTCOND */ 0);
    179 
    180 #define	MUTEX_SPIN_P(mtx)		\
    181     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    182 #define	MUTEX_ADAPTIVE_P(mtx)		\
    183     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    184 
    185 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    186 #if defined(LOCKDEBUG)
    187 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    188 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    189 #else /* defined(LOCKDEBUG) */
    190 #define	MUTEX_OWNED(owner)		((owner) != 0)
    191 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    192 #endif /* defined(LOCKDEBUG) */
    193 
    194 static inline int
    195 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    196 {
    197 	int rv;
    198 	uintptr_t old = 0;
    199 	uintptr_t new = curthread;
    200 
    201 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    202 	MUTEX_INHERITDEBUG(new, old);
    203 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    204 	MUTEX_RECEIVE(mtx);
    205 	return rv;
    206 }
    207 
    208 static inline int
    209 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    210 {
    211 	int rv;
    212 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    213 	MUTEX_RECEIVE(mtx);
    214 	return rv;
    215 }
    216 
    217 static inline void
    218 MUTEX_RELEASE(kmutex_t *mtx)
    219 {
    220 	uintptr_t new;
    221 
    222 	MUTEX_GIVE(mtx);
    223 	new = 0;
    224 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    225 	mtx->mtx_owner = new;
    226 }
    227 
    228 static inline void
    229 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    230 {
    231 	/* nothing */
    232 }
    233 #endif	/* __HAVE_SIMPLE_MUTEXES */
    234 
    235 /*
    236  * Patch in stubs via strong alias where they are not available.
    237  */
    238 
    239 #if defined(LOCKDEBUG)
    240 #undef	__HAVE_MUTEX_STUBS
    241 #undef	__HAVE_SPIN_MUTEX_STUBS
    242 #endif
    243 
    244 #ifndef __HAVE_MUTEX_STUBS
    245 __strong_alias(mutex_enter,mutex_vector_enter);
    246 __strong_alias(mutex_exit,mutex_vector_exit);
    247 #endif
    248 
    249 #ifndef __HAVE_SPIN_MUTEX_STUBS
    250 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    251 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    252 #endif
    253 
    254 void	mutex_abort(kmutex_t *, const char *, const char *);
    255 void	mutex_dump(volatile void *);
    256 int	mutex_onproc(uintptr_t, struct cpu_info **);
    257 static struct lwp *mutex_owner(wchan_t);
    258 
    259 lockops_t mutex_spin_lockops = {
    260 	"Mutex",
    261 	0,
    262 	mutex_dump
    263 };
    264 
    265 lockops_t mutex_adaptive_lockops = {
    266 	"Mutex",
    267 	1,
    268 	mutex_dump
    269 };
    270 
    271 syncobj_t mutex_syncobj = {
    272 	SOBJ_SLEEPQ_SORTED,
    273 	turnstile_unsleep,
    274 	turnstile_changepri,
    275 	sleepq_lendpri,
    276 	mutex_owner,
    277 };
    278 
    279 /*
    280  * mutex_dump:
    281  *
    282  *	Dump the contents of a mutex structure.
    283  */
    284 void
    285 mutex_dump(volatile void *cookie)
    286 {
    287 	volatile kmutex_t *mtx = cookie;
    288 
    289 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    290 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    291 	    MUTEX_SPIN_P(mtx));
    292 }
    293 
    294 /*
    295  * mutex_abort:
    296  *
    297  *	Dump information about an error and panic the system.  This
    298  *	generates a lot of machine code in the DIAGNOSTIC case, so
    299  *	we ask the compiler to not inline it.
    300  */
    301 
    302 #if __GNUC_PREREQ__(3, 0)
    303 __attribute ((noinline)) __attribute ((noreturn))
    304 #endif
    305 void
    306 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    307 {
    308 
    309 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    310 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    311 	/* NOTREACHED */
    312 }
    313 
    314 /*
    315  * mutex_init:
    316  *
    317  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    318  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    319  *	CPU time.  We can't easily provide a type of mutex that always
    320  *	sleeps - see comments in mutex_vector_enter() about releasing
    321  *	mutexes unlocked.
    322  */
    323 void
    324 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    325 {
    326 	bool dodebug;
    327 
    328 	memset(mtx, 0, sizeof(*mtx));
    329 
    330 	switch (type) {
    331 	case MUTEX_ADAPTIVE:
    332 		KASSERT(ipl == IPL_NONE);
    333 		break;
    334 	case MUTEX_DEFAULT:
    335 	case MUTEX_DRIVER:
    336 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    337 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    338 		    ipl == IPL_SOFTSERIAL) {
    339 			type = MUTEX_ADAPTIVE;
    340 		} else {
    341 			type = MUTEX_SPIN;
    342 		}
    343 		break;
    344 	default:
    345 		break;
    346 	}
    347 
    348 	switch (type) {
    349 	case MUTEX_NODEBUG:
    350 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    351 		    (uintptr_t)__builtin_return_address(0));
    352 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    353 		break;
    354 	case MUTEX_ADAPTIVE:
    355 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    356 		    (uintptr_t)__builtin_return_address(0));
    357 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    358 		break;
    359 	case MUTEX_SPIN:
    360 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    361 		    (uintptr_t)__builtin_return_address(0));
    362 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    363 		break;
    364 	default:
    365 		panic("mutex_init: impossible type");
    366 		break;
    367 	}
    368 }
    369 
    370 /*
    371  * mutex_destroy:
    372  *
    373  *	Tear down a mutex.
    374  */
    375 void
    376 mutex_destroy(kmutex_t *mtx)
    377 {
    378 
    379 	if (MUTEX_ADAPTIVE_P(mtx)) {
    380 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    381 		    !MUTEX_HAS_WAITERS(mtx));
    382 	} else {
    383 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    384 	}
    385 
    386 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    387 	MUTEX_DESTROY(mtx);
    388 }
    389 
    390 /*
    391  * mutex_onproc:
    392  *
    393  *	Return true if an adaptive mutex owner is running on a CPU in the
    394  *	system.  If the target is waiting on the kernel big lock, then we
    395  *	must release it.  This is necessary to avoid deadlock.
    396  *
    397  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    398  *	don't have full control over the timing of our execution, and so the
    399  *	pointer could be completely invalid by the time we dereference it.
    400  */
    401 #ifdef MULTIPROCESSOR
    402 int
    403 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    404 {
    405 	CPU_INFO_ITERATOR cii;
    406 	struct cpu_info *ci;
    407 	struct lwp *l;
    408 
    409 	if (!MUTEX_OWNED(owner))
    410 		return 0;
    411 	l = (struct lwp *)MUTEX_OWNER(owner);
    412 
    413 	/* See if the target is running on a CPU somewhere. */
    414 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    415 		goto run;
    416 	for (CPU_INFO_FOREACH(cii, ci))
    417 		if (ci->ci_curlwp == l)
    418 			goto run;
    419 
    420 	/* No: it may be safe to block now. */
    421 	*cip = NULL;
    422 	return 0;
    423 
    424  run:
    425  	/* Target is running; do we need to block? */
    426  	*cip = ci;
    427 	return ci->ci_biglock_wanted != l;
    428 }
    429 #endif	/* MULTIPROCESSOR */
    430 
    431 /*
    432  * mutex_vector_enter:
    433  *
    434  *	Support routine for mutex_enter() that must handles all cases.  In
    435  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    436  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    437  *	not available, then it is also aliased directly here.
    438  */
    439 void
    440 mutex_vector_enter(kmutex_t *mtx)
    441 {
    442 	uintptr_t owner, curthread;
    443 	turnstile_t *ts;
    444 #ifdef MULTIPROCESSOR
    445 	struct cpu_info *ci = NULL;
    446 	u_int count;
    447 #endif
    448 	LOCKSTAT_COUNTER(spincnt);
    449 	LOCKSTAT_COUNTER(slpcnt);
    450 	LOCKSTAT_TIMER(spintime);
    451 	LOCKSTAT_TIMER(slptime);
    452 	LOCKSTAT_FLAG(lsflag);
    453 
    454 	/*
    455 	 * Handle spin mutexes.
    456 	 */
    457 	if (MUTEX_SPIN_P(mtx)) {
    458 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    459 		u_int spins = 0;
    460 #endif
    461 		MUTEX_SPIN_SPLRAISE(mtx);
    462 		MUTEX_WANTLOCK(mtx);
    463 #ifdef FULL
    464 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    465 			MUTEX_LOCKED(mtx);
    466 			return;
    467 		}
    468 #if !defined(MULTIPROCESSOR)
    469 		MUTEX_ABORT(mtx, "locking against myself");
    470 #else /* !MULTIPROCESSOR */
    471 
    472 		LOCKSTAT_ENTER(lsflag);
    473 		LOCKSTAT_START_TIMER(lsflag, spintime);
    474 		count = SPINLOCK_BACKOFF_MIN;
    475 
    476 		/*
    477 		 * Spin testing the lock word and do exponential backoff
    478 		 * to reduce cache line ping-ponging between CPUs.
    479 		 */
    480 		do {
    481 			if (panicstr != NULL)
    482 				break;
    483 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    484 				SPINLOCK_BACKOFF(count);
    485 #ifdef LOCKDEBUG
    486 				if (SPINLOCK_SPINOUT(spins))
    487 					MUTEX_ABORT(mtx, "spinout");
    488 #endif	/* LOCKDEBUG */
    489 			}
    490 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    491 
    492 		if (count != SPINLOCK_BACKOFF_MIN) {
    493 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    494 			LOCKSTAT_EVENT(lsflag, mtx,
    495 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    496 		}
    497 		LOCKSTAT_EXIT(lsflag);
    498 #endif	/* !MULTIPROCESSOR */
    499 #endif	/* FULL */
    500 		MUTEX_LOCKED(mtx);
    501 		return;
    502 	}
    503 
    504 	curthread = (uintptr_t)curlwp;
    505 
    506 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    507 	MUTEX_ASSERT(mtx, curthread != 0);
    508 	MUTEX_WANTLOCK(mtx);
    509 
    510 #ifdef LOCKDEBUG
    511 	if (panicstr == NULL) {
    512 		simple_lock_only_held(NULL, "mutex_enter");
    513 #ifdef MULTIPROCESSOR
    514 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    515 #else
    516 		LOCKDEBUG_BARRIER(NULL, 1);
    517 #endif
    518 	}
    519 #endif
    520 
    521 	LOCKSTAT_ENTER(lsflag);
    522 
    523 	/*
    524 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    525 	 * determine that the owner is not running on a processor,
    526 	 * then we stop spinning, and sleep instead.
    527 	 */
    528 	for (;;) {
    529 		owner = mtx->mtx_owner;
    530 		if (!MUTEX_OWNED(owner)) {
    531 			/*
    532 			 * Mutex owner clear could mean two things:
    533 			 *
    534 			 *	* The mutex has been released.
    535 			 *	* The owner field hasn't been set yet.
    536 			 *
    537 			 * Try to acquire it again.  If that fails,
    538 			 * we'll just loop again.
    539 			 */
    540 			if (MUTEX_ACQUIRE(mtx, curthread))
    541 				break;
    542 			continue;
    543 		}
    544 
    545 		if (panicstr != NULL)
    546 			return;
    547 		if (MUTEX_OWNER(owner) == curthread)
    548 			MUTEX_ABORT(mtx, "locking against myself");
    549 
    550 #ifdef MULTIPROCESSOR
    551 		/*
    552 		 * Check to see if the owner is running on a processor.
    553 		 * If so, then we should just spin, as the owner will
    554 		 * likely release the lock very soon.
    555 		 */
    556 		if (mutex_onproc(owner, &ci)) {
    557 			LOCKSTAT_START_TIMER(lsflag, spintime);
    558 			count = SPINLOCK_BACKOFF_MIN;
    559 			for (;;) {
    560 				owner = mtx->mtx_owner;
    561 				if (!mutex_onproc(owner, &ci))
    562 					break;
    563 				SPINLOCK_BACKOFF(count);
    564 			}
    565 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    566 			LOCKSTAT_COUNT(spincnt, 1);
    567 			if (!MUTEX_OWNED(owner))
    568 				continue;
    569 		}
    570 #endif
    571 
    572 		ts = turnstile_lookup(mtx);
    573 
    574 		/*
    575 		 * Once we have the turnstile chain interlock, mark the
    576 		 * mutex has having waiters.  If that fails, spin again:
    577 		 * chances are that the mutex has been released.
    578 		 */
    579 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    580 			turnstile_exit(mtx);
    581 			continue;
    582 		}
    583 
    584 #ifdef MULTIPROCESSOR
    585 		/*
    586 		 * mutex_exit() is permitted to release the mutex without
    587 		 * any interlocking instructions, and the following can
    588 		 * occur as a result:
    589 		 *
    590 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    591 		 * ---------------------------- ----------------------------
    592 		 *		..		    acquire cache line
    593 		 *		..                   test for waiters
    594 		 *	acquire cache line    <-      lose cache line
    595 		 *	 lock cache line	           ..
    596 		 *     verify mutex is held                ..
    597 		 *	    set waiters  	           ..
    598 		 *	 unlock cache line		   ..
    599 		 *	  lose cache line     ->    acquire cache line
    600 		 *		..	          clear lock word, waiters
    601 		 *	  return success
    602 		 *
    603 		 * There is a another race that can occur: a third CPU could
    604 		 * acquire the mutex as soon as it is released.  Since
    605 		 * adaptive mutexes are primarily spin mutexes, this is not
    606 		 * something that we need to worry about too much.  What we
    607 		 * do need to ensure is that the waiters bit gets set.
    608 		 *
    609 		 * To allow the unlocked release, we need to make some
    610 		 * assumptions here:
    611 		 *
    612 		 * o Release is the only non-atomic/unlocked operation
    613 		 *   that can be performed on the mutex.  (It must still
    614 		 *   be atomic on the local CPU, e.g. in case interrupted
    615 		 *   or preempted).
    616 		 *
    617 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    618 		 *   be in progress on one CPU in the system - guaranteed
    619 		 *   by the turnstile chain lock.
    620 		 *
    621 		 * o No other operations other than MUTEX_SET_WAITERS()
    622 		 *   and release can modify a mutex with a non-zero
    623 		 *   owner field.
    624 		 *
    625 		 * o The result of a successful MUTEX_SET_WAITERS() call
    626 		 *   is an unbuffered write that is immediately visible
    627 		 *   to all other processors in the system.
    628 		 *
    629 		 * o If the holding LWP switches away, it posts a store
    630 		 *   fence before changing curlwp, ensuring that any
    631 		 *   overwrite of the mutex waiters flag by mutex_exit()
    632 		 *   completes before the modification of curlwp becomes
    633 		 *   visible to this CPU.
    634 		 *
    635 		 * o mi_switch() posts a store fence before setting curlwp
    636 		 *   and before resuming execution of an LWP.
    637 		 *
    638 		 * o _kernel_lock() posts a store fence before setting
    639 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    640 		 *   This ensures that any overwrite of the mutex waiters
    641 		 *   flag by mutex_exit() completes before the modification
    642 		 *   of ci_biglock_wanted becomes visible.
    643 		 *
    644 		 * We now post a read memory barrier (after setting the
    645 		 * waiters field) and check the lock holder's status again.
    646 		 * Some of the possible outcomes (not an exhaustive list):
    647 		 *
    648 		 * 1. The onproc check returns true: the holding LWP is
    649 		 *    running again.  The lock may be released soon and
    650 		 *    we should spin.  Importantly, we can't trust the
    651 		 *    value of the waiters flag.
    652 		 *
    653 		 * 2. The onproc check returns false: the holding LWP is
    654 		 *    not running.  We now have the oppertunity to check
    655 		 *    if mutex_exit() has blatted the modifications made
    656 		 *    by MUTEX_SET_WAITERS().
    657 		 *
    658 		 * 3. The onproc check returns false: the holding LWP may
    659 		 *    or may not be running.  It has context switched at
    660 		 *    some point during our check.  Again, we have the
    661 		 *    chance to see if the waiters bit is still set or
    662 		 *    has been overwritten.
    663 		 *
    664 		 * 4. The onproc check returns false: the holding LWP is
    665 		 *    running on a CPU, but wants the big lock.  It's OK
    666 		 *    to check the waiters field in this case.
    667 		 *
    668 		 * 5. The has-waiters check fails: the mutex has been
    669 		 *    released, the waiters flag cleared and another LWP
    670 		 *    now owns the mutex.
    671 		 *
    672 		 * 6. The has-waiters check fails: the mutex has been
    673 		 *    released.
    674 		 *
    675 		 * If the waiters bit is not set it's unsafe to go asleep,
    676 		 * as we might never be awoken.
    677 		 */
    678 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    679 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    680 			turnstile_exit(mtx);
    681 			continue;
    682 		}
    683 #endif	/* MULTIPROCESSOR */
    684 
    685 		LOCKSTAT_START_TIMER(lsflag, slptime);
    686 
    687 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    688 
    689 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    690 		LOCKSTAT_COUNT(slpcnt, 1);
    691 	}
    692 
    693 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    694 	    slpcnt, slptime);
    695 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    696 	    spincnt, spintime);
    697 	LOCKSTAT_EXIT(lsflag);
    698 
    699 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    700 	MUTEX_LOCKED(mtx);
    701 }
    702 
    703 /*
    704  * mutex_vector_exit:
    705  *
    706  *	Support routine for mutex_exit() that handles all cases.
    707  */
    708 void
    709 mutex_vector_exit(kmutex_t *mtx)
    710 {
    711 	turnstile_t *ts;
    712 	uintptr_t curthread;
    713 
    714 	if (MUTEX_SPIN_P(mtx)) {
    715 #ifdef FULL
    716 		if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
    717 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    718 		MUTEX_UNLOCKED(mtx);
    719 		__cpu_simple_unlock(&mtx->mtx_lock);
    720 #endif
    721 		MUTEX_SPIN_SPLRESTORE(mtx);
    722 		return;
    723 	}
    724 
    725 	if (__predict_false((uintptr_t)panicstr | cold)) {
    726 		MUTEX_UNLOCKED(mtx);
    727 		MUTEX_RELEASE(mtx);
    728 		return;
    729 	}
    730 
    731 	curthread = (uintptr_t)curlwp;
    732 	MUTEX_DASSERT(mtx, curthread != 0);
    733 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    734 	MUTEX_UNLOCKED(mtx);
    735 
    736 #ifdef LOCKDEBUG
    737 	/*
    738 	 * Avoid having to take the turnstile chain lock every time
    739 	 * around.  Raise the priority level to splhigh() in order
    740 	 * to disable preemption and so make the following atomic.
    741 	 */
    742 	{
    743 		int s = splhigh();
    744 		if (!MUTEX_HAS_WAITERS(mtx)) {
    745 			MUTEX_RELEASE(mtx);
    746 			splx(s);
    747 			return;
    748 		}
    749 		splx(s);
    750 	}
    751 #endif
    752 
    753 	/*
    754 	 * Get this lock's turnstile.  This gets the interlock on
    755 	 * the sleep queue.  Once we have that, we can clear the
    756 	 * lock.  If there was no turnstile for the lock, there
    757 	 * were no waiters remaining.
    758 	 */
    759 	ts = turnstile_lookup(mtx);
    760 
    761 	if (ts == NULL) {
    762 		MUTEX_RELEASE(mtx);
    763 		turnstile_exit(mtx);
    764 	} else {
    765 		MUTEX_RELEASE(mtx);
    766 		turnstile_wakeup(ts, TS_WRITER_Q,
    767 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    768 	}
    769 }
    770 
    771 #ifndef __HAVE_SIMPLE_MUTEXES
    772 /*
    773  * mutex_wakeup:
    774  *
    775  *	Support routine for mutex_exit() that wakes up all waiters.
    776  *	We assume that the mutex has been released, but it need not
    777  *	be.
    778  */
    779 void
    780 mutex_wakeup(kmutex_t *mtx)
    781 {
    782 	turnstile_t *ts;
    783 
    784 	ts = turnstile_lookup(mtx);
    785 	if (ts == NULL) {
    786 		turnstile_exit(mtx);
    787 		return;
    788 	}
    789 	MUTEX_CLEAR_WAITERS(mtx);
    790 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    791 }
    792 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    793 
    794 /*
    795  * mutex_owned:
    796  *
    797  *	Return true if the current LWP (adaptive) or CPU (spin)
    798  *	holds the mutex.
    799  */
    800 int
    801 mutex_owned(kmutex_t *mtx)
    802 {
    803 
    804 	if (MUTEX_ADAPTIVE_P(mtx))
    805 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    806 #ifdef FULL
    807 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    808 #else
    809 	return 1;
    810 #endif
    811 }
    812 
    813 /*
    814  * mutex_owner:
    815  *
    816  *	Return the current owner of an adaptive mutex.  Used for
    817  *	priority inheritance.
    818  */
    819 static struct lwp *
    820 mutex_owner(wchan_t obj)
    821 {
    822 	kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
    823 
    824 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    825 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    826 }
    827 
    828 /*
    829  * mutex_tryenter:
    830  *
    831  *	Try to acquire the mutex; return non-zero if we did.
    832  */
    833 int
    834 mutex_tryenter(kmutex_t *mtx)
    835 {
    836 	uintptr_t curthread;
    837 
    838 	/*
    839 	 * Handle spin mutexes.
    840 	 */
    841 	if (MUTEX_SPIN_P(mtx)) {
    842 		MUTEX_SPIN_SPLRAISE(mtx);
    843 #ifdef FULL
    844 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    845 			MUTEX_WANTLOCK(mtx);
    846 			MUTEX_LOCKED(mtx);
    847 			return 1;
    848 		}
    849 		MUTEX_SPIN_SPLRESTORE(mtx);
    850 #else
    851 		MUTEX_WANTLOCK(mtx);
    852 		MUTEX_LOCKED(mtx);
    853 		return 1;
    854 #endif
    855 	} else {
    856 		curthread = (uintptr_t)curlwp;
    857 		MUTEX_ASSERT(mtx, curthread != 0);
    858 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    859 			MUTEX_WANTLOCK(mtx);
    860 			MUTEX_LOCKED(mtx);
    861 			MUTEX_DASSERT(mtx,
    862 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    863 			return 1;
    864 		}
    865 	}
    866 
    867 	return 0;
    868 }
    869 
    870 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    871 /*
    872  * mutex_spin_retry:
    873  *
    874  *	Support routine for mutex_spin_enter().  Assumes that the caller
    875  *	has already raised the SPL, and adjusted counters.
    876  */
    877 void
    878 mutex_spin_retry(kmutex_t *mtx)
    879 {
    880 #ifdef MULTIPROCESSOR
    881 	u_int count;
    882 	LOCKSTAT_TIMER(spintime);
    883 	LOCKSTAT_FLAG(lsflag);
    884 #ifdef LOCKDEBUG
    885 	u_int spins = 0;
    886 #endif	/* LOCKDEBUG */
    887 
    888 	MUTEX_WANTLOCK(mtx);
    889 
    890 	LOCKSTAT_ENTER(lsflag);
    891 	LOCKSTAT_START_TIMER(lsflag, spintime);
    892 	count = SPINLOCK_BACKOFF_MIN;
    893 
    894 	/*
    895 	 * Spin testing the lock word and do exponential backoff
    896 	 * to reduce cache line ping-ponging between CPUs.
    897 	 */
    898 	do {
    899 		if (panicstr != NULL)
    900 			break;
    901 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    902 			SPINLOCK_BACKOFF(count);
    903 #ifdef LOCKDEBUG
    904 			if (SPINLOCK_SPINOUT(spins))
    905 				MUTEX_ABORT(mtx, "spinout");
    906 #endif	/* LOCKDEBUG */
    907 		}
    908 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    909 
    910 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    911 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    912 	LOCKSTAT_EXIT(lsflag);
    913 
    914 	MUTEX_LOCKED(mtx);
    915 #else	/* MULTIPROCESSOR */
    916 	MUTEX_ABORT(mtx, "locking against myself");
    917 #endif	/* MULTIPROCESSOR */
    918 }
    919 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    920