kern_mutex.c revision 1.26 1 /* $NetBSD: kern_mutex.c,v 1.26 2007/12/06 01:18:46 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel mutex implementation, modeled after those found in Solaris,
41 * a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #define __MUTEX_PRIVATE
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.26 2007/12/06 01:18:46 ad Exp $");
51
52 #include "opt_multiprocessor.h"
53
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62 #include <sys/atomic.h>
63 #include <sys/intr.h>
64
65 #include <dev/lockstat.h>
66
67 /*
68 * When not running a debug kernel, spin mutexes are not much
69 * more than an splraiseipl() and splx() pair.
70 */
71
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define FULL
74 #endif
75
76 /*
77 * Debugging support.
78 */
79
80 #define MUTEX_WANTLOCK(mtx) \
81 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_LOCKED(mtx) \
84 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
85 (uintptr_t)__builtin_return_address(0), 0)
86 #define MUTEX_UNLOCKED(mtx) \
87 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
88 (uintptr_t)__builtin_return_address(0), 0)
89 #define MUTEX_ABORT(mtx, msg) \
90 mutex_abort(mtx, __func__, msg)
91
92 #if defined(LOCKDEBUG)
93
94 #define MUTEX_DASSERT(mtx, cond) \
95 do { \
96 if (!(cond)) \
97 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0);
99
100 #else /* LOCKDEBUG */
101
102 #define MUTEX_DASSERT(mtx, cond) /* nothing */
103
104 #endif /* LOCKDEBUG */
105
106 #if defined(DIAGNOSTIC)
107
108 #define MUTEX_ASSERT(mtx, cond) \
109 do { \
110 if (!(cond)) \
111 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
112 } while (/* CONSTCOND */ 0)
113
114 #else /* DIAGNOSTIC */
115
116 #define MUTEX_ASSERT(mtx, cond) /* nothing */
117
118 #endif /* DIAGNOSTIC */
119
120 /*
121 * Spin mutex SPL save / restore.
122 */
123 #ifndef MUTEX_COUNT_BIAS
124 #define MUTEX_COUNT_BIAS 0
125 #endif
126
127 #define MUTEX_SPIN_SPLRAISE(mtx) \
128 do { \
129 struct cpu_info *x__ci = curcpu(); \
130 int x__cnt, s; \
131 x__cnt = x__ci->ci_mtx_count--; \
132 s = splraiseipl(mtx->mtx_ipl); \
133 if (x__cnt == MUTEX_COUNT_BIAS) \
134 x__ci->ci_mtx_oldspl = (s); \
135 } while (/* CONSTCOND */ 0)
136
137 #define MUTEX_SPIN_SPLRESTORE(mtx) \
138 do { \
139 struct cpu_info *x__ci = curcpu(); \
140 int s = x__ci->ci_mtx_oldspl; \
141 __insn_barrier(); \
142 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
143 splx(s); \
144 } while (/* CONSTCOND */ 0)
145
146 /*
147 * For architectures that provide 'simple' mutexes: they provide a
148 * CAS function that is either MP-safe, or does not need to be MP
149 * safe. Adaptive mutexes on these architectures do not require an
150 * additional interlock.
151 */
152
153 #ifdef __HAVE_SIMPLE_MUTEXES
154
155 #define MUTEX_OWNER(owner) \
156 (owner & MUTEX_THREAD)
157 #define MUTEX_HAS_WAITERS(mtx) \
158 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
159
160 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
161 do { \
162 if (dodebug) \
163 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
164 } while (/* CONSTCOND */ 0);
165
166 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
167 do { \
168 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
169 if (dodebug) \
170 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
171 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
172 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
173 } while (/* CONSTCOND */ 0)
174
175 #define MUTEX_DESTROY(mtx) \
176 do { \
177 (mtx)->mtx_owner = MUTEX_THREAD; \
178 } while (/* CONSTCOND */ 0);
179
180 #define MUTEX_SPIN_P(mtx) \
181 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
182 #define MUTEX_ADAPTIVE_P(mtx) \
183 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
184
185 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
186 #if defined(LOCKDEBUG)
187 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
188 #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
189 #else /* defined(LOCKDEBUG) */
190 #define MUTEX_OWNED(owner) ((owner) != 0)
191 #define MUTEX_INHERITDEBUG(new, old) /* nothing */
192 #endif /* defined(LOCKDEBUG) */
193
194 static inline int
195 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
196 {
197 int rv;
198 uintptr_t old = 0;
199 uintptr_t new = curthread;
200
201 MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
202 MUTEX_INHERITDEBUG(new, old);
203 rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
204 MUTEX_RECEIVE(mtx);
205 return rv;
206 }
207
208 static inline int
209 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
210 {
211 int rv;
212 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
213 MUTEX_RECEIVE(mtx);
214 return rv;
215 }
216
217 static inline void
218 MUTEX_RELEASE(kmutex_t *mtx)
219 {
220 uintptr_t new;
221
222 MUTEX_GIVE(mtx);
223 new = 0;
224 MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
225 mtx->mtx_owner = new;
226 }
227
228 static inline void
229 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
230 {
231 /* nothing */
232 }
233 #endif /* __HAVE_SIMPLE_MUTEXES */
234
235 /*
236 * Patch in stubs via strong alias where they are not available.
237 */
238
239 #if defined(LOCKDEBUG)
240 #undef __HAVE_MUTEX_STUBS
241 #undef __HAVE_SPIN_MUTEX_STUBS
242 #endif
243
244 #ifndef __HAVE_MUTEX_STUBS
245 __strong_alias(mutex_enter,mutex_vector_enter);
246 __strong_alias(mutex_exit,mutex_vector_exit);
247 #endif
248
249 #ifndef __HAVE_SPIN_MUTEX_STUBS
250 __strong_alias(mutex_spin_enter,mutex_vector_enter);
251 __strong_alias(mutex_spin_exit,mutex_vector_exit);
252 #endif
253
254 void mutex_abort(kmutex_t *, const char *, const char *);
255 void mutex_dump(volatile void *);
256 int mutex_onproc(uintptr_t, struct cpu_info **);
257 static struct lwp *mutex_owner(wchan_t);
258
259 lockops_t mutex_spin_lockops = {
260 "Mutex",
261 0,
262 mutex_dump
263 };
264
265 lockops_t mutex_adaptive_lockops = {
266 "Mutex",
267 1,
268 mutex_dump
269 };
270
271 syncobj_t mutex_syncobj = {
272 SOBJ_SLEEPQ_SORTED,
273 turnstile_unsleep,
274 turnstile_changepri,
275 sleepq_lendpri,
276 mutex_owner,
277 };
278
279 /*
280 * mutex_dump:
281 *
282 * Dump the contents of a mutex structure.
283 */
284 void
285 mutex_dump(volatile void *cookie)
286 {
287 volatile kmutex_t *mtx = cookie;
288
289 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
290 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
291 MUTEX_SPIN_P(mtx));
292 }
293
294 /*
295 * mutex_abort:
296 *
297 * Dump information about an error and panic the system. This
298 * generates a lot of machine code in the DIAGNOSTIC case, so
299 * we ask the compiler to not inline it.
300 */
301
302 #if __GNUC_PREREQ__(3, 0)
303 __attribute ((noinline)) __attribute ((noreturn))
304 #endif
305 void
306 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
307 {
308
309 LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
310 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
311 /* NOTREACHED */
312 }
313
314 /*
315 * mutex_init:
316 *
317 * Initialize a mutex for use. Note that adaptive mutexes are in
318 * essence spin mutexes that can sleep to avoid deadlock and wasting
319 * CPU time. We can't easily provide a type of mutex that always
320 * sleeps - see comments in mutex_vector_enter() about releasing
321 * mutexes unlocked.
322 */
323 void
324 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
325 {
326 bool dodebug;
327
328 memset(mtx, 0, sizeof(*mtx));
329
330 switch (type) {
331 case MUTEX_ADAPTIVE:
332 KASSERT(ipl == IPL_NONE);
333 break;
334 case MUTEX_DEFAULT:
335 case MUTEX_DRIVER:
336 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
337 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
338 ipl == IPL_SOFTSERIAL) {
339 type = MUTEX_ADAPTIVE;
340 } else {
341 type = MUTEX_SPIN;
342 }
343 break;
344 default:
345 break;
346 }
347
348 switch (type) {
349 case MUTEX_NODEBUG:
350 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
351 (uintptr_t)__builtin_return_address(0));
352 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
353 break;
354 case MUTEX_ADAPTIVE:
355 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
356 (uintptr_t)__builtin_return_address(0));
357 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
358 break;
359 case MUTEX_SPIN:
360 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
361 (uintptr_t)__builtin_return_address(0));
362 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
363 break;
364 default:
365 panic("mutex_init: impossible type");
366 break;
367 }
368 }
369
370 /*
371 * mutex_destroy:
372 *
373 * Tear down a mutex.
374 */
375 void
376 mutex_destroy(kmutex_t *mtx)
377 {
378
379 if (MUTEX_ADAPTIVE_P(mtx)) {
380 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
381 !MUTEX_HAS_WAITERS(mtx));
382 } else {
383 MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
384 }
385
386 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
387 MUTEX_DESTROY(mtx);
388 }
389
390 /*
391 * mutex_onproc:
392 *
393 * Return true if an adaptive mutex owner is running on a CPU in the
394 * system. If the target is waiting on the kernel big lock, then we
395 * must release it. This is necessary to avoid deadlock.
396 *
397 * Note that we can't use the mutex owner field as an LWP pointer. We
398 * don't have full control over the timing of our execution, and so the
399 * pointer could be completely invalid by the time we dereference it.
400 */
401 #ifdef MULTIPROCESSOR
402 int
403 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
404 {
405 CPU_INFO_ITERATOR cii;
406 struct cpu_info *ci;
407 struct lwp *l;
408
409 if (!MUTEX_OWNED(owner))
410 return 0;
411 l = (struct lwp *)MUTEX_OWNER(owner);
412
413 /* See if the target is running on a CPU somewhere. */
414 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
415 goto run;
416 for (CPU_INFO_FOREACH(cii, ci))
417 if (ci->ci_curlwp == l)
418 goto run;
419
420 /* No: it may be safe to block now. */
421 *cip = NULL;
422 return 0;
423
424 run:
425 /* Target is running; do we need to block? */
426 *cip = ci;
427 return ci->ci_biglock_wanted != l;
428 }
429 #endif /* MULTIPROCESSOR */
430
431 /*
432 * mutex_vector_enter:
433 *
434 * Support routine for mutex_enter() that must handles all cases. In
435 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
436 * fast-path stubs are available. If an mutex_spin_enter() stub is
437 * not available, then it is also aliased directly here.
438 */
439 void
440 mutex_vector_enter(kmutex_t *mtx)
441 {
442 uintptr_t owner, curthread;
443 turnstile_t *ts;
444 #ifdef MULTIPROCESSOR
445 struct cpu_info *ci = NULL;
446 u_int count;
447 #endif
448 LOCKSTAT_COUNTER(spincnt);
449 LOCKSTAT_COUNTER(slpcnt);
450 LOCKSTAT_TIMER(spintime);
451 LOCKSTAT_TIMER(slptime);
452 LOCKSTAT_FLAG(lsflag);
453
454 /*
455 * Handle spin mutexes.
456 */
457 if (MUTEX_SPIN_P(mtx)) {
458 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
459 u_int spins = 0;
460 #endif
461 MUTEX_SPIN_SPLRAISE(mtx);
462 MUTEX_WANTLOCK(mtx);
463 #ifdef FULL
464 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
465 MUTEX_LOCKED(mtx);
466 return;
467 }
468 #if !defined(MULTIPROCESSOR)
469 MUTEX_ABORT(mtx, "locking against myself");
470 #else /* !MULTIPROCESSOR */
471
472 LOCKSTAT_ENTER(lsflag);
473 LOCKSTAT_START_TIMER(lsflag, spintime);
474 count = SPINLOCK_BACKOFF_MIN;
475
476 /*
477 * Spin testing the lock word and do exponential backoff
478 * to reduce cache line ping-ponging between CPUs.
479 */
480 do {
481 if (panicstr != NULL)
482 break;
483 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
484 SPINLOCK_BACKOFF(count);
485 #ifdef LOCKDEBUG
486 if (SPINLOCK_SPINOUT(spins))
487 MUTEX_ABORT(mtx, "spinout");
488 #endif /* LOCKDEBUG */
489 }
490 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
491
492 if (count != SPINLOCK_BACKOFF_MIN) {
493 LOCKSTAT_STOP_TIMER(lsflag, spintime);
494 LOCKSTAT_EVENT(lsflag, mtx,
495 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
496 }
497 LOCKSTAT_EXIT(lsflag);
498 #endif /* !MULTIPROCESSOR */
499 #endif /* FULL */
500 MUTEX_LOCKED(mtx);
501 return;
502 }
503
504 curthread = (uintptr_t)curlwp;
505
506 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
507 MUTEX_ASSERT(mtx, curthread != 0);
508 MUTEX_WANTLOCK(mtx);
509
510 #ifdef LOCKDEBUG
511 if (panicstr == NULL) {
512 simple_lock_only_held(NULL, "mutex_enter");
513 #ifdef MULTIPROCESSOR
514 LOCKDEBUG_BARRIER(&kernel_lock, 1);
515 #else
516 LOCKDEBUG_BARRIER(NULL, 1);
517 #endif
518 }
519 #endif
520
521 LOCKSTAT_ENTER(lsflag);
522
523 /*
524 * Adaptive mutex; spin trying to acquire the mutex. If we
525 * determine that the owner is not running on a processor,
526 * then we stop spinning, and sleep instead.
527 */
528 for (;;) {
529 owner = mtx->mtx_owner;
530 if (!MUTEX_OWNED(owner)) {
531 /*
532 * Mutex owner clear could mean two things:
533 *
534 * * The mutex has been released.
535 * * The owner field hasn't been set yet.
536 *
537 * Try to acquire it again. If that fails,
538 * we'll just loop again.
539 */
540 if (MUTEX_ACQUIRE(mtx, curthread))
541 break;
542 continue;
543 }
544
545 if (panicstr != NULL)
546 return;
547 if (MUTEX_OWNER(owner) == curthread)
548 MUTEX_ABORT(mtx, "locking against myself");
549
550 #ifdef MULTIPROCESSOR
551 /*
552 * Check to see if the owner is running on a processor.
553 * If so, then we should just spin, as the owner will
554 * likely release the lock very soon.
555 */
556 if (mutex_onproc(owner, &ci)) {
557 LOCKSTAT_START_TIMER(lsflag, spintime);
558 count = SPINLOCK_BACKOFF_MIN;
559 for (;;) {
560 owner = mtx->mtx_owner;
561 if (!mutex_onproc(owner, &ci))
562 break;
563 SPINLOCK_BACKOFF(count);
564 }
565 LOCKSTAT_STOP_TIMER(lsflag, spintime);
566 LOCKSTAT_COUNT(spincnt, 1);
567 if (!MUTEX_OWNED(owner))
568 continue;
569 }
570 #endif
571
572 ts = turnstile_lookup(mtx);
573
574 /*
575 * Once we have the turnstile chain interlock, mark the
576 * mutex has having waiters. If that fails, spin again:
577 * chances are that the mutex has been released.
578 */
579 if (!MUTEX_SET_WAITERS(mtx, owner)) {
580 turnstile_exit(mtx);
581 continue;
582 }
583
584 #ifdef MULTIPROCESSOR
585 /*
586 * mutex_exit() is permitted to release the mutex without
587 * any interlocking instructions, and the following can
588 * occur as a result:
589 *
590 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
591 * ---------------------------- ----------------------------
592 * .. acquire cache line
593 * .. test for waiters
594 * acquire cache line <- lose cache line
595 * lock cache line ..
596 * verify mutex is held ..
597 * set waiters ..
598 * unlock cache line ..
599 * lose cache line -> acquire cache line
600 * .. clear lock word, waiters
601 * return success
602 *
603 * There is a another race that can occur: a third CPU could
604 * acquire the mutex as soon as it is released. Since
605 * adaptive mutexes are primarily spin mutexes, this is not
606 * something that we need to worry about too much. What we
607 * do need to ensure is that the waiters bit gets set.
608 *
609 * To allow the unlocked release, we need to make some
610 * assumptions here:
611 *
612 * o Release is the only non-atomic/unlocked operation
613 * that can be performed on the mutex. (It must still
614 * be atomic on the local CPU, e.g. in case interrupted
615 * or preempted).
616 *
617 * o At any given time, MUTEX_SET_WAITERS() can only ever
618 * be in progress on one CPU in the system - guaranteed
619 * by the turnstile chain lock.
620 *
621 * o No other operations other than MUTEX_SET_WAITERS()
622 * and release can modify a mutex with a non-zero
623 * owner field.
624 *
625 * o The result of a successful MUTEX_SET_WAITERS() call
626 * is an unbuffered write that is immediately visible
627 * to all other processors in the system.
628 *
629 * o If the holding LWP switches away, it posts a store
630 * fence before changing curlwp, ensuring that any
631 * overwrite of the mutex waiters flag by mutex_exit()
632 * completes before the modification of curlwp becomes
633 * visible to this CPU.
634 *
635 * o mi_switch() posts a store fence before setting curlwp
636 * and before resuming execution of an LWP.
637 *
638 * o _kernel_lock() posts a store fence before setting
639 * curcpu()->ci_biglock_wanted, and after clearing it.
640 * This ensures that any overwrite of the mutex waiters
641 * flag by mutex_exit() completes before the modification
642 * of ci_biglock_wanted becomes visible.
643 *
644 * We now post a read memory barrier (after setting the
645 * waiters field) and check the lock holder's status again.
646 * Some of the possible outcomes (not an exhaustive list):
647 *
648 * 1. The onproc check returns true: the holding LWP is
649 * running again. The lock may be released soon and
650 * we should spin. Importantly, we can't trust the
651 * value of the waiters flag.
652 *
653 * 2. The onproc check returns false: the holding LWP is
654 * not running. We now have the oppertunity to check
655 * if mutex_exit() has blatted the modifications made
656 * by MUTEX_SET_WAITERS().
657 *
658 * 3. The onproc check returns false: the holding LWP may
659 * or may not be running. It has context switched at
660 * some point during our check. Again, we have the
661 * chance to see if the waiters bit is still set or
662 * has been overwritten.
663 *
664 * 4. The onproc check returns false: the holding LWP is
665 * running on a CPU, but wants the big lock. It's OK
666 * to check the waiters field in this case.
667 *
668 * 5. The has-waiters check fails: the mutex has been
669 * released, the waiters flag cleared and another LWP
670 * now owns the mutex.
671 *
672 * 6. The has-waiters check fails: the mutex has been
673 * released.
674 *
675 * If the waiters bit is not set it's unsafe to go asleep,
676 * as we might never be awoken.
677 */
678 if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
679 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
680 turnstile_exit(mtx);
681 continue;
682 }
683 #endif /* MULTIPROCESSOR */
684
685 LOCKSTAT_START_TIMER(lsflag, slptime);
686
687 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
688
689 LOCKSTAT_STOP_TIMER(lsflag, slptime);
690 LOCKSTAT_COUNT(slpcnt, 1);
691 }
692
693 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
694 slpcnt, slptime);
695 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
696 spincnt, spintime);
697 LOCKSTAT_EXIT(lsflag);
698
699 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
700 MUTEX_LOCKED(mtx);
701 }
702
703 /*
704 * mutex_vector_exit:
705 *
706 * Support routine for mutex_exit() that handles all cases.
707 */
708 void
709 mutex_vector_exit(kmutex_t *mtx)
710 {
711 turnstile_t *ts;
712 uintptr_t curthread;
713
714 if (MUTEX_SPIN_P(mtx)) {
715 #ifdef FULL
716 if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
717 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
718 MUTEX_UNLOCKED(mtx);
719 __cpu_simple_unlock(&mtx->mtx_lock);
720 #endif
721 MUTEX_SPIN_SPLRESTORE(mtx);
722 return;
723 }
724
725 if (__predict_false((uintptr_t)panicstr | cold)) {
726 MUTEX_UNLOCKED(mtx);
727 MUTEX_RELEASE(mtx);
728 return;
729 }
730
731 curthread = (uintptr_t)curlwp;
732 MUTEX_DASSERT(mtx, curthread != 0);
733 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
734 MUTEX_UNLOCKED(mtx);
735
736 #ifdef LOCKDEBUG
737 /*
738 * Avoid having to take the turnstile chain lock every time
739 * around. Raise the priority level to splhigh() in order
740 * to disable preemption and so make the following atomic.
741 */
742 {
743 int s = splhigh();
744 if (!MUTEX_HAS_WAITERS(mtx)) {
745 MUTEX_RELEASE(mtx);
746 splx(s);
747 return;
748 }
749 splx(s);
750 }
751 #endif
752
753 /*
754 * Get this lock's turnstile. This gets the interlock on
755 * the sleep queue. Once we have that, we can clear the
756 * lock. If there was no turnstile for the lock, there
757 * were no waiters remaining.
758 */
759 ts = turnstile_lookup(mtx);
760
761 if (ts == NULL) {
762 MUTEX_RELEASE(mtx);
763 turnstile_exit(mtx);
764 } else {
765 MUTEX_RELEASE(mtx);
766 turnstile_wakeup(ts, TS_WRITER_Q,
767 TS_WAITERS(ts, TS_WRITER_Q), NULL);
768 }
769 }
770
771 #ifndef __HAVE_SIMPLE_MUTEXES
772 /*
773 * mutex_wakeup:
774 *
775 * Support routine for mutex_exit() that wakes up all waiters.
776 * We assume that the mutex has been released, but it need not
777 * be.
778 */
779 void
780 mutex_wakeup(kmutex_t *mtx)
781 {
782 turnstile_t *ts;
783
784 ts = turnstile_lookup(mtx);
785 if (ts == NULL) {
786 turnstile_exit(mtx);
787 return;
788 }
789 MUTEX_CLEAR_WAITERS(mtx);
790 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
791 }
792 #endif /* !__HAVE_SIMPLE_MUTEXES */
793
794 /*
795 * mutex_owned:
796 *
797 * Return true if the current LWP (adaptive) or CPU (spin)
798 * holds the mutex.
799 */
800 int
801 mutex_owned(kmutex_t *mtx)
802 {
803
804 if (MUTEX_ADAPTIVE_P(mtx))
805 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
806 #ifdef FULL
807 return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
808 #else
809 return 1;
810 #endif
811 }
812
813 /*
814 * mutex_owner:
815 *
816 * Return the current owner of an adaptive mutex. Used for
817 * priority inheritance.
818 */
819 static struct lwp *
820 mutex_owner(wchan_t obj)
821 {
822 kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
823
824 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
825 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
826 }
827
828 /*
829 * mutex_tryenter:
830 *
831 * Try to acquire the mutex; return non-zero if we did.
832 */
833 int
834 mutex_tryenter(kmutex_t *mtx)
835 {
836 uintptr_t curthread;
837
838 /*
839 * Handle spin mutexes.
840 */
841 if (MUTEX_SPIN_P(mtx)) {
842 MUTEX_SPIN_SPLRAISE(mtx);
843 #ifdef FULL
844 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
845 MUTEX_WANTLOCK(mtx);
846 MUTEX_LOCKED(mtx);
847 return 1;
848 }
849 MUTEX_SPIN_SPLRESTORE(mtx);
850 #else
851 MUTEX_WANTLOCK(mtx);
852 MUTEX_LOCKED(mtx);
853 return 1;
854 #endif
855 } else {
856 curthread = (uintptr_t)curlwp;
857 MUTEX_ASSERT(mtx, curthread != 0);
858 if (MUTEX_ACQUIRE(mtx, curthread)) {
859 MUTEX_WANTLOCK(mtx);
860 MUTEX_LOCKED(mtx);
861 MUTEX_DASSERT(mtx,
862 MUTEX_OWNER(mtx->mtx_owner) == curthread);
863 return 1;
864 }
865 }
866
867 return 0;
868 }
869
870 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
871 /*
872 * mutex_spin_retry:
873 *
874 * Support routine for mutex_spin_enter(). Assumes that the caller
875 * has already raised the SPL, and adjusted counters.
876 */
877 void
878 mutex_spin_retry(kmutex_t *mtx)
879 {
880 #ifdef MULTIPROCESSOR
881 u_int count;
882 LOCKSTAT_TIMER(spintime);
883 LOCKSTAT_FLAG(lsflag);
884 #ifdef LOCKDEBUG
885 u_int spins = 0;
886 #endif /* LOCKDEBUG */
887
888 MUTEX_WANTLOCK(mtx);
889
890 LOCKSTAT_ENTER(lsflag);
891 LOCKSTAT_START_TIMER(lsflag, spintime);
892 count = SPINLOCK_BACKOFF_MIN;
893
894 /*
895 * Spin testing the lock word and do exponential backoff
896 * to reduce cache line ping-ponging between CPUs.
897 */
898 do {
899 if (panicstr != NULL)
900 break;
901 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
902 SPINLOCK_BACKOFF(count);
903 #ifdef LOCKDEBUG
904 if (SPINLOCK_SPINOUT(spins))
905 MUTEX_ABORT(mtx, "spinout");
906 #endif /* LOCKDEBUG */
907 }
908 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
909
910 LOCKSTAT_STOP_TIMER(lsflag, spintime);
911 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
912 LOCKSTAT_EXIT(lsflag);
913
914 MUTEX_LOCKED(mtx);
915 #else /* MULTIPROCESSOR */
916 MUTEX_ABORT(mtx, "locking against myself");
917 #endif /* MULTIPROCESSOR */
918 }
919 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
920