kern_mutex.c revision 1.3 1 /* $NetBSD: kern_mutex.c,v 1.3 2007/02/10 21:07:52 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel mutex implementation, modeled after those found in Solaris,
41 * a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include "opt_multiprocessor.h"
48
49 #define __MUTEX_PRIVATE
50
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.3 2007/02/10 21:07:52 ad Exp $");
53
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62
63 #include <dev/lockstat.h>
64
65 #include <machine/intr.h>
66
67 /*
68 * When not running a debug kernel, spin mutexes are not much
69 * more than an splraiseipl() and splx() pair.
70 */
71
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define FULL
74 #endif
75
76 /*
77 * Debugging support.
78 */
79
80 #define MUTEX_WANTLOCK(mtx) \
81 LOCKDEBUG_WANTLOCK(MUTEX_GETID(mtx), \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_LOCKED(mtx) \
84 LOCKDEBUG_LOCKED(MUTEX_GETID(mtx), \
85 (uintptr_t)__builtin_return_address(0), 0)
86 #define MUTEX_UNLOCKED(mtx) \
87 LOCKDEBUG_UNLOCKED(MUTEX_GETID(mtx), \
88 (uintptr_t)__builtin_return_address(0), 0)
89 #define MUTEX_ABORT(mtx, msg) \
90 mutex_abort(mtx, __FUNCTION__, msg)
91
92 #if defined(LOCKDEBUG)
93
94 #define MUTEX_DASSERT(mtx, cond) \
95 do { \
96 if (!(cond)) \
97 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0);
99
100 #else /* LOCKDEBUG */
101
102 #define MUTEX_DASSERT(mtx, cond) /* nothing */
103
104 #endif /* LOCKDEBUG */
105
106 #if defined(DIAGNOSTIC)
107
108 #define MUTEX_ASSERT(mtx, cond) \
109 do { \
110 if (!(cond)) \
111 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
112 } while (/* CONSTCOND */ 0)
113
114 #else /* DIAGNOSTIC */
115
116 #define MUTEX_ASSERT(mtx, cond) /* nothing */
117
118 #endif /* DIAGNOSTIC */
119
120 /*
121 * Spin mutex SPL save / restore.
122 */
123
124 #define MUTEX_SPIN_SPLRAISE(mtx) \
125 do { \
126 struct cpu_info *x__ci = curcpu(); \
127 int x__cnt, s; \
128 x__cnt = x__ci->ci_mtx_count--; \
129 s = splraiseipl(mtx->mtx_ipl); \
130 if (x__cnt == 0) \
131 x__ci->ci_mtx_oldspl = (s); \
132 } while (/* CONSTCOND */ 0)
133
134 #define MUTEX_SPIN_SPLRESTORE(mtx) \
135 do { \
136 struct cpu_info *x__ci = curcpu(); \
137 int s = x__ci->ci_mtx_oldspl; \
138 __insn_barrier(); \
139 if (++(x__ci->ci_mtx_count) == 0) \
140 splx(s); \
141 } while (/* CONSTCOND */ 0)
142
143 /*
144 * For architectures that provide 'simple' mutexes: they provide a
145 * CAS function that is either MP-safe, or does not need to be MP
146 * safe. Adaptive mutexes on these architectures do not require an
147 * additional interlock.
148 */
149
150 #ifdef __HAVE_SIMPLE_MUTEXES
151
152 #define MUTEX_OWNER(owner) \
153 (owner & MUTEX_THREAD)
154 #define MUTEX_OWNED(owner) \
155 (owner != 0)
156 #define MUTEX_HAS_WAITERS(mtx) \
157 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
158
159 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, id) \
160 do { \
161 (mtx)->mtx_id = (id); \
162 } while (/* CONSTCOND */ 0);
163
164 #define MUTEX_INITIALIZE_SPIN(mtx, id, ipl) \
165 do { \
166 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
167 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
168 (mtx)->mtx_id = (id); \
169 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
170 } while (/* CONSTCOND */ 0)
171
172 #define MUTEX_DESTROY(mtx) \
173 do { \
174 (mtx)->mtx_owner = MUTEX_THREAD; \
175 (mtx)->mtx_id = -1; \
176 } while (/* CONSTCOND */ 0);
177
178 #define MUTEX_SPIN_P(mtx) \
179 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
180 #define MUTEX_ADAPTIVE_P(mtx) \
181 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
182
183 #define MUTEX_GETID(mtx) ((mtx)->mtx_id)
184
185 static inline int
186 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
187 {
188 int rv;
189 rv = MUTEX_CAS(&mtx->mtx_owner, 0UL, curthread);
190 MUTEX_RECEIVE();
191 return rv;
192 }
193
194 static inline int
195 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
196 {
197 int rv;
198 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
199 MUTEX_RECEIVE();
200 return rv;
201 }
202
203 static inline void
204 MUTEX_RELEASE(kmutex_t *mtx)
205 {
206 MUTEX_GIVE();
207 mtx->mtx_owner = 0;
208 }
209 #endif /* __HAVE_SIMPLE_MUTEXES */
210
211 /*
212 * Patch in stubs via strong alias where they are not available.
213 */
214
215 #if defined(LOCKDEBUG)
216 #undef __HAVE_MUTEX_STUBS
217 #undef __HAVE_SPIN_MUTEX_STUBS
218 #endif
219
220 #ifndef __HAVE_MUTEX_STUBS
221 __strong_alias(mutex_enter, mutex_vector_enter);
222 __strong_alias(mutex_exit, mutex_vector_exit);
223 #endif
224
225 #ifndef __HAVE_SPIN_MUTEX_STUBS
226 __strong_alias(mutex_spin_enter, mutex_vector_enter);
227 __strong_alias(mutex_spin_exit, mutex_vector_exit);
228 #endif
229
230 void mutex_abort(kmutex_t *, const char *, const char *);
231 void mutex_dump(volatile void *);
232 int mutex_onproc(uintptr_t, struct cpu_info **);
233
234 lockops_t mutex_spin_lockops = {
235 "Mutex",
236 0,
237 mutex_dump
238 };
239
240 lockops_t mutex_adaptive_lockops = {
241 "Mutex",
242 1,
243 mutex_dump
244 };
245
246 /*
247 * mutex_dump:
248 *
249 * Dump the contents of a mutex structure.
250 */
251 void
252 mutex_dump(volatile void *cookie)
253 {
254 volatile kmutex_t *mtx = cookie;
255
256 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
257 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
258 MUTEX_SPIN_P(mtx));
259 }
260
261 /*
262 * mutex_abort:
263 *
264 * Dump information about an error and panic the system. This
265 * generates a lot of machine code in the DIAGNOSTIC case, so
266 * we ask the compiler to not inline it.
267 */
268 __attribute ((noinline)) __attribute ((noreturn)) void
269 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
270 {
271
272 LOCKDEBUG_ABORT(MUTEX_GETID(mtx), mtx, (MUTEX_SPIN_P(mtx) ?
273 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
274 /* NOTREACHED */
275 }
276
277 /*
278 * mutex_init:
279 *
280 * Initialize a mutex for use. Note that adaptive mutexes are in
281 * essence spin mutexes that can sleep to avoid deadlock and wasting
282 * CPU time. We can't easily provide a type of mutex that always
283 * sleeps - see comments in mutex_vector_enter() about releasing
284 * mutexes unlocked.
285 */
286 void
287 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
288 {
289 u_int id;
290
291 memset(mtx, 0, sizeof(*mtx));
292
293 if (type == MUTEX_DRIVER)
294 type = (ipl == IPL_NONE ? MUTEX_ADAPTIVE : MUTEX_SPIN);
295
296 switch (type) {
297 case MUTEX_ADAPTIVE:
298 case MUTEX_DEFAULT:
299 KASSERT(ipl == IPL_NONE);
300 id = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops);
301 MUTEX_INITIALIZE_ADAPTIVE(mtx, id);
302 break;
303 case MUTEX_SPIN:
304 id = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops);
305 MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
306 break;
307 default:
308 panic("mutex_init: impossible type");
309 break;
310 }
311 }
312
313 /*
314 * mutex_destroy:
315 *
316 * Tear down a mutex.
317 */
318 void
319 mutex_destroy(kmutex_t *mtx)
320 {
321
322 if (MUTEX_ADAPTIVE_P(mtx)) {
323 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
324 !MUTEX_HAS_WAITERS(mtx));
325 } else {
326 MUTEX_ASSERT(mtx, mtx->mtx_lock != __SIMPLELOCK_LOCKED);
327 }
328
329 LOCKDEBUG_FREE(mtx, MUTEX_GETID(mtx));
330 MUTEX_DESTROY(mtx);
331 }
332
333 /*
334 * mutex_onproc:
335 *
336 * Return true if an adaptive mutex owner is running on a CPU in the
337 * system. If the target is waiting on the kernel big lock, then we
338 * return false immediately. This is necessary to avoid deadlock
339 * against the big lock.
340 *
341 * Note that we can't use the mutex owner field as an LWP pointer. We
342 * don't have full control over the timing of our execution, and so the
343 * pointer could be completely invalid by the time we dereference it.
344 *
345 * XXX This should be optimised further to reduce potential cache line
346 * ping-ponging and skewing of the spin time while busy waiting.
347 */
348 #ifdef MULTIPROCESSOR
349 int
350 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
351 {
352 CPU_INFO_ITERATOR cii;
353 struct cpu_info *ci;
354 struct lwp *l;
355
356 if (!MUTEX_OWNED(owner))
357 return 0;
358 l = (struct lwp *)MUTEX_OWNER(owner);
359
360 if ((ci = *cip) != NULL && ci->ci_curlwp == l) {
361 mb_read(); /* XXXSMP Very expensive, necessary? */
362 return ci->ci_biglock_wanted != l;
363 }
364
365 for (CPU_INFO_FOREACH(cii, ci)) {
366 if (ci->ci_curlwp == l) {
367 *cip = ci;
368 mb_read(); /* XXXSMP Very expensive, necessary? */
369 return ci->ci_biglock_wanted != l;
370 }
371 }
372
373 *cip = NULL;
374 return 0;
375 }
376 #endif
377
378 /*
379 * mutex_vector_enter:
380 *
381 * Support routine for mutex_enter() that must handles all cases. In
382 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
383 * fast-path stubs are available. If an mutex_spin_enter() stub is
384 * not available, then it is also aliased directly here.
385 */
386 void
387 mutex_vector_enter(kmutex_t *mtx)
388 {
389 uintptr_t owner, curthread;
390 turnstile_t *ts;
391 #ifdef MULTIPROCESSOR
392 struct cpu_info *ci = NULL;
393 u_int count;
394 #endif
395 LOCKSTAT_COUNTER(spincnt);
396 LOCKSTAT_COUNTER(slpcnt);
397 LOCKSTAT_TIMER(spintime);
398 LOCKSTAT_TIMER(slptime);
399 LOCKSTAT_FLAG(lsflag);
400
401 /*
402 * Handle spin mutexes.
403 */
404 if (MUTEX_SPIN_P(mtx)) {
405 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
406 u_int spins = 0;
407 #endif
408 MUTEX_SPIN_SPLRAISE(mtx);
409 MUTEX_WANTLOCK(mtx);
410 #ifdef FULL
411 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
412 MUTEX_LOCKED(mtx);
413 return;
414 }
415 #if !defined(MULTIPROCESSOR)
416 MUTEX_ABORT(mtx, "locking against myself");
417 #else /* !MULTIPROCESSOR */
418
419 LOCKSTAT_ENTER(lsflag);
420 LOCKSTAT_START_TIMER(lsflag, spintime);
421 count = SPINLOCK_BACKOFF_MIN;
422
423 /*
424 * Spin testing the lock word and do exponential backoff
425 * to reduce cache line ping-ponging between CPUs.
426 */
427 do {
428 if (panicstr != NULL)
429 break;
430 while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
431 SPINLOCK_BACKOFF(count);
432 #ifdef LOCKDEBUG
433 if (SPINLOCK_SPINOUT(spins))
434 MUTEX_ABORT(mtx, "spinout");
435 #endif /* LOCKDEBUG */
436 }
437 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
438
439 if (count != SPINLOCK_BACKOFF_MIN) {
440 LOCKSTAT_STOP_TIMER(lsflag, spintime);
441 LOCKSTAT_EVENT(lsflag, mtx,
442 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
443 }
444 LOCKSTAT_EXIT(lsflag);
445 #endif /* !MULTIPROCESSOR */
446 #endif /* FULL */
447 MUTEX_LOCKED(mtx);
448 return;
449 }
450
451 curthread = (uintptr_t)curlwp;
452
453 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
454 MUTEX_ASSERT(mtx, curthread != 0);
455 MUTEX_WANTLOCK(mtx);
456
457 #ifdef LOCKDEBUG
458 if (panicstr == NULL) {
459 simple_lock_only_held(NULL, "mutex_enter");
460 #ifdef MULTIPROCESSOR
461 LOCKDEBUG_BARRIER(&kernel_lock, 1);
462 #else
463 LOCKDEBUG_BARRIER(NULL, 1);
464 #endif
465 }
466 #endif
467
468 LOCKSTAT_ENTER(lsflag);
469
470 /*
471 * Adaptive mutex; spin trying to acquire the mutex. If we
472 * determine that the owner is not running on a processor,
473 * then we stop spinning, and sleep instead.
474 */
475 for (;;) {
476 owner = mtx->mtx_owner;
477 if (!MUTEX_OWNED(owner)) {
478 /*
479 * Mutex owner clear could mean two things:
480 *
481 * * The mutex has been released.
482 * * The owner field hasn't been set yet.
483 *
484 * Try to acquire it again. If that fails,
485 * we'll just loop again.
486 */
487 if (MUTEX_ACQUIRE(mtx, curthread))
488 break;
489 continue;
490 }
491
492 if (panicstr != NULL)
493 return;
494 if (MUTEX_OWNER(owner) == curthread)
495 MUTEX_ABORT(mtx, "locking against myself");
496
497 #ifdef MULTIPROCESSOR
498 /*
499 * Check to see if the owner is running on a processor.
500 * If so, then we should just spin, as the owner will
501 * likely release the lock very soon.
502 */
503 if (mutex_onproc(owner, &ci)) {
504 LOCKSTAT_START_TIMER(lsflag, spintime);
505 count = SPINLOCK_BACKOFF_MIN;
506 for (;;) {
507 owner = mtx->mtx_owner;
508 if (!mutex_onproc(owner, &ci))
509 break;
510 SPINLOCK_BACKOFF(count);
511 }
512 LOCKSTAT_STOP_TIMER(lsflag, spintime);
513 LOCKSTAT_COUNT(spincnt, 1);
514 if (!MUTEX_OWNED(owner))
515 continue;
516 }
517 #endif
518
519 ts = turnstile_lookup(mtx);
520
521 /*
522 * Once we have the turnstile chain interlock, mark the
523 * mutex has having waiters. If that fails, spin again:
524 * chances are that the mutex has been released.
525 */
526 if (!MUTEX_SET_WAITERS(mtx, owner)) {
527 turnstile_exit(mtx);
528 continue;
529 }
530
531 #ifdef MULTIPROCESSOR
532 /*
533 * mutex_exit() is permitted to release the mutex without
534 * any interlocking instructions, and the following can
535 * occur as a result:
536 *
537 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
538 * ---------------------------- ----------------------------
539 * .. acquire cache line
540 * .. test for waiters
541 * acquire cache line <- lose cache line
542 * lock cache line ..
543 * verify mutex is held ..
544 * set waiters ..
545 * unlock cache line ..
546 * lose cache line -> acquire cache line
547 * .. clear lock word, waiters
548 * return success
549 *
550 * There is a another race that can occur: a third CPU could
551 * acquire the mutex as soon as it is released. Since
552 * adaptive mutexes are primarily spin mutexes, this is not
553 * something that we need to worry about too much. What we
554 * do need to ensure is that the waiters bit gets set.
555 *
556 * To allow the unlocked release, we need to make some
557 * assumptions here:
558 *
559 * o Release is the only non-atomic/unlocked operation
560 * that can be performed on the mutex. (It must still
561 * be atomic on the local CPU, e.g. in case interrupted
562 * or preempted).
563 *
564 * o At any given time, MUTEX_SET_WAITERS() can only ever
565 * be in progress on one CPU in the system - guarenteed
566 * by the turnstile chain lock.
567 *
568 * o No other operations other than MUTEX_SET_WAITERS()
569 * and release can modify a mutex with a non-zero
570 * owner field.
571 *
572 * o The result of a successful MUTEX_SET_WAITERS() call
573 * is an unbuffered write that is immediately visible
574 * to all other processors in the system.
575 *
576 * o If the holding LWP switches away, it posts a store
577 * fence before changing curlwp, ensuring that any
578 * overwrite of the mutex waiters flag by mutex_exit()
579 * completes before the modification of curlwp becomes
580 * visible to this CPU.
581 *
582 * o cpu_switch() posts a store fence before setting curlwp
583 * and before resuming execution of an LWP.
584 *
585 * o _kernel_lock() posts a store fence before setting
586 * curcpu()->ci_biglock_wanted, and after clearing it.
587 * This ensures that any overwrite of the mutex waiters
588 * flag by mutex_exit() completes before the modification
589 * of ci_biglock_wanted becomes visible.
590 *
591 * We now post a read memory barrier (after setting the
592 * waiters field) and check the lock holder's status again.
593 * Some of the possible outcomes (not an exhaustive list):
594 *
595 * 1. The onproc check returns true: the holding LWP is
596 * running again. The lock may be released soon and
597 * we should spin. Importantly, we can't trust the
598 * value of the waiters flag.
599 *
600 * 2. The onproc check returns false: the holding LWP is
601 * not running. We now have the oppertunity to check
602 * if mutex_exit() has blatted the modifications made
603 * by MUTEX_SET_WAITERS().
604 *
605 * 3. The onproc check returns false: the holding LWP may
606 * or may not be running. It has context switched at
607 * some point during our check. Again, we have the
608 * chance to see if the waiters bit is still set or
609 * has been overwritten.
610 *
611 * 4. The onproc check returns false: the holding LWP is
612 * running on a CPU, but wants the big lock. It's OK
613 * to check the waiters field in this case.
614 *
615 * 5. The has-waiters check fails: the mutex has been
616 * released, the waiters flag cleared and another LWP
617 * now owns the mutex.
618 *
619 * 6. The has-waiters check fails: the mutex has been
620 * released.
621 *
622 * If the waiters bit is not set it's unsafe to go asleep,
623 * as we might never be awoken.
624 */
625 mb_read();
626 if (mutex_onproc(owner, &ci) || !MUTEX_HAS_WAITERS(mtx)) {
627 turnstile_exit(mtx);
628 continue;
629 }
630 #endif /* MULTIPROCESSOR */
631
632 LOCKSTAT_START_TIMER(lsflag, slptime);
633
634 turnstile_block(ts, TS_WRITER_Q, mtx);
635
636 LOCKSTAT_STOP_TIMER(lsflag, slptime);
637 LOCKSTAT_COUNT(slpcnt, 1);
638
639 turnstile_unblock();
640 }
641
642 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
643 slpcnt, slptime);
644 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
645 spincnt, spintime);
646 LOCKSTAT_EXIT(lsflag);
647
648 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
649 MUTEX_LOCKED(mtx);
650 }
651
652 /*
653 * mutex_vector_exit:
654 *
655 * Support routine for mutex_exit() that handles all cases.
656 */
657 void
658 mutex_vector_exit(kmutex_t *mtx)
659 {
660 turnstile_t *ts;
661 uintptr_t curthread;
662
663 if (MUTEX_SPIN_P(mtx)) {
664 #ifdef FULL
665 if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
666 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
667 MUTEX_UNLOCKED(mtx);
668 __cpu_simple_unlock(&mtx->mtx_lock);
669 #endif
670 MUTEX_SPIN_SPLRESTORE(mtx);
671 return;
672 }
673
674 if (__predict_false(panicstr != NULL) || __predict_false(cold)) {
675 MUTEX_UNLOCKED(mtx);
676 MUTEX_RELEASE(mtx);
677 return;
678 }
679
680 curthread = (uintptr_t)curlwp;
681 MUTEX_DASSERT(mtx, curthread != 0);
682 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
683 MUTEX_UNLOCKED(mtx);
684
685 /*
686 * Get this lock's turnstile. This gets the interlock on
687 * the sleep queue. Once we have that, we can clear the
688 * lock. If there was no turnstile for the lock, there
689 * were no waiters remaining.
690 */
691 ts = turnstile_lookup(mtx);
692
693 if (ts == NULL) {
694 MUTEX_RELEASE(mtx);
695 turnstile_exit(mtx);
696 } else {
697 MUTEX_RELEASE(mtx);
698 turnstile_wakeup(ts, TS_WRITER_Q,
699 TS_WAITERS(ts, TS_WRITER_Q), NULL);
700 }
701 }
702
703 /*
704 * mutex_owned:
705 *
706 * Return true if the current LWP (adaptive) or CPU (spin)
707 * holds the mutex.
708 */
709 int
710 mutex_owned(kmutex_t *mtx)
711 {
712
713 if (MUTEX_ADAPTIVE_P(mtx))
714 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
715 #ifdef FULL
716 return mtx->mtx_lock == __SIMPLELOCK_LOCKED;
717 #else
718 return 1;
719 #endif
720 }
721
722 /*
723 * mutex_owner:
724 *
725 * Return the current owner of an adaptive mutex.
726 */
727 struct lwp *
728 mutex_owner(kmutex_t *mtx)
729 {
730
731 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
732 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
733 }
734
735 /*
736 * mutex_tryenter:
737 *
738 * Try to acquire the mutex; return non-zero if we did.
739 */
740 int
741 mutex_tryenter(kmutex_t *mtx)
742 {
743 uintptr_t curthread;
744
745 MUTEX_WANTLOCK(mtx);
746
747 /*
748 * Handle spin mutexes.
749 */
750 if (MUTEX_SPIN_P(mtx)) {
751 MUTEX_SPIN_SPLRAISE(mtx);
752 #ifdef FULL
753 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
754 MUTEX_LOCKED(mtx);
755 return 1;
756 }
757 MUTEX_SPIN_SPLRESTORE(mtx);
758 #else
759 MUTEX_LOCKED(mtx);
760 return 1;
761 #endif
762 } else {
763 curthread = (uintptr_t)curlwp;
764 MUTEX_ASSERT(mtx, curthread != 0);
765 if (MUTEX_ACQUIRE(mtx, curthread)) {
766 MUTEX_LOCKED(mtx);
767 MUTEX_DASSERT(mtx,
768 MUTEX_OWNER(mtx->mtx_owner) == curthread);
769 return 1;
770 }
771 }
772
773 return 0;
774 }
775
776 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
777 /*
778 * mutex_spin_retry:
779 *
780 * Support routine for mutex_spin_enter(). Assumes that the caller
781 * has already raised the SPL, and adjusted counters.
782 */
783 void
784 mutex_spin_retry(kmutex_t *mtx)
785 {
786 #ifdef MULTIPROCESSOR
787 u_int count;
788 LOCKSTAT_TIMER(spintime);
789 LOCKSTAT_FLAG(lsflag);
790 #ifdef LOCKDEBUG
791 u_int spins = 0;
792 #endif /* LOCKDEBUG */
793
794 MUTEX_WANTLOCK(mtx);
795
796 LOCKSTAT_ENTER(lsflag);
797 LOCKSTAT_START_TIMER(lsflag, spintime);
798 count = SPINLOCK_BACKOFF_MIN;
799
800 /*
801 * Spin testing the lock word and do exponential backoff
802 * to reduce cache line ping-ponging between CPUs.
803 */
804 do {
805 if (panicstr != NULL)
806 break;
807 while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
808 SPINLOCK_BACKOFF(count);
809 #ifdef LOCKDEBUG
810 if (SPINLOCK_SPINOUT(spins))
811 MUTEX_ABORT(mtx, "spinout");
812 #endif /* LOCKDEBUG */
813 }
814 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
815
816 LOCKSTAT_STOP_TIMER(lsflag, spintime);
817 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
818 LOCKSTAT_EXIT(lsflag);
819
820 MUTEX_LOCKED(mtx);
821 #else /* MULTIPROCESSOR */
822 MUTEX_ABORT(mtx, "locking against myself");
823 #endif /* MULTIPROCESSOR */
824 }
825 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
826
827 /*
828 * sched_lock_idle:
829 *
830 * XXX Ugly hack for cpu_switch().
831 */
832 void
833 sched_lock_idle(void)
834 {
835 #ifdef FULL
836 kmutex_t *mtx = &sched_mutex;
837
838 curcpu()->ci_mtx_count--;
839
840 if (!__cpu_simple_lock_try(&mtx->mtx_lock)) {
841 mutex_spin_retry(mtx);
842 return;
843 }
844
845 MUTEX_LOCKED(mtx);
846 #else
847 curcpu()->ci_mtx_count--;
848 #endif /* FULL */
849 }
850
851 /*
852 * sched_unlock_idle:
853 *
854 * XXX Ugly hack for cpu_switch().
855 */
856 void
857 sched_unlock_idle(void)
858 {
859 #ifdef FULL
860 kmutex_t *mtx = &sched_mutex;
861
862 if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
863 MUTEX_ABORT(mtx, "sched_unlock_idle");
864
865 MUTEX_UNLOCKED(mtx);
866 __cpu_simple_unlock(&mtx->mtx_lock);
867 #endif /* FULL */
868 curcpu()->ci_mtx_count++;
869 }
870