Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.27
      1 /*	$NetBSD: kern_mutex.c,v 1.27 2007/12/24 14:57:56 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Kernel mutex implementation, modeled after those found in Solaris,
     41  * a description of which can be found in:
     42  *
     43  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44  *	    Richard McDougall.
     45  */
     46 
     47 #define	__MUTEX_PRIVATE
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.27 2007/12/24 14:57:56 ad Exp $");
     51 
     52 #include "opt_multiprocessor.h"
     53 
     54 #include <sys/param.h>
     55 #include <sys/proc.h>
     56 #include <sys/mutex.h>
     57 #include <sys/sched.h>
     58 #include <sys/sleepq.h>
     59 #include <sys/systm.h>
     60 #include <sys/lockdebug.h>
     61 #include <sys/kernel.h>
     62 #include <sys/atomic.h>
     63 #include <sys/intr.h>
     64 
     65 #include <dev/lockstat.h>
     66 
     67 /*
     68  * When not running a debug kernel, spin mutexes are not much
     69  * more than an splraiseipl() and splx() pair.
     70  */
     71 
     72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     73 #define	FULL
     74 #endif
     75 
     76 /*
     77  * Debugging support.
     78  */
     79 
     80 #define	MUTEX_WANTLOCK(mtx)					\
     81     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     82         (uintptr_t)__builtin_return_address(0), 0)
     83 #define	MUTEX_LOCKED(mtx)					\
     84     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx),			\
     85         (uintptr_t)__builtin_return_address(0), 0)
     86 #define	MUTEX_UNLOCKED(mtx)					\
     87     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     88         (uintptr_t)__builtin_return_address(0), 0)
     89 #define	MUTEX_ABORT(mtx, msg)					\
     90     mutex_abort(mtx, __func__, msg)
     91 
     92 #if defined(LOCKDEBUG)
     93 
     94 #define	MUTEX_DASSERT(mtx, cond)				\
     95 do {								\
     96 	if (!(cond))						\
     97 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     98 } while (/* CONSTCOND */ 0);
     99 
    100 #else	/* LOCKDEBUG */
    101 
    102 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    103 
    104 #endif /* LOCKDEBUG */
    105 
    106 #if defined(DIAGNOSTIC)
    107 
    108 #define	MUTEX_ASSERT(mtx, cond)					\
    109 do {								\
    110 	if (!(cond))						\
    111 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    112 } while (/* CONSTCOND */ 0)
    113 
    114 #else	/* DIAGNOSTIC */
    115 
    116 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    117 
    118 #endif	/* DIAGNOSTIC */
    119 
    120 /*
    121  * Spin mutex SPL save / restore.
    122  */
    123 #ifndef MUTEX_COUNT_BIAS
    124 #define	MUTEX_COUNT_BIAS	0
    125 #endif
    126 
    127 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    128 do {									\
    129 	struct cpu_info *x__ci = curcpu();				\
    130 	int x__cnt, s;							\
    131 	x__cnt = x__ci->ci_mtx_count--;					\
    132 	s = splraiseipl(mtx->mtx_ipl);					\
    133 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    134 		x__ci->ci_mtx_oldspl = (s);				\
    135 } while (/* CONSTCOND */ 0)
    136 
    137 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    138 do {									\
    139 	struct cpu_info *x__ci = curcpu();				\
    140 	int s = x__ci->ci_mtx_oldspl;					\
    141 	__insn_barrier();						\
    142 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    143 		splx(s);						\
    144 } while (/* CONSTCOND */ 0)
    145 
    146 /*
    147  * For architectures that provide 'simple' mutexes: they provide a
    148  * CAS function that is either MP-safe, or does not need to be MP
    149  * safe.  Adaptive mutexes on these architectures do not require an
    150  * additional interlock.
    151  */
    152 
    153 #ifdef __HAVE_SIMPLE_MUTEXES
    154 
    155 #define	MUTEX_OWNER(owner)						\
    156 	(owner & MUTEX_THREAD)
    157 #define	MUTEX_HAS_WAITERS(mtx)						\
    158 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    159 
    160 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    161 do {									\
    162 	if (dodebug)							\
    163 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    164 } while (/* CONSTCOND */ 0);
    165 
    166 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    167 do {									\
    168 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    169 	if (dodebug)							\
    170 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    171 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    172 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    173 } while (/* CONSTCOND */ 0)
    174 
    175 #define	MUTEX_DESTROY(mtx)						\
    176 do {									\
    177 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    178 } while (/* CONSTCOND */ 0);
    179 
    180 #define	MUTEX_SPIN_P(mtx)		\
    181     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    182 #define	MUTEX_ADAPTIVE_P(mtx)		\
    183     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    184 
    185 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    186 #if defined(LOCKDEBUG)
    187 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    188 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    189 #else /* defined(LOCKDEBUG) */
    190 #define	MUTEX_OWNED(owner)		((owner) != 0)
    191 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    192 #endif /* defined(LOCKDEBUG) */
    193 
    194 static inline int
    195 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    196 {
    197 	int rv;
    198 	uintptr_t old = 0;
    199 	uintptr_t new = curthread;
    200 
    201 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    202 	MUTEX_INHERITDEBUG(new, old);
    203 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    204 	MUTEX_RECEIVE(mtx);
    205 	return rv;
    206 }
    207 
    208 static inline int
    209 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    210 {
    211 	int rv;
    212 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    213 	MUTEX_RECEIVE(mtx);
    214 	return rv;
    215 }
    216 
    217 static inline void
    218 MUTEX_RELEASE(kmutex_t *mtx)
    219 {
    220 	uintptr_t new;
    221 
    222 	MUTEX_GIVE(mtx);
    223 	new = 0;
    224 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    225 	mtx->mtx_owner = new;
    226 }
    227 
    228 static inline void
    229 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    230 {
    231 	/* nothing */
    232 }
    233 #endif	/* __HAVE_SIMPLE_MUTEXES */
    234 
    235 /*
    236  * Patch in stubs via strong alias where they are not available.
    237  */
    238 
    239 #if defined(LOCKDEBUG)
    240 #undef	__HAVE_MUTEX_STUBS
    241 #undef	__HAVE_SPIN_MUTEX_STUBS
    242 #endif
    243 
    244 #ifndef __HAVE_MUTEX_STUBS
    245 __strong_alias(mutex_enter,mutex_vector_enter);
    246 __strong_alias(mutex_exit,mutex_vector_exit);
    247 #endif
    248 
    249 #ifndef __HAVE_SPIN_MUTEX_STUBS
    250 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    251 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    252 #endif
    253 
    254 void	mutex_abort(kmutex_t *, const char *, const char *);
    255 void	mutex_dump(volatile void *);
    256 int	mutex_onproc(uintptr_t, struct cpu_info **);
    257 
    258 lockops_t mutex_spin_lockops = {
    259 	"Mutex",
    260 	0,
    261 	mutex_dump
    262 };
    263 
    264 lockops_t mutex_adaptive_lockops = {
    265 	"Mutex",
    266 	1,
    267 	mutex_dump
    268 };
    269 
    270 syncobj_t mutex_syncobj = {
    271 	SOBJ_SLEEPQ_SORTED,
    272 	turnstile_unsleep,
    273 	turnstile_changepri,
    274 	sleepq_lendpri,
    275 	(void *)mutex_owner,
    276 };
    277 
    278 /*
    279  * mutex_dump:
    280  *
    281  *	Dump the contents of a mutex structure.
    282  */
    283 void
    284 mutex_dump(volatile void *cookie)
    285 {
    286 	volatile kmutex_t *mtx = cookie;
    287 
    288 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    289 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    290 	    MUTEX_SPIN_P(mtx));
    291 }
    292 
    293 /*
    294  * mutex_abort:
    295  *
    296  *	Dump information about an error and panic the system.  This
    297  *	generates a lot of machine code in the DIAGNOSTIC case, so
    298  *	we ask the compiler to not inline it.
    299  */
    300 
    301 #if __GNUC_PREREQ__(3, 0)
    302 __attribute ((noinline)) __attribute ((noreturn))
    303 #endif
    304 void
    305 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    306 {
    307 
    308 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    309 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    310 	/* NOTREACHED */
    311 }
    312 
    313 /*
    314  * mutex_init:
    315  *
    316  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    317  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    318  *	CPU time.  We can't easily provide a type of mutex that always
    319  *	sleeps - see comments in mutex_vector_enter() about releasing
    320  *	mutexes unlocked.
    321  */
    322 void
    323 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    324 {
    325 	bool dodebug;
    326 
    327 	memset(mtx, 0, sizeof(*mtx));
    328 
    329 	switch (type) {
    330 	case MUTEX_ADAPTIVE:
    331 		KASSERT(ipl == IPL_NONE);
    332 		break;
    333 	case MUTEX_DEFAULT:
    334 	case MUTEX_DRIVER:
    335 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    336 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    337 		    ipl == IPL_SOFTSERIAL) {
    338 			type = MUTEX_ADAPTIVE;
    339 		} else {
    340 			type = MUTEX_SPIN;
    341 		}
    342 		break;
    343 	default:
    344 		break;
    345 	}
    346 
    347 	switch (type) {
    348 	case MUTEX_NODEBUG:
    349 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    350 		    (uintptr_t)__builtin_return_address(0));
    351 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    352 		break;
    353 	case MUTEX_ADAPTIVE:
    354 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    355 		    (uintptr_t)__builtin_return_address(0));
    356 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    357 		break;
    358 	case MUTEX_SPIN:
    359 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    360 		    (uintptr_t)__builtin_return_address(0));
    361 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    362 		break;
    363 	default:
    364 		panic("mutex_init: impossible type");
    365 		break;
    366 	}
    367 }
    368 
    369 /*
    370  * mutex_destroy:
    371  *
    372  *	Tear down a mutex.
    373  */
    374 void
    375 mutex_destroy(kmutex_t *mtx)
    376 {
    377 
    378 	if (MUTEX_ADAPTIVE_P(mtx)) {
    379 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    380 		    !MUTEX_HAS_WAITERS(mtx));
    381 	} else {
    382 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    383 	}
    384 
    385 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    386 	MUTEX_DESTROY(mtx);
    387 }
    388 
    389 /*
    390  * mutex_onproc:
    391  *
    392  *	Return true if an adaptive mutex owner is running on a CPU in the
    393  *	system.  If the target is waiting on the kernel big lock, then we
    394  *	must release it.  This is necessary to avoid deadlock.
    395  *
    396  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    397  *	don't have full control over the timing of our execution, and so the
    398  *	pointer could be completely invalid by the time we dereference it.
    399  */
    400 #ifdef MULTIPROCESSOR
    401 int
    402 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    403 {
    404 	CPU_INFO_ITERATOR cii;
    405 	struct cpu_info *ci;
    406 	struct lwp *l;
    407 
    408 	if (!MUTEX_OWNED(owner))
    409 		return 0;
    410 	l = (struct lwp *)MUTEX_OWNER(owner);
    411 
    412 	/* See if the target is running on a CPU somewhere. */
    413 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    414 		goto run;
    415 	for (CPU_INFO_FOREACH(cii, ci))
    416 		if (ci->ci_curlwp == l)
    417 			goto run;
    418 
    419 	/* No: it may be safe to block now. */
    420 	*cip = NULL;
    421 	return 0;
    422 
    423  run:
    424  	/* Target is running; do we need to block? */
    425  	*cip = ci;
    426 	return ci->ci_biglock_wanted != l;
    427 }
    428 #endif	/* MULTIPROCESSOR */
    429 
    430 /*
    431  * mutex_vector_enter:
    432  *
    433  *	Support routine for mutex_enter() that must handles all cases.  In
    434  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    435  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    436  *	not available, then it is also aliased directly here.
    437  */
    438 void
    439 mutex_vector_enter(kmutex_t *mtx)
    440 {
    441 	uintptr_t owner, curthread;
    442 	turnstile_t *ts;
    443 #ifdef MULTIPROCESSOR
    444 	struct cpu_info *ci = NULL;
    445 	u_int count;
    446 #endif
    447 	LOCKSTAT_COUNTER(spincnt);
    448 	LOCKSTAT_COUNTER(slpcnt);
    449 	LOCKSTAT_TIMER(spintime);
    450 	LOCKSTAT_TIMER(slptime);
    451 	LOCKSTAT_FLAG(lsflag);
    452 
    453 	/*
    454 	 * Handle spin mutexes.
    455 	 */
    456 	if (MUTEX_SPIN_P(mtx)) {
    457 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    458 		u_int spins = 0;
    459 #endif
    460 		MUTEX_SPIN_SPLRAISE(mtx);
    461 		MUTEX_WANTLOCK(mtx);
    462 #ifdef FULL
    463 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    464 			MUTEX_LOCKED(mtx);
    465 			return;
    466 		}
    467 #if !defined(MULTIPROCESSOR)
    468 		MUTEX_ABORT(mtx, "locking against myself");
    469 #else /* !MULTIPROCESSOR */
    470 
    471 		LOCKSTAT_ENTER(lsflag);
    472 		LOCKSTAT_START_TIMER(lsflag, spintime);
    473 		count = SPINLOCK_BACKOFF_MIN;
    474 
    475 		/*
    476 		 * Spin testing the lock word and do exponential backoff
    477 		 * to reduce cache line ping-ponging between CPUs.
    478 		 */
    479 		do {
    480 			if (panicstr != NULL)
    481 				break;
    482 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    483 				SPINLOCK_BACKOFF(count);
    484 #ifdef LOCKDEBUG
    485 				if (SPINLOCK_SPINOUT(spins))
    486 					MUTEX_ABORT(mtx, "spinout");
    487 #endif	/* LOCKDEBUG */
    488 			}
    489 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    490 
    491 		if (count != SPINLOCK_BACKOFF_MIN) {
    492 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    493 			LOCKSTAT_EVENT(lsflag, mtx,
    494 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    495 		}
    496 		LOCKSTAT_EXIT(lsflag);
    497 #endif	/* !MULTIPROCESSOR */
    498 #endif	/* FULL */
    499 		MUTEX_LOCKED(mtx);
    500 		return;
    501 	}
    502 
    503 	curthread = (uintptr_t)curlwp;
    504 
    505 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    506 	MUTEX_ASSERT(mtx, curthread != 0);
    507 	MUTEX_WANTLOCK(mtx);
    508 
    509 #ifdef LOCKDEBUG
    510 	if (panicstr == NULL) {
    511 		simple_lock_only_held(NULL, "mutex_enter");
    512 #ifdef MULTIPROCESSOR
    513 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    514 #else
    515 		LOCKDEBUG_BARRIER(NULL, 1);
    516 #endif
    517 	}
    518 #endif
    519 
    520 	LOCKSTAT_ENTER(lsflag);
    521 
    522 	/*
    523 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    524 	 * determine that the owner is not running on a processor,
    525 	 * then we stop spinning, and sleep instead.
    526 	 */
    527 	for (;;) {
    528 		owner = mtx->mtx_owner;
    529 		if (!MUTEX_OWNED(owner)) {
    530 			/*
    531 			 * Mutex owner clear could mean two things:
    532 			 *
    533 			 *	* The mutex has been released.
    534 			 *	* The owner field hasn't been set yet.
    535 			 *
    536 			 * Try to acquire it again.  If that fails,
    537 			 * we'll just loop again.
    538 			 */
    539 			if (MUTEX_ACQUIRE(mtx, curthread))
    540 				break;
    541 			continue;
    542 		}
    543 
    544 		if (panicstr != NULL)
    545 			return;
    546 		if (MUTEX_OWNER(owner) == curthread)
    547 			MUTEX_ABORT(mtx, "locking against myself");
    548 
    549 #ifdef MULTIPROCESSOR
    550 		/*
    551 		 * Check to see if the owner is running on a processor.
    552 		 * If so, then we should just spin, as the owner will
    553 		 * likely release the lock very soon.
    554 		 */
    555 		if (mutex_onproc(owner, &ci)) {
    556 			LOCKSTAT_START_TIMER(lsflag, spintime);
    557 			count = SPINLOCK_BACKOFF_MIN;
    558 			for (;;) {
    559 				owner = mtx->mtx_owner;
    560 				if (!mutex_onproc(owner, &ci))
    561 					break;
    562 				SPINLOCK_BACKOFF(count);
    563 			}
    564 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    565 			LOCKSTAT_COUNT(spincnt, 1);
    566 			if (!MUTEX_OWNED(owner))
    567 				continue;
    568 		}
    569 #endif
    570 
    571 		ts = turnstile_lookup(mtx);
    572 
    573 		/*
    574 		 * Once we have the turnstile chain interlock, mark the
    575 		 * mutex has having waiters.  If that fails, spin again:
    576 		 * chances are that the mutex has been released.
    577 		 */
    578 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    579 			turnstile_exit(mtx);
    580 			continue;
    581 		}
    582 
    583 #ifdef MULTIPROCESSOR
    584 		/*
    585 		 * mutex_exit() is permitted to release the mutex without
    586 		 * any interlocking instructions, and the following can
    587 		 * occur as a result:
    588 		 *
    589 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    590 		 * ---------------------------- ----------------------------
    591 		 *		..		    acquire cache line
    592 		 *		..                   test for waiters
    593 		 *	acquire cache line    <-      lose cache line
    594 		 *	 lock cache line	           ..
    595 		 *     verify mutex is held                ..
    596 		 *	    set waiters  	           ..
    597 		 *	 unlock cache line		   ..
    598 		 *	  lose cache line     ->    acquire cache line
    599 		 *		..	          clear lock word, waiters
    600 		 *	  return success
    601 		 *
    602 		 * There is a another race that can occur: a third CPU could
    603 		 * acquire the mutex as soon as it is released.  Since
    604 		 * adaptive mutexes are primarily spin mutexes, this is not
    605 		 * something that we need to worry about too much.  What we
    606 		 * do need to ensure is that the waiters bit gets set.
    607 		 *
    608 		 * To allow the unlocked release, we need to make some
    609 		 * assumptions here:
    610 		 *
    611 		 * o Release is the only non-atomic/unlocked operation
    612 		 *   that can be performed on the mutex.  (It must still
    613 		 *   be atomic on the local CPU, e.g. in case interrupted
    614 		 *   or preempted).
    615 		 *
    616 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    617 		 *   be in progress on one CPU in the system - guaranteed
    618 		 *   by the turnstile chain lock.
    619 		 *
    620 		 * o No other operations other than MUTEX_SET_WAITERS()
    621 		 *   and release can modify a mutex with a non-zero
    622 		 *   owner field.
    623 		 *
    624 		 * o The result of a successful MUTEX_SET_WAITERS() call
    625 		 *   is an unbuffered write that is immediately visible
    626 		 *   to all other processors in the system.
    627 		 *
    628 		 * o If the holding LWP switches away, it posts a store
    629 		 *   fence before changing curlwp, ensuring that any
    630 		 *   overwrite of the mutex waiters flag by mutex_exit()
    631 		 *   completes before the modification of curlwp becomes
    632 		 *   visible to this CPU.
    633 		 *
    634 		 * o mi_switch() posts a store fence before setting curlwp
    635 		 *   and before resuming execution of an LWP.
    636 		 *
    637 		 * o _kernel_lock() posts a store fence before setting
    638 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    639 		 *   This ensures that any overwrite of the mutex waiters
    640 		 *   flag by mutex_exit() completes before the modification
    641 		 *   of ci_biglock_wanted becomes visible.
    642 		 *
    643 		 * We now post a read memory barrier (after setting the
    644 		 * waiters field) and check the lock holder's status again.
    645 		 * Some of the possible outcomes (not an exhaustive list):
    646 		 *
    647 		 * 1. The onproc check returns true: the holding LWP is
    648 		 *    running again.  The lock may be released soon and
    649 		 *    we should spin.  Importantly, we can't trust the
    650 		 *    value of the waiters flag.
    651 		 *
    652 		 * 2. The onproc check returns false: the holding LWP is
    653 		 *    not running.  We now have the oppertunity to check
    654 		 *    if mutex_exit() has blatted the modifications made
    655 		 *    by MUTEX_SET_WAITERS().
    656 		 *
    657 		 * 3. The onproc check returns false: the holding LWP may
    658 		 *    or may not be running.  It has context switched at
    659 		 *    some point during our check.  Again, we have the
    660 		 *    chance to see if the waiters bit is still set or
    661 		 *    has been overwritten.
    662 		 *
    663 		 * 4. The onproc check returns false: the holding LWP is
    664 		 *    running on a CPU, but wants the big lock.  It's OK
    665 		 *    to check the waiters field in this case.
    666 		 *
    667 		 * 5. The has-waiters check fails: the mutex has been
    668 		 *    released, the waiters flag cleared and another LWP
    669 		 *    now owns the mutex.
    670 		 *
    671 		 * 6. The has-waiters check fails: the mutex has been
    672 		 *    released.
    673 		 *
    674 		 * If the waiters bit is not set it's unsafe to go asleep,
    675 		 * as we might never be awoken.
    676 		 */
    677 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    678 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    679 			turnstile_exit(mtx);
    680 			continue;
    681 		}
    682 #endif	/* MULTIPROCESSOR */
    683 
    684 		LOCKSTAT_START_TIMER(lsflag, slptime);
    685 
    686 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    687 
    688 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    689 		LOCKSTAT_COUNT(slpcnt, 1);
    690 	}
    691 
    692 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    693 	    slpcnt, slptime);
    694 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    695 	    spincnt, spintime);
    696 	LOCKSTAT_EXIT(lsflag);
    697 
    698 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    699 	MUTEX_LOCKED(mtx);
    700 }
    701 
    702 /*
    703  * mutex_vector_exit:
    704  *
    705  *	Support routine for mutex_exit() that handles all cases.
    706  */
    707 void
    708 mutex_vector_exit(kmutex_t *mtx)
    709 {
    710 	turnstile_t *ts;
    711 	uintptr_t curthread;
    712 
    713 	if (MUTEX_SPIN_P(mtx)) {
    714 #ifdef FULL
    715 		if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
    716 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    717 		MUTEX_UNLOCKED(mtx);
    718 		__cpu_simple_unlock(&mtx->mtx_lock);
    719 #endif
    720 		MUTEX_SPIN_SPLRESTORE(mtx);
    721 		return;
    722 	}
    723 
    724 	if (__predict_false((uintptr_t)panicstr | cold)) {
    725 		MUTEX_UNLOCKED(mtx);
    726 		MUTEX_RELEASE(mtx);
    727 		return;
    728 	}
    729 
    730 	curthread = (uintptr_t)curlwp;
    731 	MUTEX_DASSERT(mtx, curthread != 0);
    732 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    733 	MUTEX_UNLOCKED(mtx);
    734 
    735 #ifdef LOCKDEBUG
    736 	/*
    737 	 * Avoid having to take the turnstile chain lock every time
    738 	 * around.  Raise the priority level to splhigh() in order
    739 	 * to disable preemption and so make the following atomic.
    740 	 */
    741 	{
    742 		int s = splhigh();
    743 		if (!MUTEX_HAS_WAITERS(mtx)) {
    744 			MUTEX_RELEASE(mtx);
    745 			splx(s);
    746 			return;
    747 		}
    748 		splx(s);
    749 	}
    750 #endif
    751 
    752 	/*
    753 	 * Get this lock's turnstile.  This gets the interlock on
    754 	 * the sleep queue.  Once we have that, we can clear the
    755 	 * lock.  If there was no turnstile for the lock, there
    756 	 * were no waiters remaining.
    757 	 */
    758 	ts = turnstile_lookup(mtx);
    759 
    760 	if (ts == NULL) {
    761 		MUTEX_RELEASE(mtx);
    762 		turnstile_exit(mtx);
    763 	} else {
    764 		MUTEX_RELEASE(mtx);
    765 		turnstile_wakeup(ts, TS_WRITER_Q,
    766 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    767 	}
    768 }
    769 
    770 #ifndef __HAVE_SIMPLE_MUTEXES
    771 /*
    772  * mutex_wakeup:
    773  *
    774  *	Support routine for mutex_exit() that wakes up all waiters.
    775  *	We assume that the mutex has been released, but it need not
    776  *	be.
    777  */
    778 void
    779 mutex_wakeup(kmutex_t *mtx)
    780 {
    781 	turnstile_t *ts;
    782 
    783 	ts = turnstile_lookup(mtx);
    784 	if (ts == NULL) {
    785 		turnstile_exit(mtx);
    786 		return;
    787 	}
    788 	MUTEX_CLEAR_WAITERS(mtx);
    789 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    790 }
    791 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    792 
    793 /*
    794  * mutex_owned:
    795  *
    796  *	Return true if the current LWP (adaptive) or CPU (spin)
    797  *	holds the mutex.
    798  */
    799 int
    800 mutex_owned(kmutex_t *mtx)
    801 {
    802 
    803 	if (MUTEX_ADAPTIVE_P(mtx))
    804 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    805 #ifdef FULL
    806 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    807 #else
    808 	return 1;
    809 #endif
    810 }
    811 
    812 /*
    813  * mutex_owner:
    814  *
    815  *	Return the current owner of an adaptive mutex.  Used for
    816  *	priority inheritance.
    817  */
    818 lwp_t *
    819 mutex_owner(kmutex_t *mtx)
    820 {
    821 
    822 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    823 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    824 }
    825 
    826 /*
    827  * mutex_tryenter:
    828  *
    829  *	Try to acquire the mutex; return non-zero if we did.
    830  */
    831 int
    832 mutex_tryenter(kmutex_t *mtx)
    833 {
    834 	uintptr_t curthread;
    835 
    836 	/*
    837 	 * Handle spin mutexes.
    838 	 */
    839 	if (MUTEX_SPIN_P(mtx)) {
    840 		MUTEX_SPIN_SPLRAISE(mtx);
    841 #ifdef FULL
    842 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    843 			MUTEX_WANTLOCK(mtx);
    844 			MUTEX_LOCKED(mtx);
    845 			return 1;
    846 		}
    847 		MUTEX_SPIN_SPLRESTORE(mtx);
    848 #else
    849 		MUTEX_WANTLOCK(mtx);
    850 		MUTEX_LOCKED(mtx);
    851 		return 1;
    852 #endif
    853 	} else {
    854 		curthread = (uintptr_t)curlwp;
    855 		MUTEX_ASSERT(mtx, curthread != 0);
    856 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    857 			MUTEX_WANTLOCK(mtx);
    858 			MUTEX_LOCKED(mtx);
    859 			MUTEX_DASSERT(mtx,
    860 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    861 			return 1;
    862 		}
    863 	}
    864 
    865 	return 0;
    866 }
    867 
    868 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    869 /*
    870  * mutex_spin_retry:
    871  *
    872  *	Support routine for mutex_spin_enter().  Assumes that the caller
    873  *	has already raised the SPL, and adjusted counters.
    874  */
    875 void
    876 mutex_spin_retry(kmutex_t *mtx)
    877 {
    878 #ifdef MULTIPROCESSOR
    879 	u_int count;
    880 	LOCKSTAT_TIMER(spintime);
    881 	LOCKSTAT_FLAG(lsflag);
    882 #ifdef LOCKDEBUG
    883 	u_int spins = 0;
    884 #endif	/* LOCKDEBUG */
    885 
    886 	MUTEX_WANTLOCK(mtx);
    887 
    888 	LOCKSTAT_ENTER(lsflag);
    889 	LOCKSTAT_START_TIMER(lsflag, spintime);
    890 	count = SPINLOCK_BACKOFF_MIN;
    891 
    892 	/*
    893 	 * Spin testing the lock word and do exponential backoff
    894 	 * to reduce cache line ping-ponging between CPUs.
    895 	 */
    896 	do {
    897 		if (panicstr != NULL)
    898 			break;
    899 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    900 			SPINLOCK_BACKOFF(count);
    901 #ifdef LOCKDEBUG
    902 			if (SPINLOCK_SPINOUT(spins))
    903 				MUTEX_ABORT(mtx, "spinout");
    904 #endif	/* LOCKDEBUG */
    905 		}
    906 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    907 
    908 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    909 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    910 	LOCKSTAT_EXIT(lsflag);
    911 
    912 	MUTEX_LOCKED(mtx);
    913 #else	/* MULTIPROCESSOR */
    914 	MUTEX_ABORT(mtx, "locking against myself");
    915 #endif	/* MULTIPROCESSOR */
    916 }
    917 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    918