Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.29
      1 /*	$NetBSD: kern_mutex.c,v 1.29 2008/01/04 21:31:06 xtraeme Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Kernel mutex implementation, modeled after those found in Solaris,
     41  * a description of which can be found in:
     42  *
     43  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     44  *	    Richard McDougall.
     45  */
     46 
     47 #define	__MUTEX_PRIVATE
     48 
     49 #include <sys/cdefs.h>
     50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.29 2008/01/04 21:31:06 xtraeme Exp $");
     51 
     52 #include "opt_multiprocessor.h"
     53 
     54 #include <sys/param.h>
     55 #include <sys/proc.h>
     56 #include <sys/mutex.h>
     57 #include <sys/sched.h>
     58 #include <sys/sleepq.h>
     59 #include <sys/systm.h>
     60 #include <sys/lockdebug.h>
     61 #include <sys/kernel.h>
     62 #include <sys/atomic.h>
     63 #include <sys/intr.h>
     64 #include <sys/lock.h>
     65 
     66 #include <dev/lockstat.h>
     67 
     68 #include <machine/lock.h>
     69 
     70 /*
     71  * When not running a debug kernel, spin mutexes are not much
     72  * more than an splraiseipl() and splx() pair.
     73  */
     74 
     75 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     76 #define	FULL
     77 #endif
     78 
     79 /*
     80  * Debugging support.
     81  */
     82 
     83 #define	MUTEX_WANTLOCK(mtx)					\
     84     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     85         (uintptr_t)__builtin_return_address(0), 0)
     86 #define	MUTEX_LOCKED(mtx)					\
     87     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx),			\
     88         (uintptr_t)__builtin_return_address(0), 0)
     89 #define	MUTEX_UNLOCKED(mtx)					\
     90     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     91         (uintptr_t)__builtin_return_address(0), 0)
     92 #define	MUTEX_ABORT(mtx, msg)					\
     93     mutex_abort(mtx, __func__, msg)
     94 
     95 #if defined(LOCKDEBUG)
     96 
     97 #define	MUTEX_DASSERT(mtx, cond)				\
     98 do {								\
     99 	if (!(cond))						\
    100 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    101 } while (/* CONSTCOND */ 0);
    102 
    103 #else	/* LOCKDEBUG */
    104 
    105 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    106 
    107 #endif /* LOCKDEBUG */
    108 
    109 #if defined(DIAGNOSTIC)
    110 
    111 #define	MUTEX_ASSERT(mtx, cond)					\
    112 do {								\
    113 	if (!(cond))						\
    114 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    115 } while (/* CONSTCOND */ 0)
    116 
    117 #else	/* DIAGNOSTIC */
    118 
    119 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    120 
    121 #endif	/* DIAGNOSTIC */
    122 
    123 /*
    124  * Spin mutex SPL save / restore.
    125  */
    126 #ifndef MUTEX_COUNT_BIAS
    127 #define	MUTEX_COUNT_BIAS	0
    128 #endif
    129 
    130 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    131 do {									\
    132 	struct cpu_info *x__ci = curcpu();				\
    133 	int x__cnt, s;							\
    134 	x__cnt = x__ci->ci_mtx_count--;					\
    135 	s = splraiseipl(mtx->mtx_ipl);					\
    136 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    137 		x__ci->ci_mtx_oldspl = (s);				\
    138 } while (/* CONSTCOND */ 0)
    139 
    140 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    141 do {									\
    142 	struct cpu_info *x__ci = curcpu();				\
    143 	int s = x__ci->ci_mtx_oldspl;					\
    144 	__insn_barrier();						\
    145 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    146 		splx(s);						\
    147 } while (/* CONSTCOND */ 0)
    148 
    149 /*
    150  * For architectures that provide 'simple' mutexes: they provide a
    151  * CAS function that is either MP-safe, or does not need to be MP
    152  * safe.  Adaptive mutexes on these architectures do not require an
    153  * additional interlock.
    154  */
    155 
    156 #ifdef __HAVE_SIMPLE_MUTEXES
    157 
    158 #define	MUTEX_OWNER(owner)						\
    159 	(owner & MUTEX_THREAD)
    160 #define	MUTEX_HAS_WAITERS(mtx)						\
    161 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    162 
    163 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    164 do {									\
    165 	if (dodebug)							\
    166 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    167 } while (/* CONSTCOND */ 0);
    168 
    169 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    170 do {									\
    171 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    172 	if (dodebug)							\
    173 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    174 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    175 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    176 } while (/* CONSTCOND */ 0)
    177 
    178 #define	MUTEX_DESTROY(mtx)						\
    179 do {									\
    180 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    181 } while (/* CONSTCOND */ 0);
    182 
    183 #define	MUTEX_SPIN_P(mtx)		\
    184     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    185 #define	MUTEX_ADAPTIVE_P(mtx)		\
    186     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    187 
    188 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    189 #if defined(LOCKDEBUG)
    190 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    191 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    192 #else /* defined(LOCKDEBUG) */
    193 #define	MUTEX_OWNED(owner)		((owner) != 0)
    194 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    195 #endif /* defined(LOCKDEBUG) */
    196 
    197 static inline int
    198 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    199 {
    200 	int rv;
    201 	uintptr_t old = 0;
    202 	uintptr_t new = curthread;
    203 
    204 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    205 	MUTEX_INHERITDEBUG(new, old);
    206 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    207 	MUTEX_RECEIVE(mtx);
    208 	return rv;
    209 }
    210 
    211 static inline int
    212 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    213 {
    214 	int rv;
    215 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    216 	MUTEX_RECEIVE(mtx);
    217 	return rv;
    218 }
    219 
    220 static inline void
    221 MUTEX_RELEASE(kmutex_t *mtx)
    222 {
    223 	uintptr_t new;
    224 
    225 	MUTEX_GIVE(mtx);
    226 	new = 0;
    227 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    228 	mtx->mtx_owner = new;
    229 }
    230 
    231 static inline void
    232 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    233 {
    234 	/* nothing */
    235 }
    236 #endif	/* __HAVE_SIMPLE_MUTEXES */
    237 
    238 /*
    239  * Patch in stubs via strong alias where they are not available.
    240  */
    241 
    242 #if defined(LOCKDEBUG)
    243 #undef	__HAVE_MUTEX_STUBS
    244 #undef	__HAVE_SPIN_MUTEX_STUBS
    245 #endif
    246 
    247 #ifndef __HAVE_MUTEX_STUBS
    248 __strong_alias(mutex_enter,mutex_vector_enter);
    249 __strong_alias(mutex_exit,mutex_vector_exit);
    250 #endif
    251 
    252 #ifndef __HAVE_SPIN_MUTEX_STUBS
    253 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    254 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    255 #endif
    256 
    257 void	mutex_abort(kmutex_t *, const char *, const char *);
    258 void	mutex_dump(volatile void *);
    259 int	mutex_onproc(uintptr_t, struct cpu_info **);
    260 
    261 lockops_t mutex_spin_lockops = {
    262 	"Mutex",
    263 	0,
    264 	mutex_dump
    265 };
    266 
    267 lockops_t mutex_adaptive_lockops = {
    268 	"Mutex",
    269 	1,
    270 	mutex_dump
    271 };
    272 
    273 syncobj_t mutex_syncobj = {
    274 	SOBJ_SLEEPQ_SORTED,
    275 	turnstile_unsleep,
    276 	turnstile_changepri,
    277 	sleepq_lendpri,
    278 	(void *)mutex_owner,
    279 };
    280 
    281 /*
    282  * mutex_dump:
    283  *
    284  *	Dump the contents of a mutex structure.
    285  */
    286 void
    287 mutex_dump(volatile void *cookie)
    288 {
    289 	volatile kmutex_t *mtx = cookie;
    290 
    291 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    292 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    293 	    MUTEX_SPIN_P(mtx));
    294 }
    295 
    296 /*
    297  * mutex_abort:
    298  *
    299  *	Dump information about an error and panic the system.  This
    300  *	generates a lot of machine code in the DIAGNOSTIC case, so
    301  *	we ask the compiler to not inline it.
    302  */
    303 
    304 #if __GNUC_PREREQ__(3, 0)
    305 __attribute ((noinline)) __attribute ((noreturn))
    306 #endif
    307 void
    308 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    309 {
    310 
    311 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    312 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    313 	/* NOTREACHED */
    314 }
    315 
    316 /*
    317  * mutex_init:
    318  *
    319  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    320  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    321  *	CPU time.  We can't easily provide a type of mutex that always
    322  *	sleeps - see comments in mutex_vector_enter() about releasing
    323  *	mutexes unlocked.
    324  */
    325 void
    326 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    327 {
    328 	bool dodebug;
    329 
    330 	memset(mtx, 0, sizeof(*mtx));
    331 
    332 	switch (type) {
    333 	case MUTEX_ADAPTIVE:
    334 		KASSERT(ipl == IPL_NONE);
    335 		break;
    336 	case MUTEX_DEFAULT:
    337 	case MUTEX_DRIVER:
    338 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    339 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    340 		    ipl == IPL_SOFTSERIAL) {
    341 			type = MUTEX_ADAPTIVE;
    342 		} else {
    343 			type = MUTEX_SPIN;
    344 		}
    345 		break;
    346 	default:
    347 		break;
    348 	}
    349 
    350 	switch (type) {
    351 	case MUTEX_NODEBUG:
    352 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    353 		    (uintptr_t)__builtin_return_address(0));
    354 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    355 		break;
    356 	case MUTEX_ADAPTIVE:
    357 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    358 		    (uintptr_t)__builtin_return_address(0));
    359 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    360 		break;
    361 	case MUTEX_SPIN:
    362 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    363 		    (uintptr_t)__builtin_return_address(0));
    364 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    365 		break;
    366 	default:
    367 		panic("mutex_init: impossible type");
    368 		break;
    369 	}
    370 }
    371 
    372 /*
    373  * mutex_destroy:
    374  *
    375  *	Tear down a mutex.
    376  */
    377 void
    378 mutex_destroy(kmutex_t *mtx)
    379 {
    380 
    381 	if (MUTEX_ADAPTIVE_P(mtx)) {
    382 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    383 		    !MUTEX_HAS_WAITERS(mtx));
    384 	} else {
    385 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    386 	}
    387 
    388 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    389 	MUTEX_DESTROY(mtx);
    390 }
    391 
    392 /*
    393  * mutex_onproc:
    394  *
    395  *	Return true if an adaptive mutex owner is running on a CPU in the
    396  *	system.  If the target is waiting on the kernel big lock, then we
    397  *	must release it.  This is necessary to avoid deadlock.
    398  *
    399  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    400  *	don't have full control over the timing of our execution, and so the
    401  *	pointer could be completely invalid by the time we dereference it.
    402  */
    403 #ifdef MULTIPROCESSOR
    404 int
    405 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    406 {
    407 	CPU_INFO_ITERATOR cii;
    408 	struct cpu_info *ci;
    409 	struct lwp *l;
    410 
    411 	if (!MUTEX_OWNED(owner))
    412 		return 0;
    413 	l = (struct lwp *)MUTEX_OWNER(owner);
    414 
    415 	/* See if the target is running on a CPU somewhere. */
    416 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    417 		goto run;
    418 	for (CPU_INFO_FOREACH(cii, ci))
    419 		if (ci->ci_curlwp == l)
    420 			goto run;
    421 
    422 	/* No: it may be safe to block now. */
    423 	*cip = NULL;
    424 	return 0;
    425 
    426  run:
    427  	/* Target is running; do we need to block? */
    428  	*cip = ci;
    429 	return ci->ci_biglock_wanted != l;
    430 }
    431 #endif	/* MULTIPROCESSOR */
    432 
    433 /*
    434  * mutex_vector_enter:
    435  *
    436  *	Support routine for mutex_enter() that must handles all cases.  In
    437  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    438  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    439  *	not available, then it is also aliased directly here.
    440  */
    441 void
    442 mutex_vector_enter(kmutex_t *mtx)
    443 {
    444 	uintptr_t owner, curthread;
    445 	turnstile_t *ts;
    446 #ifdef MULTIPROCESSOR
    447 	struct cpu_info *ci = NULL;
    448 	u_int count;
    449 #endif
    450 	LOCKSTAT_COUNTER(spincnt);
    451 	LOCKSTAT_COUNTER(slpcnt);
    452 	LOCKSTAT_TIMER(spintime);
    453 	LOCKSTAT_TIMER(slptime);
    454 	LOCKSTAT_FLAG(lsflag);
    455 
    456 	/*
    457 	 * Handle spin mutexes.
    458 	 */
    459 	if (MUTEX_SPIN_P(mtx)) {
    460 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    461 		u_int spins = 0;
    462 #endif
    463 		MUTEX_SPIN_SPLRAISE(mtx);
    464 		MUTEX_WANTLOCK(mtx);
    465 #ifdef FULL
    466 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    467 			MUTEX_LOCKED(mtx);
    468 			return;
    469 		}
    470 #if !defined(MULTIPROCESSOR)
    471 		MUTEX_ABORT(mtx, "locking against myself");
    472 #else /* !MULTIPROCESSOR */
    473 
    474 		LOCKSTAT_ENTER(lsflag);
    475 		LOCKSTAT_START_TIMER(lsflag, spintime);
    476 		count = SPINLOCK_BACKOFF_MIN;
    477 
    478 		/*
    479 		 * Spin testing the lock word and do exponential backoff
    480 		 * to reduce cache line ping-ponging between CPUs.
    481 		 */
    482 		do {
    483 			if (panicstr != NULL)
    484 				break;
    485 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    486 				SPINLOCK_BACKOFF(count);
    487 #ifdef LOCKDEBUG
    488 				if (SPINLOCK_SPINOUT(spins))
    489 					MUTEX_ABORT(mtx, "spinout");
    490 #endif	/* LOCKDEBUG */
    491 			}
    492 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    493 
    494 		if (count != SPINLOCK_BACKOFF_MIN) {
    495 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    496 			LOCKSTAT_EVENT(lsflag, mtx,
    497 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    498 		}
    499 		LOCKSTAT_EXIT(lsflag);
    500 #endif	/* !MULTIPROCESSOR */
    501 #endif	/* FULL */
    502 		MUTEX_LOCKED(mtx);
    503 		return;
    504 	}
    505 
    506 	curthread = (uintptr_t)curlwp;
    507 
    508 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    509 	MUTEX_ASSERT(mtx, curthread != 0);
    510 	MUTEX_WANTLOCK(mtx);
    511 
    512 #ifdef LOCKDEBUG
    513 	if (panicstr == NULL) {
    514 		simple_lock_only_held(NULL, "mutex_enter");
    515 #ifdef MULTIPROCESSOR
    516 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    517 #else
    518 		LOCKDEBUG_BARRIER(NULL, 1);
    519 #endif
    520 	}
    521 #endif
    522 
    523 	LOCKSTAT_ENTER(lsflag);
    524 
    525 	/*
    526 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    527 	 * determine that the owner is not running on a processor,
    528 	 * then we stop spinning, and sleep instead.
    529 	 */
    530 	for (;;) {
    531 		owner = mtx->mtx_owner;
    532 		if (!MUTEX_OWNED(owner)) {
    533 			/*
    534 			 * Mutex owner clear could mean two things:
    535 			 *
    536 			 *	* The mutex has been released.
    537 			 *	* The owner field hasn't been set yet.
    538 			 *
    539 			 * Try to acquire it again.  If that fails,
    540 			 * we'll just loop again.
    541 			 */
    542 			if (MUTEX_ACQUIRE(mtx, curthread))
    543 				break;
    544 			continue;
    545 		}
    546 
    547 		if (panicstr != NULL)
    548 			return;
    549 		if (MUTEX_OWNER(owner) == curthread)
    550 			MUTEX_ABORT(mtx, "locking against myself");
    551 
    552 #ifdef MULTIPROCESSOR
    553 		/*
    554 		 * Check to see if the owner is running on a processor.
    555 		 * If so, then we should just spin, as the owner will
    556 		 * likely release the lock very soon.
    557 		 */
    558 		if (mutex_onproc(owner, &ci)) {
    559 			LOCKSTAT_START_TIMER(lsflag, spintime);
    560 			count = SPINLOCK_BACKOFF_MIN;
    561 			for (;;) {
    562 				owner = mtx->mtx_owner;
    563 				if (!mutex_onproc(owner, &ci))
    564 					break;
    565 				SPINLOCK_BACKOFF(count);
    566 			}
    567 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    568 			LOCKSTAT_COUNT(spincnt, 1);
    569 			if (!MUTEX_OWNED(owner))
    570 				continue;
    571 		}
    572 #endif
    573 
    574 		ts = turnstile_lookup(mtx);
    575 
    576 		/*
    577 		 * Once we have the turnstile chain interlock, mark the
    578 		 * mutex has having waiters.  If that fails, spin again:
    579 		 * chances are that the mutex has been released.
    580 		 */
    581 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    582 			turnstile_exit(mtx);
    583 			continue;
    584 		}
    585 
    586 #ifdef MULTIPROCESSOR
    587 		/*
    588 		 * mutex_exit() is permitted to release the mutex without
    589 		 * any interlocking instructions, and the following can
    590 		 * occur as a result:
    591 		 *
    592 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    593 		 * ---------------------------- ----------------------------
    594 		 *		..		    acquire cache line
    595 		 *		..                   test for waiters
    596 		 *	acquire cache line    <-      lose cache line
    597 		 *	 lock cache line	           ..
    598 		 *     verify mutex is held                ..
    599 		 *	    set waiters  	           ..
    600 		 *	 unlock cache line		   ..
    601 		 *	  lose cache line     ->    acquire cache line
    602 		 *		..	          clear lock word, waiters
    603 		 *	  return success
    604 		 *
    605 		 * There is a another race that can occur: a third CPU could
    606 		 * acquire the mutex as soon as it is released.  Since
    607 		 * adaptive mutexes are primarily spin mutexes, this is not
    608 		 * something that we need to worry about too much.  What we
    609 		 * do need to ensure is that the waiters bit gets set.
    610 		 *
    611 		 * To allow the unlocked release, we need to make some
    612 		 * assumptions here:
    613 		 *
    614 		 * o Release is the only non-atomic/unlocked operation
    615 		 *   that can be performed on the mutex.  (It must still
    616 		 *   be atomic on the local CPU, e.g. in case interrupted
    617 		 *   or preempted).
    618 		 *
    619 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    620 		 *   be in progress on one CPU in the system - guaranteed
    621 		 *   by the turnstile chain lock.
    622 		 *
    623 		 * o No other operations other than MUTEX_SET_WAITERS()
    624 		 *   and release can modify a mutex with a non-zero
    625 		 *   owner field.
    626 		 *
    627 		 * o The result of a successful MUTEX_SET_WAITERS() call
    628 		 *   is an unbuffered write that is immediately visible
    629 		 *   to all other processors in the system.
    630 		 *
    631 		 * o If the holding LWP switches away, it posts a store
    632 		 *   fence before changing curlwp, ensuring that any
    633 		 *   overwrite of the mutex waiters flag by mutex_exit()
    634 		 *   completes before the modification of curlwp becomes
    635 		 *   visible to this CPU.
    636 		 *
    637 		 * o mi_switch() posts a store fence before setting curlwp
    638 		 *   and before resuming execution of an LWP.
    639 		 *
    640 		 * o _kernel_lock() posts a store fence before setting
    641 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    642 		 *   This ensures that any overwrite of the mutex waiters
    643 		 *   flag by mutex_exit() completes before the modification
    644 		 *   of ci_biglock_wanted becomes visible.
    645 		 *
    646 		 * We now post a read memory barrier (after setting the
    647 		 * waiters field) and check the lock holder's status again.
    648 		 * Some of the possible outcomes (not an exhaustive list):
    649 		 *
    650 		 * 1. The onproc check returns true: the holding LWP is
    651 		 *    running again.  The lock may be released soon and
    652 		 *    we should spin.  Importantly, we can't trust the
    653 		 *    value of the waiters flag.
    654 		 *
    655 		 * 2. The onproc check returns false: the holding LWP is
    656 		 *    not running.  We now have the oppertunity to check
    657 		 *    if mutex_exit() has blatted the modifications made
    658 		 *    by MUTEX_SET_WAITERS().
    659 		 *
    660 		 * 3. The onproc check returns false: the holding LWP may
    661 		 *    or may not be running.  It has context switched at
    662 		 *    some point during our check.  Again, we have the
    663 		 *    chance to see if the waiters bit is still set or
    664 		 *    has been overwritten.
    665 		 *
    666 		 * 4. The onproc check returns false: the holding LWP is
    667 		 *    running on a CPU, but wants the big lock.  It's OK
    668 		 *    to check the waiters field in this case.
    669 		 *
    670 		 * 5. The has-waiters check fails: the mutex has been
    671 		 *    released, the waiters flag cleared and another LWP
    672 		 *    now owns the mutex.
    673 		 *
    674 		 * 6. The has-waiters check fails: the mutex has been
    675 		 *    released.
    676 		 *
    677 		 * If the waiters bit is not set it's unsafe to go asleep,
    678 		 * as we might never be awoken.
    679 		 */
    680 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    681 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    682 			turnstile_exit(mtx);
    683 			continue;
    684 		}
    685 #endif	/* MULTIPROCESSOR */
    686 
    687 		LOCKSTAT_START_TIMER(lsflag, slptime);
    688 
    689 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    690 
    691 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    692 		LOCKSTAT_COUNT(slpcnt, 1);
    693 	}
    694 
    695 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    696 	    slpcnt, slptime);
    697 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    698 	    spincnt, spintime);
    699 	LOCKSTAT_EXIT(lsflag);
    700 
    701 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    702 	MUTEX_LOCKED(mtx);
    703 }
    704 
    705 /*
    706  * mutex_vector_exit:
    707  *
    708  *	Support routine for mutex_exit() that handles all cases.
    709  */
    710 void
    711 mutex_vector_exit(kmutex_t *mtx)
    712 {
    713 	turnstile_t *ts;
    714 	uintptr_t curthread;
    715 
    716 	if (MUTEX_SPIN_P(mtx)) {
    717 #ifdef FULL
    718 		if (!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))
    719 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    720 		MUTEX_UNLOCKED(mtx);
    721 		__cpu_simple_unlock(&mtx->mtx_lock);
    722 #endif
    723 		MUTEX_SPIN_SPLRESTORE(mtx);
    724 		return;
    725 	}
    726 
    727 	if (__predict_false((uintptr_t)panicstr | cold)) {
    728 		MUTEX_UNLOCKED(mtx);
    729 		MUTEX_RELEASE(mtx);
    730 		return;
    731 	}
    732 
    733 	curthread = (uintptr_t)curlwp;
    734 	MUTEX_DASSERT(mtx, curthread != 0);
    735 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    736 	MUTEX_UNLOCKED(mtx);
    737 
    738 #ifdef LOCKDEBUG
    739 	/*
    740 	 * Avoid having to take the turnstile chain lock every time
    741 	 * around.  Raise the priority level to splhigh() in order
    742 	 * to disable preemption and so make the following atomic.
    743 	 */
    744 	{
    745 		int s = splhigh();
    746 		if (!MUTEX_HAS_WAITERS(mtx)) {
    747 			MUTEX_RELEASE(mtx);
    748 			splx(s);
    749 			return;
    750 		}
    751 		splx(s);
    752 	}
    753 #endif
    754 
    755 	/*
    756 	 * Get this lock's turnstile.  This gets the interlock on
    757 	 * the sleep queue.  Once we have that, we can clear the
    758 	 * lock.  If there was no turnstile for the lock, there
    759 	 * were no waiters remaining.
    760 	 */
    761 	ts = turnstile_lookup(mtx);
    762 
    763 	if (ts == NULL) {
    764 		MUTEX_RELEASE(mtx);
    765 		turnstile_exit(mtx);
    766 	} else {
    767 		MUTEX_RELEASE(mtx);
    768 		turnstile_wakeup(ts, TS_WRITER_Q,
    769 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    770 	}
    771 }
    772 
    773 #ifndef __HAVE_SIMPLE_MUTEXES
    774 /*
    775  * mutex_wakeup:
    776  *
    777  *	Support routine for mutex_exit() that wakes up all waiters.
    778  *	We assume that the mutex has been released, but it need not
    779  *	be.
    780  */
    781 void
    782 mutex_wakeup(kmutex_t *mtx)
    783 {
    784 	turnstile_t *ts;
    785 
    786 	ts = turnstile_lookup(mtx);
    787 	if (ts == NULL) {
    788 		turnstile_exit(mtx);
    789 		return;
    790 	}
    791 	MUTEX_CLEAR_WAITERS(mtx);
    792 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    793 }
    794 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    795 
    796 /*
    797  * mutex_owned:
    798  *
    799  *	Return true if the current LWP (adaptive) or CPU (spin)
    800  *	holds the mutex.
    801  */
    802 int
    803 mutex_owned(kmutex_t *mtx)
    804 {
    805 
    806 	if (MUTEX_ADAPTIVE_P(mtx))
    807 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    808 #ifdef FULL
    809 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    810 #else
    811 	return 1;
    812 #endif
    813 }
    814 
    815 /*
    816  * mutex_owner:
    817  *
    818  *	Return the current owner of an adaptive mutex.  Used for
    819  *	priority inheritance.
    820  */
    821 lwp_t *
    822 mutex_owner(kmutex_t *mtx)
    823 {
    824 
    825 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    826 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    827 }
    828 
    829 /*
    830  * mutex_tryenter:
    831  *
    832  *	Try to acquire the mutex; return non-zero if we did.
    833  */
    834 int
    835 mutex_tryenter(kmutex_t *mtx)
    836 {
    837 	uintptr_t curthread;
    838 
    839 	/*
    840 	 * Handle spin mutexes.
    841 	 */
    842 	if (MUTEX_SPIN_P(mtx)) {
    843 		MUTEX_SPIN_SPLRAISE(mtx);
    844 #ifdef FULL
    845 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    846 			MUTEX_WANTLOCK(mtx);
    847 			MUTEX_LOCKED(mtx);
    848 			return 1;
    849 		}
    850 		MUTEX_SPIN_SPLRESTORE(mtx);
    851 #else
    852 		MUTEX_WANTLOCK(mtx);
    853 		MUTEX_LOCKED(mtx);
    854 		return 1;
    855 #endif
    856 	} else {
    857 		curthread = (uintptr_t)curlwp;
    858 		MUTEX_ASSERT(mtx, curthread != 0);
    859 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    860 			MUTEX_WANTLOCK(mtx);
    861 			MUTEX_LOCKED(mtx);
    862 			MUTEX_DASSERT(mtx,
    863 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    864 			return 1;
    865 		}
    866 	}
    867 
    868 	return 0;
    869 }
    870 
    871 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    872 /*
    873  * mutex_spin_retry:
    874  *
    875  *	Support routine for mutex_spin_enter().  Assumes that the caller
    876  *	has already raised the SPL, and adjusted counters.
    877  */
    878 void
    879 mutex_spin_retry(kmutex_t *mtx)
    880 {
    881 #ifdef MULTIPROCESSOR
    882 	u_int count;
    883 	LOCKSTAT_TIMER(spintime);
    884 	LOCKSTAT_FLAG(lsflag);
    885 #ifdef LOCKDEBUG
    886 	u_int spins = 0;
    887 #endif	/* LOCKDEBUG */
    888 
    889 	MUTEX_WANTLOCK(mtx);
    890 
    891 	LOCKSTAT_ENTER(lsflag);
    892 	LOCKSTAT_START_TIMER(lsflag, spintime);
    893 	count = SPINLOCK_BACKOFF_MIN;
    894 
    895 	/*
    896 	 * Spin testing the lock word and do exponential backoff
    897 	 * to reduce cache line ping-ponging between CPUs.
    898 	 */
    899 	do {
    900 		if (panicstr != NULL)
    901 			break;
    902 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    903 			SPINLOCK_BACKOFF(count);
    904 #ifdef LOCKDEBUG
    905 			if (SPINLOCK_SPINOUT(spins))
    906 				MUTEX_ABORT(mtx, "spinout");
    907 #endif	/* LOCKDEBUG */
    908 		}
    909 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    910 
    911 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    912 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    913 	LOCKSTAT_EXIT(lsflag);
    914 
    915 	MUTEX_LOCKED(mtx);
    916 #else	/* MULTIPROCESSOR */
    917 	MUTEX_ABORT(mtx, "locking against myself");
    918 #endif	/* MULTIPROCESSOR */
    919 }
    920 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    921