kern_mutex.c revision 1.39 1 /* $NetBSD: kern_mutex.c,v 1.39 2008/04/30 00:40:13 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel mutex implementation, modeled after those found in Solaris,
34 * a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #define __MUTEX_PRIVATE
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.39 2008/04/30 00:40:13 yamt Exp $");
44
45 #include "opt_multiprocessor.h"
46
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/mutex.h>
50 #include <sys/sched.h>
51 #include <sys/sleepq.h>
52 #include <sys/systm.h>
53 #include <sys/lockdebug.h>
54 #include <sys/kernel.h>
55 #include <sys/atomic.h>
56 #include <sys/intr.h>
57 #include <sys/lock.h>
58 #include <sys/pool.h>
59
60 #include <dev/lockstat.h>
61
62 #include <machine/lock.h>
63
64 /*
65 * When not running a debug kernel, spin mutexes are not much
66 * more than an splraiseipl() and splx() pair.
67 */
68
69 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
70 #define FULL
71 #endif
72
73 /*
74 * Debugging support.
75 */
76
77 #define MUTEX_WANTLOCK(mtx) \
78 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
79 (uintptr_t)__builtin_return_address(0), 0)
80 #define MUTEX_LOCKED(mtx) \
81 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_UNLOCKED(mtx) \
84 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
85 (uintptr_t)__builtin_return_address(0), 0)
86 #define MUTEX_ABORT(mtx, msg) \
87 mutex_abort(mtx, __func__, msg)
88
89 #if defined(LOCKDEBUG)
90
91 #define MUTEX_DASSERT(mtx, cond) \
92 do { \
93 if (!(cond)) \
94 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
95 } while (/* CONSTCOND */ 0);
96
97 #else /* LOCKDEBUG */
98
99 #define MUTEX_DASSERT(mtx, cond) /* nothing */
100
101 #endif /* LOCKDEBUG */
102
103 #if defined(DIAGNOSTIC)
104
105 #define MUTEX_ASSERT(mtx, cond) \
106 do { \
107 if (!(cond)) \
108 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
109 } while (/* CONSTCOND */ 0)
110
111 #else /* DIAGNOSTIC */
112
113 #define MUTEX_ASSERT(mtx, cond) /* nothing */
114
115 #endif /* DIAGNOSTIC */
116
117 /*
118 * Spin mutex SPL save / restore.
119 */
120 #ifndef MUTEX_COUNT_BIAS
121 #define MUTEX_COUNT_BIAS 0
122 #endif
123
124 #define MUTEX_SPIN_SPLRAISE(mtx) \
125 do { \
126 struct cpu_info *x__ci; \
127 int x__cnt, s; \
128 s = splraiseipl(mtx->mtx_ipl); \
129 x__ci = curcpu(); \
130 x__cnt = x__ci->ci_mtx_count--; \
131 __insn_barrier(); \
132 if (x__cnt == MUTEX_COUNT_BIAS) \
133 x__ci->ci_mtx_oldspl = (s); \
134 } while (/* CONSTCOND */ 0)
135
136 #define MUTEX_SPIN_SPLRESTORE(mtx) \
137 do { \
138 struct cpu_info *x__ci = curcpu(); \
139 int s = x__ci->ci_mtx_oldspl; \
140 __insn_barrier(); \
141 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
142 splx(s); \
143 } while (/* CONSTCOND */ 0)
144
145 /*
146 * For architectures that provide 'simple' mutexes: they provide a
147 * CAS function that is either MP-safe, or does not need to be MP
148 * safe. Adaptive mutexes on these architectures do not require an
149 * additional interlock.
150 */
151
152 #ifdef __HAVE_SIMPLE_MUTEXES
153
154 #define MUTEX_OWNER(owner) \
155 (owner & MUTEX_THREAD)
156 #define MUTEX_HAS_WAITERS(mtx) \
157 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
158
159 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
160 do { \
161 if (dodebug) \
162 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
163 } while (/* CONSTCOND */ 0);
164
165 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
166 do { \
167 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
168 if (dodebug) \
169 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
170 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
171 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
172 } while (/* CONSTCOND */ 0)
173
174 #define MUTEX_DESTROY(mtx) \
175 do { \
176 (mtx)->mtx_owner = MUTEX_THREAD; \
177 } while (/* CONSTCOND */ 0);
178
179 #define MUTEX_SPIN_P(mtx) \
180 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
181 #define MUTEX_ADAPTIVE_P(mtx) \
182 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
183
184 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
185 #if defined(LOCKDEBUG)
186 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
187 #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
188 #else /* defined(LOCKDEBUG) */
189 #define MUTEX_OWNED(owner) ((owner) != 0)
190 #define MUTEX_INHERITDEBUG(new, old) /* nothing */
191 #endif /* defined(LOCKDEBUG) */
192
193 static inline int
194 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
195 {
196 int rv;
197 uintptr_t old = 0;
198 uintptr_t new = curthread;
199
200 MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
201 MUTEX_INHERITDEBUG(new, old);
202 rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
203 MUTEX_RECEIVE(mtx);
204 return rv;
205 }
206
207 static inline int
208 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
209 {
210 int rv;
211 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
212 MUTEX_RECEIVE(mtx);
213 return rv;
214 }
215
216 static inline void
217 MUTEX_RELEASE(kmutex_t *mtx)
218 {
219 uintptr_t new;
220
221 MUTEX_GIVE(mtx);
222 new = 0;
223 MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
224 mtx->mtx_owner = new;
225 }
226
227 static inline void
228 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
229 {
230 /* nothing */
231 }
232 #endif /* __HAVE_SIMPLE_MUTEXES */
233
234 /*
235 * Patch in stubs via strong alias where they are not available.
236 */
237
238 #if defined(LOCKDEBUG)
239 #undef __HAVE_MUTEX_STUBS
240 #undef __HAVE_SPIN_MUTEX_STUBS
241 #endif
242
243 #ifndef __HAVE_MUTEX_STUBS
244 __strong_alias(mutex_enter,mutex_vector_enter);
245 __strong_alias(mutex_exit,mutex_vector_exit);
246 #endif
247
248 #ifndef __HAVE_SPIN_MUTEX_STUBS
249 __strong_alias(mutex_spin_enter,mutex_vector_enter);
250 __strong_alias(mutex_spin_exit,mutex_vector_exit);
251 #endif
252
253 void mutex_abort(kmutex_t *, const char *, const char *);
254 void mutex_dump(volatile void *);
255 int mutex_onproc(uintptr_t, struct cpu_info **);
256
257 lockops_t mutex_spin_lockops = {
258 "Mutex",
259 0,
260 mutex_dump
261 };
262
263 lockops_t mutex_adaptive_lockops = {
264 "Mutex",
265 1,
266 mutex_dump
267 };
268
269 syncobj_t mutex_syncobj = {
270 SOBJ_SLEEPQ_SORTED,
271 turnstile_unsleep,
272 turnstile_changepri,
273 sleepq_lendpri,
274 (void *)mutex_owner,
275 };
276
277 /* Mutex cache */
278 #define MUTEX_OBJ_MAGIC 0x5aa3c85d
279 struct kmutexobj {
280 kmutex_t mo_lock;
281 u_int mo_magic;
282 u_int mo_refcnt;
283 };
284
285 static int mutex_obj_ctor(void *, void *, int);
286
287 static pool_cache_t mutex_obj_cache;
288
289 /*
290 * mutex_dump:
291 *
292 * Dump the contents of a mutex structure.
293 */
294 void
295 mutex_dump(volatile void *cookie)
296 {
297 volatile kmutex_t *mtx = cookie;
298
299 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
300 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
301 MUTEX_SPIN_P(mtx));
302 }
303
304 /*
305 * mutex_abort:
306 *
307 * Dump information about an error and panic the system. This
308 * generates a lot of machine code in the DIAGNOSTIC case, so
309 * we ask the compiler to not inline it.
310 */
311
312 #if __GNUC_PREREQ__(3, 0)
313 __attribute ((noinline)) __attribute ((noreturn))
314 #endif
315 void
316 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
317 {
318
319 LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
320 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
321 /* NOTREACHED */
322 }
323
324 /*
325 * mutex_init:
326 *
327 * Initialize a mutex for use. Note that adaptive mutexes are in
328 * essence spin mutexes that can sleep to avoid deadlock and wasting
329 * CPU time. We can't easily provide a type of mutex that always
330 * sleeps - see comments in mutex_vector_enter() about releasing
331 * mutexes unlocked.
332 */
333 void
334 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
335 {
336 bool dodebug;
337
338 memset(mtx, 0, sizeof(*mtx));
339
340 switch (type) {
341 case MUTEX_ADAPTIVE:
342 KASSERT(ipl == IPL_NONE);
343 break;
344 case MUTEX_DEFAULT:
345 case MUTEX_DRIVER:
346 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
347 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
348 ipl == IPL_SOFTSERIAL) {
349 type = MUTEX_ADAPTIVE;
350 } else {
351 type = MUTEX_SPIN;
352 }
353 break;
354 default:
355 break;
356 }
357
358 switch (type) {
359 case MUTEX_NODEBUG:
360 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
361 (uintptr_t)__builtin_return_address(0));
362 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
363 break;
364 case MUTEX_ADAPTIVE:
365 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
366 (uintptr_t)__builtin_return_address(0));
367 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
368 break;
369 case MUTEX_SPIN:
370 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
371 (uintptr_t)__builtin_return_address(0));
372 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
373 break;
374 default:
375 panic("mutex_init: impossible type");
376 break;
377 }
378 }
379
380 /*
381 * mutex_destroy:
382 *
383 * Tear down a mutex.
384 */
385 void
386 mutex_destroy(kmutex_t *mtx)
387 {
388
389 if (MUTEX_ADAPTIVE_P(mtx)) {
390 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
391 !MUTEX_HAS_WAITERS(mtx));
392 } else {
393 MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
394 }
395
396 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
397 MUTEX_DESTROY(mtx);
398 }
399
400 /*
401 * mutex_onproc:
402 *
403 * Return true if an adaptive mutex owner is running on a CPU in the
404 * system. If the target is waiting on the kernel big lock, then we
405 * must release it. This is necessary to avoid deadlock.
406 *
407 * Note that we can't use the mutex owner field as an LWP pointer. We
408 * don't have full control over the timing of our execution, and so the
409 * pointer could be completely invalid by the time we dereference it.
410 */
411 #ifdef MULTIPROCESSOR
412 int
413 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
414 {
415 CPU_INFO_ITERATOR cii;
416 struct cpu_info *ci;
417 struct lwp *l;
418
419 if (!MUTEX_OWNED(owner))
420 return 0;
421 l = (struct lwp *)MUTEX_OWNER(owner);
422
423 /* See if the target is running on a CPU somewhere. */
424 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
425 goto run;
426 for (CPU_INFO_FOREACH(cii, ci))
427 if (ci->ci_curlwp == l)
428 goto run;
429
430 /* No: it may be safe to block now. */
431 *cip = NULL;
432 return 0;
433
434 run:
435 /* Target is running; do we need to block? */
436 *cip = ci;
437 return ci->ci_biglock_wanted != l;
438 }
439 #endif /* MULTIPROCESSOR */
440
441 /*
442 * mutex_vector_enter:
443 *
444 * Support routine for mutex_enter() that must handles all cases. In
445 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
446 * fast-path stubs are available. If an mutex_spin_enter() stub is
447 * not available, then it is also aliased directly here.
448 */
449 void
450 mutex_vector_enter(kmutex_t *mtx)
451 {
452 uintptr_t owner, curthread;
453 turnstile_t *ts;
454 #ifdef MULTIPROCESSOR
455 struct cpu_info *ci = NULL;
456 u_int count;
457 #endif
458 LOCKSTAT_COUNTER(spincnt);
459 LOCKSTAT_COUNTER(slpcnt);
460 LOCKSTAT_TIMER(spintime);
461 LOCKSTAT_TIMER(slptime);
462 LOCKSTAT_FLAG(lsflag);
463
464 /*
465 * Handle spin mutexes.
466 */
467 if (MUTEX_SPIN_P(mtx)) {
468 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
469 u_int spins = 0;
470 #endif
471 MUTEX_SPIN_SPLRAISE(mtx);
472 MUTEX_WANTLOCK(mtx);
473 #ifdef FULL
474 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
475 MUTEX_LOCKED(mtx);
476 return;
477 }
478 #if !defined(MULTIPROCESSOR)
479 MUTEX_ABORT(mtx, "locking against myself");
480 #else /* !MULTIPROCESSOR */
481
482 LOCKSTAT_ENTER(lsflag);
483 LOCKSTAT_START_TIMER(lsflag, spintime);
484 count = SPINLOCK_BACKOFF_MIN;
485
486 /*
487 * Spin testing the lock word and do exponential backoff
488 * to reduce cache line ping-ponging between CPUs.
489 */
490 do {
491 if (panicstr != NULL)
492 break;
493 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
494 SPINLOCK_BACKOFF(count);
495 #ifdef LOCKDEBUG
496 if (SPINLOCK_SPINOUT(spins))
497 MUTEX_ABORT(mtx, "spinout");
498 #endif /* LOCKDEBUG */
499 }
500 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
501
502 if (count != SPINLOCK_BACKOFF_MIN) {
503 LOCKSTAT_STOP_TIMER(lsflag, spintime);
504 LOCKSTAT_EVENT(lsflag, mtx,
505 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
506 }
507 LOCKSTAT_EXIT(lsflag);
508 #endif /* !MULTIPROCESSOR */
509 #endif /* FULL */
510 MUTEX_LOCKED(mtx);
511 return;
512 }
513
514 curthread = (uintptr_t)curlwp;
515
516 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
517 MUTEX_ASSERT(mtx, curthread != 0);
518 MUTEX_WANTLOCK(mtx);
519
520 if (panicstr == NULL) {
521 LOCKDEBUG_BARRIER(&kernel_lock, 1);
522 }
523
524 LOCKSTAT_ENTER(lsflag);
525
526 /*
527 * Adaptive mutex; spin trying to acquire the mutex. If we
528 * determine that the owner is not running on a processor,
529 * then we stop spinning, and sleep instead.
530 */
531 for (owner = mtx->mtx_owner;;) {
532 if (!MUTEX_OWNED(owner)) {
533 /*
534 * Mutex owner clear could mean two things:
535 *
536 * * The mutex has been released.
537 * * The owner field hasn't been set yet.
538 *
539 * Try to acquire it again. If that fails,
540 * we'll just loop again.
541 */
542 if (MUTEX_ACQUIRE(mtx, curthread))
543 break;
544 owner = mtx->mtx_owner;
545 continue;
546 }
547
548 if (panicstr != NULL)
549 return;
550 if (MUTEX_OWNER(owner) == curthread)
551 MUTEX_ABORT(mtx, "locking against myself");
552
553 #ifdef MULTIPROCESSOR
554 /*
555 * Check to see if the owner is running on a processor.
556 * If so, then we should just spin, as the owner will
557 * likely release the lock very soon.
558 */
559 if (mutex_onproc(owner, &ci)) {
560 LOCKSTAT_START_TIMER(lsflag, spintime);
561 count = SPINLOCK_BACKOFF_MIN;
562 for (;;) {
563 SPINLOCK_BACKOFF(count);
564 owner = mtx->mtx_owner;
565 if (!mutex_onproc(owner, &ci))
566 break;
567 }
568 LOCKSTAT_STOP_TIMER(lsflag, spintime);
569 LOCKSTAT_COUNT(spincnt, 1);
570 if (!MUTEX_OWNED(owner))
571 continue;
572 }
573 #endif
574
575 ts = turnstile_lookup(mtx);
576
577 /*
578 * Once we have the turnstile chain interlock, mark the
579 * mutex has having waiters. If that fails, spin again:
580 * chances are that the mutex has been released.
581 */
582 if (!MUTEX_SET_WAITERS(mtx, owner)) {
583 turnstile_exit(mtx);
584 owner = mtx->mtx_owner;
585 continue;
586 }
587
588 #ifdef MULTIPROCESSOR
589 /*
590 * mutex_exit() is permitted to release the mutex without
591 * any interlocking instructions, and the following can
592 * occur as a result:
593 *
594 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
595 * ---------------------------- ----------------------------
596 * .. acquire cache line
597 * .. test for waiters
598 * acquire cache line <- lose cache line
599 * lock cache line ..
600 * verify mutex is held ..
601 * set waiters ..
602 * unlock cache line ..
603 * lose cache line -> acquire cache line
604 * .. clear lock word, waiters
605 * return success
606 *
607 * There is a another race that can occur: a third CPU could
608 * acquire the mutex as soon as it is released. Since
609 * adaptive mutexes are primarily spin mutexes, this is not
610 * something that we need to worry about too much. What we
611 * do need to ensure is that the waiters bit gets set.
612 *
613 * To allow the unlocked release, we need to make some
614 * assumptions here:
615 *
616 * o Release is the only non-atomic/unlocked operation
617 * that can be performed on the mutex. (It must still
618 * be atomic on the local CPU, e.g. in case interrupted
619 * or preempted).
620 *
621 * o At any given time, MUTEX_SET_WAITERS() can only ever
622 * be in progress on one CPU in the system - guaranteed
623 * by the turnstile chain lock.
624 *
625 * o No other operations other than MUTEX_SET_WAITERS()
626 * and release can modify a mutex with a non-zero
627 * owner field.
628 *
629 * o The result of a successful MUTEX_SET_WAITERS() call
630 * is an unbuffered write that is immediately visible
631 * to all other processors in the system.
632 *
633 * o If the holding LWP switches away, it posts a store
634 * fence before changing curlwp, ensuring that any
635 * overwrite of the mutex waiters flag by mutex_exit()
636 * completes before the modification of curlwp becomes
637 * visible to this CPU.
638 *
639 * o mi_switch() posts a store fence before setting curlwp
640 * and before resuming execution of an LWP.
641 *
642 * o _kernel_lock() posts a store fence before setting
643 * curcpu()->ci_biglock_wanted, and after clearing it.
644 * This ensures that any overwrite of the mutex waiters
645 * flag by mutex_exit() completes before the modification
646 * of ci_biglock_wanted becomes visible.
647 *
648 * We now post a read memory barrier (after setting the
649 * waiters field) and check the lock holder's status again.
650 * Some of the possible outcomes (not an exhaustive list):
651 *
652 * 1. The onproc check returns true: the holding LWP is
653 * running again. The lock may be released soon and
654 * we should spin. Importantly, we can't trust the
655 * value of the waiters flag.
656 *
657 * 2. The onproc check returns false: the holding LWP is
658 * not running. We now have the opportunity to check
659 * if mutex_exit() has blatted the modifications made
660 * by MUTEX_SET_WAITERS().
661 *
662 * 3. The onproc check returns false: the holding LWP may
663 * or may not be running. It has context switched at
664 * some point during our check. Again, we have the
665 * chance to see if the waiters bit is still set or
666 * has been overwritten.
667 *
668 * 4. The onproc check returns false: the holding LWP is
669 * running on a CPU, but wants the big lock. It's OK
670 * to check the waiters field in this case.
671 *
672 * 5. The has-waiters check fails: the mutex has been
673 * released, the waiters flag cleared and another LWP
674 * now owns the mutex.
675 *
676 * 6. The has-waiters check fails: the mutex has been
677 * released.
678 *
679 * If the waiters bit is not set it's unsafe to go asleep,
680 * as we might never be awoken.
681 */
682 if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
683 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
684 turnstile_exit(mtx);
685 owner = mtx->mtx_owner;
686 continue;
687 }
688 #endif /* MULTIPROCESSOR */
689
690 LOCKSTAT_START_TIMER(lsflag, slptime);
691
692 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
693
694 LOCKSTAT_STOP_TIMER(lsflag, slptime);
695 LOCKSTAT_COUNT(slpcnt, 1);
696
697 owner = mtx->mtx_owner;
698 }
699
700 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
701 slpcnt, slptime);
702 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
703 spincnt, spintime);
704 LOCKSTAT_EXIT(lsflag);
705
706 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
707 MUTEX_LOCKED(mtx);
708 }
709
710 /*
711 * mutex_vector_exit:
712 *
713 * Support routine for mutex_exit() that handles all cases.
714 */
715 void
716 mutex_vector_exit(kmutex_t *mtx)
717 {
718 turnstile_t *ts;
719 uintptr_t curthread;
720
721 if (MUTEX_SPIN_P(mtx)) {
722 #ifdef FULL
723 if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
724 if (panicstr != NULL)
725 return;
726 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
727 }
728 MUTEX_UNLOCKED(mtx);
729 __cpu_simple_unlock(&mtx->mtx_lock);
730 #endif
731 MUTEX_SPIN_SPLRESTORE(mtx);
732 return;
733 }
734
735 if (__predict_false((uintptr_t)panicstr | cold)) {
736 MUTEX_UNLOCKED(mtx);
737 MUTEX_RELEASE(mtx);
738 return;
739 }
740
741 curthread = (uintptr_t)curlwp;
742 MUTEX_DASSERT(mtx, curthread != 0);
743 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
744 MUTEX_UNLOCKED(mtx);
745
746 #ifdef LOCKDEBUG
747 /*
748 * Avoid having to take the turnstile chain lock every time
749 * around. Raise the priority level to splhigh() in order
750 * to disable preemption and so make the following atomic.
751 */
752 {
753 int s = splhigh();
754 if (!MUTEX_HAS_WAITERS(mtx)) {
755 MUTEX_RELEASE(mtx);
756 splx(s);
757 return;
758 }
759 splx(s);
760 }
761 #endif
762
763 /*
764 * Get this lock's turnstile. This gets the interlock on
765 * the sleep queue. Once we have that, we can clear the
766 * lock. If there was no turnstile for the lock, there
767 * were no waiters remaining.
768 */
769 ts = turnstile_lookup(mtx);
770
771 if (ts == NULL) {
772 MUTEX_RELEASE(mtx);
773 turnstile_exit(mtx);
774 } else {
775 MUTEX_RELEASE(mtx);
776 turnstile_wakeup(ts, TS_WRITER_Q,
777 TS_WAITERS(ts, TS_WRITER_Q), NULL);
778 }
779 }
780
781 #ifndef __HAVE_SIMPLE_MUTEXES
782 /*
783 * mutex_wakeup:
784 *
785 * Support routine for mutex_exit() that wakes up all waiters.
786 * We assume that the mutex has been released, but it need not
787 * be.
788 */
789 void
790 mutex_wakeup(kmutex_t *mtx)
791 {
792 turnstile_t *ts;
793
794 ts = turnstile_lookup(mtx);
795 if (ts == NULL) {
796 turnstile_exit(mtx);
797 return;
798 }
799 MUTEX_CLEAR_WAITERS(mtx);
800 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
801 }
802 #endif /* !__HAVE_SIMPLE_MUTEXES */
803
804 /*
805 * mutex_owned:
806 *
807 * Return true if the current LWP (adaptive) or CPU (spin)
808 * holds the mutex.
809 */
810 int
811 mutex_owned(kmutex_t *mtx)
812 {
813
814 if (mtx == NULL)
815 return 0;
816 if (MUTEX_ADAPTIVE_P(mtx))
817 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
818 #ifdef FULL
819 return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
820 #else
821 return 1;
822 #endif
823 }
824
825 /*
826 * mutex_owner:
827 *
828 * Return the current owner of an adaptive mutex. Used for
829 * priority inheritance.
830 */
831 lwp_t *
832 mutex_owner(kmutex_t *mtx)
833 {
834
835 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
836 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
837 }
838
839 /*
840 * mutex_tryenter:
841 *
842 * Try to acquire the mutex; return non-zero if we did.
843 */
844 int
845 mutex_tryenter(kmutex_t *mtx)
846 {
847 uintptr_t curthread;
848
849 /*
850 * Handle spin mutexes.
851 */
852 if (MUTEX_SPIN_P(mtx)) {
853 MUTEX_SPIN_SPLRAISE(mtx);
854 #ifdef FULL
855 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
856 MUTEX_WANTLOCK(mtx);
857 MUTEX_LOCKED(mtx);
858 return 1;
859 }
860 MUTEX_SPIN_SPLRESTORE(mtx);
861 #else
862 MUTEX_WANTLOCK(mtx);
863 MUTEX_LOCKED(mtx);
864 return 1;
865 #endif
866 } else {
867 curthread = (uintptr_t)curlwp;
868 MUTEX_ASSERT(mtx, curthread != 0);
869 if (MUTEX_ACQUIRE(mtx, curthread)) {
870 MUTEX_WANTLOCK(mtx);
871 MUTEX_LOCKED(mtx);
872 MUTEX_DASSERT(mtx,
873 MUTEX_OWNER(mtx->mtx_owner) == curthread);
874 return 1;
875 }
876 }
877
878 return 0;
879 }
880
881 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
882 /*
883 * mutex_spin_retry:
884 *
885 * Support routine for mutex_spin_enter(). Assumes that the caller
886 * has already raised the SPL, and adjusted counters.
887 */
888 void
889 mutex_spin_retry(kmutex_t *mtx)
890 {
891 #ifdef MULTIPROCESSOR
892 u_int count;
893 LOCKSTAT_TIMER(spintime);
894 LOCKSTAT_FLAG(lsflag);
895 #ifdef LOCKDEBUG
896 u_int spins = 0;
897 #endif /* LOCKDEBUG */
898
899 MUTEX_WANTLOCK(mtx);
900
901 LOCKSTAT_ENTER(lsflag);
902 LOCKSTAT_START_TIMER(lsflag, spintime);
903 count = SPINLOCK_BACKOFF_MIN;
904
905 /*
906 * Spin testing the lock word and do exponential backoff
907 * to reduce cache line ping-ponging between CPUs.
908 */
909 do {
910 if (panicstr != NULL)
911 break;
912 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
913 SPINLOCK_BACKOFF(count);
914 #ifdef LOCKDEBUG
915 if (SPINLOCK_SPINOUT(spins))
916 MUTEX_ABORT(mtx, "spinout");
917 #endif /* LOCKDEBUG */
918 }
919 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
920
921 LOCKSTAT_STOP_TIMER(lsflag, spintime);
922 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
923 LOCKSTAT_EXIT(lsflag);
924
925 MUTEX_LOCKED(mtx);
926 #else /* MULTIPROCESSOR */
927 MUTEX_ABORT(mtx, "locking against myself");
928 #endif /* MULTIPROCESSOR */
929 }
930 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
931
932 /*
933 * mutex_obj_init:
934 *
935 * Initialize the mutex object store.
936 */
937 void
938 mutex_obj_init(void)
939 {
940
941 mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
942 coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
943 NULL, NULL);
944 }
945
946 /*
947 * mutex_obj_ctor:
948 *
949 * Initialize a new lock for the cache.
950 */
951 static int
952 mutex_obj_ctor(void *arg, void *obj, int flags)
953 {
954 struct kmutexobj * mo = obj;
955
956 mo->mo_magic = MUTEX_OBJ_MAGIC;
957
958 return 0;
959 }
960
961 /*
962 * mutex_obj_alloc:
963 *
964 * Allocate a single lock object.
965 */
966 kmutex_t *
967 mutex_obj_alloc(kmutex_type_t type, int ipl)
968 {
969 struct kmutexobj *mo;
970
971 mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
972 mutex_init(&mo->mo_lock, type, ipl);
973 mo->mo_refcnt = 1;
974
975 return (kmutex_t *)mo;
976 }
977
978 /*
979 * mutex_obj_hold:
980 *
981 * Add a single reference to a lock object. A reference to the object
982 * must already be held, and must be held across this call.
983 */
984 void
985 mutex_obj_hold(kmutex_t *lock)
986 {
987 struct kmutexobj *mo = (struct kmutexobj *)lock;
988
989 KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
990 KASSERT(mo->mo_refcnt > 0);
991
992 atomic_inc_uint(&mo->mo_refcnt);
993 }
994
995 /*
996 * mutex_obj_free:
997 *
998 * Drop a reference from a lock object. If the last reference is being
999 * dropped, free the object and return true. Otherwise, return false.
1000 */
1001 bool
1002 mutex_obj_free(kmutex_t *lock)
1003 {
1004 struct kmutexobj *mo = (struct kmutexobj *)lock;
1005
1006 KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
1007 KASSERT(mo->mo_refcnt > 0);
1008
1009 if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
1010 return false;
1011 }
1012 mutex_destroy(&mo->mo_lock);
1013 pool_cache_put(mutex_obj_cache, mo);
1014 return true;
1015 }
1016