kern_mutex.c revision 1.37 1 /* $NetBSD: kern_mutex.c,v 1.37 2008/04/28 13:18:50 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel mutex implementation, modeled after those found in Solaris,
41 * a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #define __MUTEX_PRIVATE
48
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.37 2008/04/28 13:18:50 ad Exp $");
51
52 #include "opt_multiprocessor.h"
53
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62 #include <sys/atomic.h>
63 #include <sys/intr.h>
64 #include <sys/lock.h>
65 #include <sys/pool.h>
66
67 #include <dev/lockstat.h>
68
69 #include <machine/lock.h>
70
71 /*
72 * When not running a debug kernel, spin mutexes are not much
73 * more than an splraiseipl() and splx() pair.
74 */
75
76 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
77 #define FULL
78 #endif
79
80 /*
81 * Debugging support.
82 */
83
84 #define MUTEX_WANTLOCK(mtx) \
85 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
86 (uintptr_t)__builtin_return_address(0), 0)
87 #define MUTEX_LOCKED(mtx) \
88 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
89 (uintptr_t)__builtin_return_address(0), 0)
90 #define MUTEX_UNLOCKED(mtx) \
91 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
92 (uintptr_t)__builtin_return_address(0), 0)
93 #define MUTEX_ABORT(mtx, msg) \
94 mutex_abort(mtx, __func__, msg)
95
96 #if defined(LOCKDEBUG)
97
98 #define MUTEX_DASSERT(mtx, cond) \
99 do { \
100 if (!(cond)) \
101 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
102 } while (/* CONSTCOND */ 0);
103
104 #else /* LOCKDEBUG */
105
106 #define MUTEX_DASSERT(mtx, cond) /* nothing */
107
108 #endif /* LOCKDEBUG */
109
110 #if defined(DIAGNOSTIC)
111
112 #define MUTEX_ASSERT(mtx, cond) \
113 do { \
114 if (!(cond)) \
115 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
116 } while (/* CONSTCOND */ 0)
117
118 #else /* DIAGNOSTIC */
119
120 #define MUTEX_ASSERT(mtx, cond) /* nothing */
121
122 #endif /* DIAGNOSTIC */
123
124 /*
125 * Spin mutex SPL save / restore.
126 */
127 #ifndef MUTEX_COUNT_BIAS
128 #define MUTEX_COUNT_BIAS 0
129 #endif
130
131 #define MUTEX_SPIN_SPLRAISE(mtx) \
132 do { \
133 struct cpu_info *x__ci; \
134 int x__cnt, s; \
135 s = splraiseipl(mtx->mtx_ipl); \
136 x__ci = curcpu(); \
137 x__cnt = x__ci->ci_mtx_count--; \
138 __insn_barrier(); \
139 if (x__cnt == MUTEX_COUNT_BIAS) \
140 x__ci->ci_mtx_oldspl = (s); \
141 } while (/* CONSTCOND */ 0)
142
143 #define MUTEX_SPIN_SPLRESTORE(mtx) \
144 do { \
145 struct cpu_info *x__ci = curcpu(); \
146 int s = x__ci->ci_mtx_oldspl; \
147 __insn_barrier(); \
148 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
149 splx(s); \
150 } while (/* CONSTCOND */ 0)
151
152 /*
153 * For architectures that provide 'simple' mutexes: they provide a
154 * CAS function that is either MP-safe, or does not need to be MP
155 * safe. Adaptive mutexes on these architectures do not require an
156 * additional interlock.
157 */
158
159 #ifdef __HAVE_SIMPLE_MUTEXES
160
161 #define MUTEX_OWNER(owner) \
162 (owner & MUTEX_THREAD)
163 #define MUTEX_HAS_WAITERS(mtx) \
164 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
165
166 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
167 do { \
168 if (dodebug) \
169 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
170 } while (/* CONSTCOND */ 0);
171
172 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
173 do { \
174 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
175 if (dodebug) \
176 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
177 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
178 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
179 } while (/* CONSTCOND */ 0)
180
181 #define MUTEX_DESTROY(mtx) \
182 do { \
183 (mtx)->mtx_owner = MUTEX_THREAD; \
184 } while (/* CONSTCOND */ 0);
185
186 #define MUTEX_SPIN_P(mtx) \
187 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
188 #define MUTEX_ADAPTIVE_P(mtx) \
189 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
190
191 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
192 #if defined(LOCKDEBUG)
193 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
194 #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
195 #else /* defined(LOCKDEBUG) */
196 #define MUTEX_OWNED(owner) ((owner) != 0)
197 #define MUTEX_INHERITDEBUG(new, old) /* nothing */
198 #endif /* defined(LOCKDEBUG) */
199
200 static inline int
201 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
202 {
203 int rv;
204 uintptr_t old = 0;
205 uintptr_t new = curthread;
206
207 MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
208 MUTEX_INHERITDEBUG(new, old);
209 rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
210 MUTEX_RECEIVE(mtx);
211 return rv;
212 }
213
214 static inline int
215 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
216 {
217 int rv;
218 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
219 MUTEX_RECEIVE(mtx);
220 return rv;
221 }
222
223 static inline void
224 MUTEX_RELEASE(kmutex_t *mtx)
225 {
226 uintptr_t new;
227
228 MUTEX_GIVE(mtx);
229 new = 0;
230 MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
231 mtx->mtx_owner = new;
232 }
233
234 static inline void
235 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
236 {
237 /* nothing */
238 }
239 #endif /* __HAVE_SIMPLE_MUTEXES */
240
241 /*
242 * Patch in stubs via strong alias where they are not available.
243 */
244
245 #if defined(LOCKDEBUG)
246 #undef __HAVE_MUTEX_STUBS
247 #undef __HAVE_SPIN_MUTEX_STUBS
248 #endif
249
250 #ifndef __HAVE_MUTEX_STUBS
251 __strong_alias(mutex_enter,mutex_vector_enter);
252 __strong_alias(mutex_exit,mutex_vector_exit);
253 #endif
254
255 #ifndef __HAVE_SPIN_MUTEX_STUBS
256 __strong_alias(mutex_spin_enter,mutex_vector_enter);
257 __strong_alias(mutex_spin_exit,mutex_vector_exit);
258 #endif
259
260 void mutex_abort(kmutex_t *, const char *, const char *);
261 void mutex_dump(volatile void *);
262 int mutex_onproc(uintptr_t, struct cpu_info **);
263
264 lockops_t mutex_spin_lockops = {
265 "Mutex",
266 0,
267 mutex_dump
268 };
269
270 lockops_t mutex_adaptive_lockops = {
271 "Mutex",
272 1,
273 mutex_dump
274 };
275
276 syncobj_t mutex_syncobj = {
277 SOBJ_SLEEPQ_SORTED,
278 turnstile_unsleep,
279 turnstile_changepri,
280 sleepq_lendpri,
281 (void *)mutex_owner,
282 };
283
284 /* Mutex cache */
285 #define MUTEX_OBJ_MAGIC 0x5aa3c85d
286 struct kmutexobj {
287 kmutex_t mo_lock;
288 u_int mo_magic;
289 u_int mo_refcnt;
290 };
291
292 static int mutex_obj_ctor(void *, void *, int);
293
294 static pool_cache_t mutex_obj_cache;
295
296 /*
297 * mutex_dump:
298 *
299 * Dump the contents of a mutex structure.
300 */
301 void
302 mutex_dump(volatile void *cookie)
303 {
304 volatile kmutex_t *mtx = cookie;
305
306 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
307 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
308 MUTEX_SPIN_P(mtx));
309 }
310
311 /*
312 * mutex_abort:
313 *
314 * Dump information about an error and panic the system. This
315 * generates a lot of machine code in the DIAGNOSTIC case, so
316 * we ask the compiler to not inline it.
317 */
318
319 #if __GNUC_PREREQ__(3, 0)
320 __attribute ((noinline)) __attribute ((noreturn))
321 #endif
322 void
323 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
324 {
325
326 LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
327 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
328 /* NOTREACHED */
329 }
330
331 /*
332 * mutex_init:
333 *
334 * Initialize a mutex for use. Note that adaptive mutexes are in
335 * essence spin mutexes that can sleep to avoid deadlock and wasting
336 * CPU time. We can't easily provide a type of mutex that always
337 * sleeps - see comments in mutex_vector_enter() about releasing
338 * mutexes unlocked.
339 */
340 void
341 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
342 {
343 bool dodebug;
344
345 memset(mtx, 0, sizeof(*mtx));
346
347 switch (type) {
348 case MUTEX_ADAPTIVE:
349 KASSERT(ipl == IPL_NONE);
350 break;
351 case MUTEX_DEFAULT:
352 case MUTEX_DRIVER:
353 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
354 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
355 ipl == IPL_SOFTSERIAL) {
356 type = MUTEX_ADAPTIVE;
357 } else {
358 type = MUTEX_SPIN;
359 }
360 break;
361 default:
362 break;
363 }
364
365 switch (type) {
366 case MUTEX_NODEBUG:
367 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
368 (uintptr_t)__builtin_return_address(0));
369 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
370 break;
371 case MUTEX_ADAPTIVE:
372 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
373 (uintptr_t)__builtin_return_address(0));
374 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
375 break;
376 case MUTEX_SPIN:
377 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
378 (uintptr_t)__builtin_return_address(0));
379 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
380 break;
381 default:
382 panic("mutex_init: impossible type");
383 break;
384 }
385 }
386
387 /*
388 * mutex_destroy:
389 *
390 * Tear down a mutex.
391 */
392 void
393 mutex_destroy(kmutex_t *mtx)
394 {
395
396 if (MUTEX_ADAPTIVE_P(mtx)) {
397 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
398 !MUTEX_HAS_WAITERS(mtx));
399 } else {
400 MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
401 }
402
403 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
404 MUTEX_DESTROY(mtx);
405 }
406
407 /*
408 * mutex_onproc:
409 *
410 * Return true if an adaptive mutex owner is running on a CPU in the
411 * system. If the target is waiting on the kernel big lock, then we
412 * must release it. This is necessary to avoid deadlock.
413 *
414 * Note that we can't use the mutex owner field as an LWP pointer. We
415 * don't have full control over the timing of our execution, and so the
416 * pointer could be completely invalid by the time we dereference it.
417 */
418 #ifdef MULTIPROCESSOR
419 int
420 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
421 {
422 CPU_INFO_ITERATOR cii;
423 struct cpu_info *ci;
424 struct lwp *l;
425
426 if (!MUTEX_OWNED(owner))
427 return 0;
428 l = (struct lwp *)MUTEX_OWNER(owner);
429
430 /* See if the target is running on a CPU somewhere. */
431 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
432 goto run;
433 for (CPU_INFO_FOREACH(cii, ci))
434 if (ci->ci_curlwp == l)
435 goto run;
436
437 /* No: it may be safe to block now. */
438 *cip = NULL;
439 return 0;
440
441 run:
442 /* Target is running; do we need to block? */
443 *cip = ci;
444 return ci->ci_biglock_wanted != l;
445 }
446 #endif /* MULTIPROCESSOR */
447
448 /*
449 * mutex_vector_enter:
450 *
451 * Support routine for mutex_enter() that must handles all cases. In
452 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
453 * fast-path stubs are available. If an mutex_spin_enter() stub is
454 * not available, then it is also aliased directly here.
455 */
456 void
457 mutex_vector_enter(kmutex_t *mtx)
458 {
459 uintptr_t owner, curthread;
460 turnstile_t *ts;
461 #ifdef MULTIPROCESSOR
462 struct cpu_info *ci = NULL;
463 u_int count;
464 #endif
465 LOCKSTAT_COUNTER(spincnt);
466 LOCKSTAT_COUNTER(slpcnt);
467 LOCKSTAT_TIMER(spintime);
468 LOCKSTAT_TIMER(slptime);
469 LOCKSTAT_FLAG(lsflag);
470
471 /*
472 * Handle spin mutexes.
473 */
474 if (MUTEX_SPIN_P(mtx)) {
475 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
476 u_int spins = 0;
477 #endif
478 MUTEX_SPIN_SPLRAISE(mtx);
479 MUTEX_WANTLOCK(mtx);
480 #ifdef FULL
481 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
482 MUTEX_LOCKED(mtx);
483 return;
484 }
485 #if !defined(MULTIPROCESSOR)
486 MUTEX_ABORT(mtx, "locking against myself");
487 #else /* !MULTIPROCESSOR */
488
489 LOCKSTAT_ENTER(lsflag);
490 LOCKSTAT_START_TIMER(lsflag, spintime);
491 count = SPINLOCK_BACKOFF_MIN;
492
493 /*
494 * Spin testing the lock word and do exponential backoff
495 * to reduce cache line ping-ponging between CPUs.
496 */
497 do {
498 if (panicstr != NULL)
499 break;
500 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
501 SPINLOCK_BACKOFF(count);
502 #ifdef LOCKDEBUG
503 if (SPINLOCK_SPINOUT(spins))
504 MUTEX_ABORT(mtx, "spinout");
505 #endif /* LOCKDEBUG */
506 }
507 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
508
509 if (count != SPINLOCK_BACKOFF_MIN) {
510 LOCKSTAT_STOP_TIMER(lsflag, spintime);
511 LOCKSTAT_EVENT(lsflag, mtx,
512 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
513 }
514 LOCKSTAT_EXIT(lsflag);
515 #endif /* !MULTIPROCESSOR */
516 #endif /* FULL */
517 MUTEX_LOCKED(mtx);
518 return;
519 }
520
521 curthread = (uintptr_t)curlwp;
522
523 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
524 MUTEX_ASSERT(mtx, curthread != 0);
525 MUTEX_WANTLOCK(mtx);
526
527 if (panicstr == NULL) {
528 LOCKDEBUG_BARRIER(&kernel_lock, 1);
529 }
530
531 LOCKSTAT_ENTER(lsflag);
532
533 /*
534 * Adaptive mutex; spin trying to acquire the mutex. If we
535 * determine that the owner is not running on a processor,
536 * then we stop spinning, and sleep instead.
537 */
538 for (owner = mtx->mtx_owner;;) {
539 if (!MUTEX_OWNED(owner)) {
540 /*
541 * Mutex owner clear could mean two things:
542 *
543 * * The mutex has been released.
544 * * The owner field hasn't been set yet.
545 *
546 * Try to acquire it again. If that fails,
547 * we'll just loop again.
548 */
549 if (MUTEX_ACQUIRE(mtx, curthread))
550 break;
551 owner = mtx->mtx_owner;
552 continue;
553 }
554
555 if (panicstr != NULL)
556 return;
557 if (MUTEX_OWNER(owner) == curthread)
558 MUTEX_ABORT(mtx, "locking against myself");
559
560 #ifdef MULTIPROCESSOR
561 /*
562 * Check to see if the owner is running on a processor.
563 * If so, then we should just spin, as the owner will
564 * likely release the lock very soon.
565 */
566 if (mutex_onproc(owner, &ci)) {
567 LOCKSTAT_START_TIMER(lsflag, spintime);
568 count = SPINLOCK_BACKOFF_MIN;
569 for (;;) {
570 SPINLOCK_BACKOFF(count);
571 owner = mtx->mtx_owner;
572 if (!mutex_onproc(owner, &ci))
573 break;
574 }
575 LOCKSTAT_STOP_TIMER(lsflag, spintime);
576 LOCKSTAT_COUNT(spincnt, 1);
577 if (!MUTEX_OWNED(owner))
578 continue;
579 }
580 #endif
581
582 ts = turnstile_lookup(mtx);
583
584 /*
585 * Once we have the turnstile chain interlock, mark the
586 * mutex has having waiters. If that fails, spin again:
587 * chances are that the mutex has been released.
588 */
589 if (!MUTEX_SET_WAITERS(mtx, owner)) {
590 turnstile_exit(mtx);
591 owner = mtx->mtx_owner;
592 continue;
593 }
594
595 #ifdef MULTIPROCESSOR
596 /*
597 * mutex_exit() is permitted to release the mutex without
598 * any interlocking instructions, and the following can
599 * occur as a result:
600 *
601 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
602 * ---------------------------- ----------------------------
603 * .. acquire cache line
604 * .. test for waiters
605 * acquire cache line <- lose cache line
606 * lock cache line ..
607 * verify mutex is held ..
608 * set waiters ..
609 * unlock cache line ..
610 * lose cache line -> acquire cache line
611 * .. clear lock word, waiters
612 * return success
613 *
614 * There is a another race that can occur: a third CPU could
615 * acquire the mutex as soon as it is released. Since
616 * adaptive mutexes are primarily spin mutexes, this is not
617 * something that we need to worry about too much. What we
618 * do need to ensure is that the waiters bit gets set.
619 *
620 * To allow the unlocked release, we need to make some
621 * assumptions here:
622 *
623 * o Release is the only non-atomic/unlocked operation
624 * that can be performed on the mutex. (It must still
625 * be atomic on the local CPU, e.g. in case interrupted
626 * or preempted).
627 *
628 * o At any given time, MUTEX_SET_WAITERS() can only ever
629 * be in progress on one CPU in the system - guaranteed
630 * by the turnstile chain lock.
631 *
632 * o No other operations other than MUTEX_SET_WAITERS()
633 * and release can modify a mutex with a non-zero
634 * owner field.
635 *
636 * o The result of a successful MUTEX_SET_WAITERS() call
637 * is an unbuffered write that is immediately visible
638 * to all other processors in the system.
639 *
640 * o If the holding LWP switches away, it posts a store
641 * fence before changing curlwp, ensuring that any
642 * overwrite of the mutex waiters flag by mutex_exit()
643 * completes before the modification of curlwp becomes
644 * visible to this CPU.
645 *
646 * o mi_switch() posts a store fence before setting curlwp
647 * and before resuming execution of an LWP.
648 *
649 * o _kernel_lock() posts a store fence before setting
650 * curcpu()->ci_biglock_wanted, and after clearing it.
651 * This ensures that any overwrite of the mutex waiters
652 * flag by mutex_exit() completes before the modification
653 * of ci_biglock_wanted becomes visible.
654 *
655 * We now post a read memory barrier (after setting the
656 * waiters field) and check the lock holder's status again.
657 * Some of the possible outcomes (not an exhaustive list):
658 *
659 * 1. The onproc check returns true: the holding LWP is
660 * running again. The lock may be released soon and
661 * we should spin. Importantly, we can't trust the
662 * value of the waiters flag.
663 *
664 * 2. The onproc check returns false: the holding LWP is
665 * not running. We now have the oppertunity to check
666 * if mutex_exit() has blatted the modifications made
667 * by MUTEX_SET_WAITERS().
668 *
669 * 3. The onproc check returns false: the holding LWP may
670 * or may not be running. It has context switched at
671 * some point during our check. Again, we have the
672 * chance to see if the waiters bit is still set or
673 * has been overwritten.
674 *
675 * 4. The onproc check returns false: the holding LWP is
676 * running on a CPU, but wants the big lock. It's OK
677 * to check the waiters field in this case.
678 *
679 * 5. The has-waiters check fails: the mutex has been
680 * released, the waiters flag cleared and another LWP
681 * now owns the mutex.
682 *
683 * 6. The has-waiters check fails: the mutex has been
684 * released.
685 *
686 * If the waiters bit is not set it's unsafe to go asleep,
687 * as we might never be awoken.
688 */
689 if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
690 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
691 turnstile_exit(mtx);
692 owner = mtx->mtx_owner;
693 continue;
694 }
695 #endif /* MULTIPROCESSOR */
696
697 LOCKSTAT_START_TIMER(lsflag, slptime);
698
699 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
700
701 LOCKSTAT_STOP_TIMER(lsflag, slptime);
702 LOCKSTAT_COUNT(slpcnt, 1);
703
704 owner = mtx->mtx_owner;
705 }
706
707 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
708 slpcnt, slptime);
709 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
710 spincnt, spintime);
711 LOCKSTAT_EXIT(lsflag);
712
713 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
714 MUTEX_LOCKED(mtx);
715 }
716
717 /*
718 * mutex_vector_exit:
719 *
720 * Support routine for mutex_exit() that handles all cases.
721 */
722 void
723 mutex_vector_exit(kmutex_t *mtx)
724 {
725 turnstile_t *ts;
726 uintptr_t curthread;
727
728 if (MUTEX_SPIN_P(mtx)) {
729 #ifdef FULL
730 if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
731 if (panicstr != NULL)
732 return;
733 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
734 }
735 MUTEX_UNLOCKED(mtx);
736 __cpu_simple_unlock(&mtx->mtx_lock);
737 #endif
738 MUTEX_SPIN_SPLRESTORE(mtx);
739 return;
740 }
741
742 if (__predict_false((uintptr_t)panicstr | cold)) {
743 MUTEX_UNLOCKED(mtx);
744 MUTEX_RELEASE(mtx);
745 return;
746 }
747
748 curthread = (uintptr_t)curlwp;
749 MUTEX_DASSERT(mtx, curthread != 0);
750 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
751 MUTEX_UNLOCKED(mtx);
752
753 #ifdef LOCKDEBUG
754 /*
755 * Avoid having to take the turnstile chain lock every time
756 * around. Raise the priority level to splhigh() in order
757 * to disable preemption and so make the following atomic.
758 */
759 {
760 int s = splhigh();
761 if (!MUTEX_HAS_WAITERS(mtx)) {
762 MUTEX_RELEASE(mtx);
763 splx(s);
764 return;
765 }
766 splx(s);
767 }
768 #endif
769
770 /*
771 * Get this lock's turnstile. This gets the interlock on
772 * the sleep queue. Once we have that, we can clear the
773 * lock. If there was no turnstile for the lock, there
774 * were no waiters remaining.
775 */
776 ts = turnstile_lookup(mtx);
777
778 if (ts == NULL) {
779 MUTEX_RELEASE(mtx);
780 turnstile_exit(mtx);
781 } else {
782 MUTEX_RELEASE(mtx);
783 turnstile_wakeup(ts, TS_WRITER_Q,
784 TS_WAITERS(ts, TS_WRITER_Q), NULL);
785 }
786 }
787
788 #ifndef __HAVE_SIMPLE_MUTEXES
789 /*
790 * mutex_wakeup:
791 *
792 * Support routine for mutex_exit() that wakes up all waiters.
793 * We assume that the mutex has been released, but it need not
794 * be.
795 */
796 void
797 mutex_wakeup(kmutex_t *mtx)
798 {
799 turnstile_t *ts;
800
801 ts = turnstile_lookup(mtx);
802 if (ts == NULL) {
803 turnstile_exit(mtx);
804 return;
805 }
806 MUTEX_CLEAR_WAITERS(mtx);
807 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
808 }
809 #endif /* !__HAVE_SIMPLE_MUTEXES */
810
811 /*
812 * mutex_owned:
813 *
814 * Return true if the current LWP (adaptive) or CPU (spin)
815 * holds the mutex.
816 */
817 int
818 mutex_owned(kmutex_t *mtx)
819 {
820
821 if (mtx == NULL)
822 return 0;
823 if (MUTEX_ADAPTIVE_P(mtx))
824 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
825 #ifdef FULL
826 return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
827 #else
828 return 1;
829 #endif
830 }
831
832 /*
833 * mutex_owner:
834 *
835 * Return the current owner of an adaptive mutex. Used for
836 * priority inheritance.
837 */
838 lwp_t *
839 mutex_owner(kmutex_t *mtx)
840 {
841
842 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
843 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
844 }
845
846 /*
847 * mutex_tryenter:
848 *
849 * Try to acquire the mutex; return non-zero if we did.
850 */
851 int
852 mutex_tryenter(kmutex_t *mtx)
853 {
854 uintptr_t curthread;
855
856 /*
857 * Handle spin mutexes.
858 */
859 if (MUTEX_SPIN_P(mtx)) {
860 MUTEX_SPIN_SPLRAISE(mtx);
861 #ifdef FULL
862 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
863 MUTEX_WANTLOCK(mtx);
864 MUTEX_LOCKED(mtx);
865 return 1;
866 }
867 MUTEX_SPIN_SPLRESTORE(mtx);
868 #else
869 MUTEX_WANTLOCK(mtx);
870 MUTEX_LOCKED(mtx);
871 return 1;
872 #endif
873 } else {
874 curthread = (uintptr_t)curlwp;
875 MUTEX_ASSERT(mtx, curthread != 0);
876 if (MUTEX_ACQUIRE(mtx, curthread)) {
877 MUTEX_WANTLOCK(mtx);
878 MUTEX_LOCKED(mtx);
879 MUTEX_DASSERT(mtx,
880 MUTEX_OWNER(mtx->mtx_owner) == curthread);
881 return 1;
882 }
883 }
884
885 return 0;
886 }
887
888 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
889 /*
890 * mutex_spin_retry:
891 *
892 * Support routine for mutex_spin_enter(). Assumes that the caller
893 * has already raised the SPL, and adjusted counters.
894 */
895 void
896 mutex_spin_retry(kmutex_t *mtx)
897 {
898 #ifdef MULTIPROCESSOR
899 u_int count;
900 LOCKSTAT_TIMER(spintime);
901 LOCKSTAT_FLAG(lsflag);
902 #ifdef LOCKDEBUG
903 u_int spins = 0;
904 #endif /* LOCKDEBUG */
905
906 MUTEX_WANTLOCK(mtx);
907
908 LOCKSTAT_ENTER(lsflag);
909 LOCKSTAT_START_TIMER(lsflag, spintime);
910 count = SPINLOCK_BACKOFF_MIN;
911
912 /*
913 * Spin testing the lock word and do exponential backoff
914 * to reduce cache line ping-ponging between CPUs.
915 */
916 do {
917 if (panicstr != NULL)
918 break;
919 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
920 SPINLOCK_BACKOFF(count);
921 #ifdef LOCKDEBUG
922 if (SPINLOCK_SPINOUT(spins))
923 MUTEX_ABORT(mtx, "spinout");
924 #endif /* LOCKDEBUG */
925 }
926 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
927
928 LOCKSTAT_STOP_TIMER(lsflag, spintime);
929 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
930 LOCKSTAT_EXIT(lsflag);
931
932 MUTEX_LOCKED(mtx);
933 #else /* MULTIPROCESSOR */
934 MUTEX_ABORT(mtx, "locking against myself");
935 #endif /* MULTIPROCESSOR */
936 }
937 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
938
939 /*
940 * mutex_obj_init:
941 *
942 * Initialize the mutex object store.
943 */
944 void
945 mutex_obj_init(void)
946 {
947
948 mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
949 coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
950 NULL, NULL);
951 }
952
953 /*
954 * mutex_obj_ctor:
955 *
956 * Initialize a new lock for the cache.
957 */
958 static int
959 mutex_obj_ctor(void *arg, void *obj, int flags)
960 {
961 struct kmutexobj * mo = obj;
962
963 mo->mo_magic = MUTEX_OBJ_MAGIC;
964
965 return 0;
966 }
967
968 /*
969 * mutex_obj_alloc:
970 *
971 * Allocate a single lock object.
972 */
973 kmutex_t *
974 mutex_obj_alloc(kmutex_type_t type, int ipl)
975 {
976 struct kmutexobj *mo;
977
978 mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
979 mutex_init(&mo->mo_lock, type, ipl);
980 mo->mo_refcnt = 1;
981
982 return (kmutex_t *)mo;
983 }
984
985 /*
986 * mutex_obj_hold:
987 *
988 * Add a single reference to a lock object. A reference to the object
989 * must already be held, and must be held across this call.
990 */
991 void
992 mutex_obj_hold(kmutex_t *lock)
993 {
994 struct kmutexobj *mo = (struct kmutexobj *)lock;
995
996 KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
997 KASSERT(mo->mo_refcnt > 0);
998
999 atomic_inc_uint(&mo->mo_refcnt);
1000 }
1001
1002 /*
1003 * mutex_obj_free:
1004 *
1005 * Drop a reference from a lock object. If the last reference is being
1006 * dropped, free the object and return true. Otherwise, return false.
1007 */
1008 bool
1009 mutex_obj_free(kmutex_t *lock)
1010 {
1011 struct kmutexobj *mo = (struct kmutexobj *)lock;
1012
1013 KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
1014 KASSERT(mo->mo_refcnt > 0);
1015
1016 if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
1017 return false;
1018 }
1019 mutex_destroy(&mo->mo_lock);
1020 pool_cache_put(mutex_obj_cache, mo);
1021 return true;
1022 }
1023