kern_mutex.c revision 1.42 1 /* $NetBSD: kern_mutex.c,v 1.42 2008/05/31 13:15:21 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel mutex implementation, modeled after those found in Solaris,
34 * a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #define __MUTEX_PRIVATE
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.42 2008/05/31 13:15:21 ad Exp $");
44
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/mutex.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/kernel.h>
53 #include <sys/atomic.h>
54 #include <sys/intr.h>
55 #include <sys/lock.h>
56 #include <sys/pool.h>
57
58 #include <dev/lockstat.h>
59
60 #include <machine/lock.h>
61
62 /*
63 * When not running a debug kernel, spin mutexes are not much
64 * more than an splraiseipl() and splx() pair.
65 */
66
67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
68 #define FULL
69 #endif
70
71 /*
72 * Debugging support.
73 */
74
75 #define MUTEX_WANTLOCK(mtx) \
76 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
77 (uintptr_t)__builtin_return_address(0), false, false)
78 #define MUTEX_LOCKED(mtx) \
79 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
80 (uintptr_t)__builtin_return_address(0), 0)
81 #define MUTEX_UNLOCKED(mtx) \
82 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
83 (uintptr_t)__builtin_return_address(0), 0)
84 #define MUTEX_ABORT(mtx, msg) \
85 mutex_abort(mtx, __func__, msg)
86
87 #if defined(LOCKDEBUG)
88
89 #define MUTEX_DASSERT(mtx, cond) \
90 do { \
91 if (!(cond)) \
92 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
93 } while (/* CONSTCOND */ 0);
94
95 #else /* LOCKDEBUG */
96
97 #define MUTEX_DASSERT(mtx, cond) /* nothing */
98
99 #endif /* LOCKDEBUG */
100
101 #if defined(DIAGNOSTIC)
102
103 #define MUTEX_ASSERT(mtx, cond) \
104 do { \
105 if (!(cond)) \
106 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
107 } while (/* CONSTCOND */ 0)
108
109 #else /* DIAGNOSTIC */
110
111 #define MUTEX_ASSERT(mtx, cond) /* nothing */
112
113 #endif /* DIAGNOSTIC */
114
115 /*
116 * Spin mutex SPL save / restore.
117 */
118 #ifndef MUTEX_COUNT_BIAS
119 #define MUTEX_COUNT_BIAS 0
120 #endif
121
122 #define MUTEX_SPIN_SPLRAISE(mtx) \
123 do { \
124 struct cpu_info *x__ci; \
125 int x__cnt, s; \
126 s = splraiseipl(mtx->mtx_ipl); \
127 x__ci = curcpu(); \
128 x__cnt = x__ci->ci_mtx_count--; \
129 __insn_barrier(); \
130 if (x__cnt == MUTEX_COUNT_BIAS) \
131 x__ci->ci_mtx_oldspl = (s); \
132 } while (/* CONSTCOND */ 0)
133
134 #define MUTEX_SPIN_SPLRESTORE(mtx) \
135 do { \
136 struct cpu_info *x__ci = curcpu(); \
137 int s = x__ci->ci_mtx_oldspl; \
138 __insn_barrier(); \
139 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
140 splx(s); \
141 } while (/* CONSTCOND */ 0)
142
143 /*
144 * For architectures that provide 'simple' mutexes: they provide a
145 * CAS function that is either MP-safe, or does not need to be MP
146 * safe. Adaptive mutexes on these architectures do not require an
147 * additional interlock.
148 */
149
150 #ifdef __HAVE_SIMPLE_MUTEXES
151
152 #define MUTEX_OWNER(owner) \
153 (owner & MUTEX_THREAD)
154 #define MUTEX_HAS_WAITERS(mtx) \
155 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
156
157 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
158 do { \
159 if (dodebug) \
160 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
161 } while (/* CONSTCOND */ 0);
162
163 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
164 do { \
165 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
166 if (dodebug) \
167 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
168 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
169 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
170 } while (/* CONSTCOND */ 0)
171
172 #define MUTEX_DESTROY(mtx) \
173 do { \
174 (mtx)->mtx_owner = MUTEX_THREAD; \
175 } while (/* CONSTCOND */ 0);
176
177 #define MUTEX_SPIN_P(mtx) \
178 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
179 #define MUTEX_ADAPTIVE_P(mtx) \
180 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
181
182 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
183 #if defined(LOCKDEBUG)
184 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
185 #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
186 #else /* defined(LOCKDEBUG) */
187 #define MUTEX_OWNED(owner) ((owner) != 0)
188 #define MUTEX_INHERITDEBUG(new, old) /* nothing */
189 #endif /* defined(LOCKDEBUG) */
190
191 static inline int
192 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
193 {
194 int rv;
195 uintptr_t old = 0;
196 uintptr_t new = curthread;
197
198 MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
199 MUTEX_INHERITDEBUG(new, old);
200 rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
201 MUTEX_RECEIVE(mtx);
202 return rv;
203 }
204
205 static inline int
206 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
207 {
208 int rv;
209 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
210 MUTEX_RECEIVE(mtx);
211 return rv;
212 }
213
214 static inline void
215 MUTEX_RELEASE(kmutex_t *mtx)
216 {
217 uintptr_t new;
218
219 MUTEX_GIVE(mtx);
220 new = 0;
221 MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
222 mtx->mtx_owner = new;
223 }
224
225 static inline void
226 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
227 {
228 /* nothing */
229 }
230 #endif /* __HAVE_SIMPLE_MUTEXES */
231
232 /*
233 * Patch in stubs via strong alias where they are not available.
234 */
235
236 #if defined(LOCKDEBUG)
237 #undef __HAVE_MUTEX_STUBS
238 #undef __HAVE_SPIN_MUTEX_STUBS
239 #endif
240
241 #ifndef __HAVE_MUTEX_STUBS
242 __strong_alias(mutex_enter,mutex_vector_enter);
243 __strong_alias(mutex_exit,mutex_vector_exit);
244 #endif
245
246 #ifndef __HAVE_SPIN_MUTEX_STUBS
247 __strong_alias(mutex_spin_enter,mutex_vector_enter);
248 __strong_alias(mutex_spin_exit,mutex_vector_exit);
249 #endif
250
251 void mutex_abort(kmutex_t *, const char *, const char *);
252 void mutex_dump(volatile void *);
253 int mutex_onproc(uintptr_t, struct cpu_info **);
254
255 lockops_t mutex_spin_lockops = {
256 "Mutex",
257 LOCKOPS_SPIN,
258 mutex_dump
259 };
260
261 lockops_t mutex_adaptive_lockops = {
262 "Mutex",
263 LOCKOPS_SLEEP,
264 mutex_dump
265 };
266
267 syncobj_t mutex_syncobj = {
268 SOBJ_SLEEPQ_SORTED,
269 turnstile_unsleep,
270 turnstile_changepri,
271 sleepq_lendpri,
272 (void *)mutex_owner,
273 };
274
275 /* Mutex cache */
276 #define MUTEX_OBJ_MAGIC 0x5aa3c85d
277 struct kmutexobj {
278 kmutex_t mo_lock;
279 u_int mo_magic;
280 u_int mo_refcnt;
281 };
282
283 static int mutex_obj_ctor(void *, void *, int);
284
285 static pool_cache_t mutex_obj_cache;
286
287 /*
288 * mutex_dump:
289 *
290 * Dump the contents of a mutex structure.
291 */
292 void
293 mutex_dump(volatile void *cookie)
294 {
295 volatile kmutex_t *mtx = cookie;
296
297 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
298 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
299 MUTEX_SPIN_P(mtx));
300 }
301
302 /*
303 * mutex_abort:
304 *
305 * Dump information about an error and panic the system. This
306 * generates a lot of machine code in the DIAGNOSTIC case, so
307 * we ask the compiler to not inline it.
308 */
309
310 #if __GNUC_PREREQ__(3, 0)
311 __attribute ((noinline)) __attribute ((noreturn))
312 #endif
313 void
314 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
315 {
316
317 LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
318 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
319 /* NOTREACHED */
320 }
321
322 /*
323 * mutex_init:
324 *
325 * Initialize a mutex for use. Note that adaptive mutexes are in
326 * essence spin mutexes that can sleep to avoid deadlock and wasting
327 * CPU time. We can't easily provide a type of mutex that always
328 * sleeps - see comments in mutex_vector_enter() about releasing
329 * mutexes unlocked.
330 */
331 void
332 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
333 {
334 bool dodebug;
335
336 memset(mtx, 0, sizeof(*mtx));
337
338 switch (type) {
339 case MUTEX_ADAPTIVE:
340 KASSERT(ipl == IPL_NONE);
341 break;
342 case MUTEX_DEFAULT:
343 case MUTEX_DRIVER:
344 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
345 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
346 ipl == IPL_SOFTSERIAL) {
347 type = MUTEX_ADAPTIVE;
348 } else {
349 type = MUTEX_SPIN;
350 }
351 break;
352 default:
353 break;
354 }
355
356 switch (type) {
357 case MUTEX_NODEBUG:
358 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
359 (uintptr_t)__builtin_return_address(0));
360 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
361 break;
362 case MUTEX_ADAPTIVE:
363 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
364 (uintptr_t)__builtin_return_address(0));
365 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
366 break;
367 case MUTEX_SPIN:
368 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
369 (uintptr_t)__builtin_return_address(0));
370 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
371 break;
372 default:
373 panic("mutex_init: impossible type");
374 break;
375 }
376 }
377
378 /*
379 * mutex_destroy:
380 *
381 * Tear down a mutex.
382 */
383 void
384 mutex_destroy(kmutex_t *mtx)
385 {
386
387 if (MUTEX_ADAPTIVE_P(mtx)) {
388 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
389 !MUTEX_HAS_WAITERS(mtx));
390 } else {
391 MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
392 }
393
394 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
395 MUTEX_DESTROY(mtx);
396 }
397
398 /*
399 * mutex_onproc:
400 *
401 * Return true if an adaptive mutex owner is running on a CPU in the
402 * system. If the target is waiting on the kernel big lock, then we
403 * must release it. This is necessary to avoid deadlock.
404 *
405 * Note that we can't use the mutex owner field as an LWP pointer. We
406 * don't have full control over the timing of our execution, and so the
407 * pointer could be completely invalid by the time we dereference it.
408 */
409 #ifdef MULTIPROCESSOR
410 int
411 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
412 {
413 CPU_INFO_ITERATOR cii;
414 struct cpu_info *ci;
415 struct lwp *l;
416
417 if (!MUTEX_OWNED(owner))
418 return 0;
419 l = (struct lwp *)MUTEX_OWNER(owner);
420
421 /* See if the target is running on a CPU somewhere. */
422 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
423 goto run;
424 for (CPU_INFO_FOREACH(cii, ci))
425 if (ci->ci_curlwp == l)
426 goto run;
427
428 /* No: it may be safe to block now. */
429 *cip = NULL;
430 return 0;
431
432 run:
433 /* Target is running; do we need to block? */
434 *cip = ci;
435 return ci->ci_biglock_wanted != l;
436 }
437 #endif /* MULTIPROCESSOR */
438
439 /*
440 * mutex_vector_enter:
441 *
442 * Support routine for mutex_enter() that must handles all cases. In
443 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
444 * fast-path stubs are available. If an mutex_spin_enter() stub is
445 * not available, then it is also aliased directly here.
446 */
447 void
448 mutex_vector_enter(kmutex_t *mtx)
449 {
450 uintptr_t owner, curthread;
451 turnstile_t *ts;
452 #ifdef MULTIPROCESSOR
453 struct cpu_info *ci = NULL;
454 u_int count;
455 #endif
456 LOCKSTAT_COUNTER(spincnt);
457 LOCKSTAT_COUNTER(slpcnt);
458 LOCKSTAT_TIMER(spintime);
459 LOCKSTAT_TIMER(slptime);
460 LOCKSTAT_FLAG(lsflag);
461
462 /*
463 * Handle spin mutexes.
464 */
465 if (MUTEX_SPIN_P(mtx)) {
466 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
467 u_int spins = 0;
468 #endif
469 MUTEX_SPIN_SPLRAISE(mtx);
470 MUTEX_WANTLOCK(mtx);
471 #ifdef FULL
472 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
473 MUTEX_LOCKED(mtx);
474 return;
475 }
476 #if !defined(MULTIPROCESSOR)
477 MUTEX_ABORT(mtx, "locking against myself");
478 #else /* !MULTIPROCESSOR */
479
480 LOCKSTAT_ENTER(lsflag);
481 LOCKSTAT_START_TIMER(lsflag, spintime);
482 count = SPINLOCK_BACKOFF_MIN;
483
484 /*
485 * Spin testing the lock word and do exponential backoff
486 * to reduce cache line ping-ponging between CPUs.
487 */
488 do {
489 if (panicstr != NULL)
490 break;
491 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
492 SPINLOCK_BACKOFF(count);
493 #ifdef LOCKDEBUG
494 if (SPINLOCK_SPINOUT(spins))
495 MUTEX_ABORT(mtx, "spinout");
496 #endif /* LOCKDEBUG */
497 }
498 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
499
500 if (count != SPINLOCK_BACKOFF_MIN) {
501 LOCKSTAT_STOP_TIMER(lsflag, spintime);
502 LOCKSTAT_EVENT(lsflag, mtx,
503 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
504 }
505 LOCKSTAT_EXIT(lsflag);
506 #endif /* !MULTIPROCESSOR */
507 #endif /* FULL */
508 MUTEX_LOCKED(mtx);
509 return;
510 }
511
512 curthread = (uintptr_t)curlwp;
513
514 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
515 MUTEX_ASSERT(mtx, curthread != 0);
516 MUTEX_WANTLOCK(mtx);
517
518 if (panicstr == NULL) {
519 LOCKDEBUG_BARRIER(&kernel_lock, 1);
520 }
521
522 LOCKSTAT_ENTER(lsflag);
523
524 /*
525 * Adaptive mutex; spin trying to acquire the mutex. If we
526 * determine that the owner is not running on a processor,
527 * then we stop spinning, and sleep instead.
528 */
529 for (owner = mtx->mtx_owner;;) {
530 if (!MUTEX_OWNED(owner)) {
531 /*
532 * Mutex owner clear could mean two things:
533 *
534 * * The mutex has been released.
535 * * The owner field hasn't been set yet.
536 *
537 * Try to acquire it again. If that fails,
538 * we'll just loop again.
539 */
540 if (MUTEX_ACQUIRE(mtx, curthread))
541 break;
542 owner = mtx->mtx_owner;
543 continue;
544 }
545
546 if (panicstr != NULL)
547 return;
548 if (MUTEX_OWNER(owner) == curthread)
549 MUTEX_ABORT(mtx, "locking against myself");
550
551 #ifdef MULTIPROCESSOR
552 /*
553 * Check to see if the owner is running on a processor.
554 * If so, then we should just spin, as the owner will
555 * likely release the lock very soon.
556 */
557 if (mutex_onproc(owner, &ci)) {
558 LOCKSTAT_START_TIMER(lsflag, spintime);
559 count = SPINLOCK_BACKOFF_MIN;
560 for (;;) {
561 SPINLOCK_BACKOFF(count);
562 owner = mtx->mtx_owner;
563 if (!mutex_onproc(owner, &ci))
564 break;
565 }
566 LOCKSTAT_STOP_TIMER(lsflag, spintime);
567 LOCKSTAT_COUNT(spincnt, 1);
568 if (!MUTEX_OWNED(owner))
569 continue;
570 }
571 #endif
572
573 ts = turnstile_lookup(mtx);
574
575 /*
576 * Once we have the turnstile chain interlock, mark the
577 * mutex has having waiters. If that fails, spin again:
578 * chances are that the mutex has been released.
579 */
580 if (!MUTEX_SET_WAITERS(mtx, owner)) {
581 turnstile_exit(mtx);
582 owner = mtx->mtx_owner;
583 continue;
584 }
585
586 #ifdef MULTIPROCESSOR
587 /*
588 * mutex_exit() is permitted to release the mutex without
589 * any interlocking instructions, and the following can
590 * occur as a result:
591 *
592 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
593 * ---------------------------- ----------------------------
594 * .. acquire cache line
595 * .. test for waiters
596 * acquire cache line <- lose cache line
597 * lock cache line ..
598 * verify mutex is held ..
599 * set waiters ..
600 * unlock cache line ..
601 * lose cache line -> acquire cache line
602 * .. clear lock word, waiters
603 * return success
604 *
605 * There is a another race that can occur: a third CPU could
606 * acquire the mutex as soon as it is released. Since
607 * adaptive mutexes are primarily spin mutexes, this is not
608 * something that we need to worry about too much. What we
609 * do need to ensure is that the waiters bit gets set.
610 *
611 * To allow the unlocked release, we need to make some
612 * assumptions here:
613 *
614 * o Release is the only non-atomic/unlocked operation
615 * that can be performed on the mutex. (It must still
616 * be atomic on the local CPU, e.g. in case interrupted
617 * or preempted).
618 *
619 * o At any given time, MUTEX_SET_WAITERS() can only ever
620 * be in progress on one CPU in the system - guaranteed
621 * by the turnstile chain lock.
622 *
623 * o No other operations other than MUTEX_SET_WAITERS()
624 * and release can modify a mutex with a non-zero
625 * owner field.
626 *
627 * o The result of a successful MUTEX_SET_WAITERS() call
628 * is an unbuffered write that is immediately visible
629 * to all other processors in the system.
630 *
631 * o If the holding LWP switches away, it posts a store
632 * fence before changing curlwp, ensuring that any
633 * overwrite of the mutex waiters flag by mutex_exit()
634 * completes before the modification of curlwp becomes
635 * visible to this CPU.
636 *
637 * o mi_switch() posts a store fence before setting curlwp
638 * and before resuming execution of an LWP.
639 *
640 * o _kernel_lock() posts a store fence before setting
641 * curcpu()->ci_biglock_wanted, and after clearing it.
642 * This ensures that any overwrite of the mutex waiters
643 * flag by mutex_exit() completes before the modification
644 * of ci_biglock_wanted becomes visible.
645 *
646 * We now post a read memory barrier (after setting the
647 * waiters field) and check the lock holder's status again.
648 * Some of the possible outcomes (not an exhaustive list):
649 *
650 * 1. The onproc check returns true: the holding LWP is
651 * running again. The lock may be released soon and
652 * we should spin. Importantly, we can't trust the
653 * value of the waiters flag.
654 *
655 * 2. The onproc check returns false: the holding LWP is
656 * not running. We now have the opportunity to check
657 * if mutex_exit() has blatted the modifications made
658 * by MUTEX_SET_WAITERS().
659 *
660 * 3. The onproc check returns false: the holding LWP may
661 * or may not be running. It has context switched at
662 * some point during our check. Again, we have the
663 * chance to see if the waiters bit is still set or
664 * has been overwritten.
665 *
666 * 4. The onproc check returns false: the holding LWP is
667 * running on a CPU, but wants the big lock. It's OK
668 * to check the waiters field in this case.
669 *
670 * 5. The has-waiters check fails: the mutex has been
671 * released, the waiters flag cleared and another LWP
672 * now owns the mutex.
673 *
674 * 6. The has-waiters check fails: the mutex has been
675 * released.
676 *
677 * If the waiters bit is not set it's unsafe to go asleep,
678 * as we might never be awoken.
679 */
680 if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
681 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
682 turnstile_exit(mtx);
683 owner = mtx->mtx_owner;
684 continue;
685 }
686 #endif /* MULTIPROCESSOR */
687
688 LOCKSTAT_START_TIMER(lsflag, slptime);
689
690 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
691
692 LOCKSTAT_STOP_TIMER(lsflag, slptime);
693 LOCKSTAT_COUNT(slpcnt, 1);
694
695 owner = mtx->mtx_owner;
696 }
697
698 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
699 slpcnt, slptime);
700 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
701 spincnt, spintime);
702 LOCKSTAT_EXIT(lsflag);
703
704 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
705 MUTEX_LOCKED(mtx);
706 }
707
708 /*
709 * mutex_vector_exit:
710 *
711 * Support routine for mutex_exit() that handles all cases.
712 */
713 void
714 mutex_vector_exit(kmutex_t *mtx)
715 {
716 turnstile_t *ts;
717 uintptr_t curthread;
718
719 if (MUTEX_SPIN_P(mtx)) {
720 #ifdef FULL
721 if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
722 if (panicstr != NULL)
723 return;
724 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
725 }
726 MUTEX_UNLOCKED(mtx);
727 __cpu_simple_unlock(&mtx->mtx_lock);
728 #endif
729 MUTEX_SPIN_SPLRESTORE(mtx);
730 return;
731 }
732
733 if (__predict_false((uintptr_t)panicstr | cold)) {
734 MUTEX_UNLOCKED(mtx);
735 MUTEX_RELEASE(mtx);
736 return;
737 }
738
739 curthread = (uintptr_t)curlwp;
740 MUTEX_DASSERT(mtx, curthread != 0);
741 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
742 MUTEX_UNLOCKED(mtx);
743
744 #ifdef LOCKDEBUG
745 /*
746 * Avoid having to take the turnstile chain lock every time
747 * around. Raise the priority level to splhigh() in order
748 * to disable preemption and so make the following atomic.
749 */
750 {
751 int s = splhigh();
752 if (!MUTEX_HAS_WAITERS(mtx)) {
753 MUTEX_RELEASE(mtx);
754 splx(s);
755 return;
756 }
757 splx(s);
758 }
759 #endif
760
761 /*
762 * Get this lock's turnstile. This gets the interlock on
763 * the sleep queue. Once we have that, we can clear the
764 * lock. If there was no turnstile for the lock, there
765 * were no waiters remaining.
766 */
767 ts = turnstile_lookup(mtx);
768
769 if (ts == NULL) {
770 MUTEX_RELEASE(mtx);
771 turnstile_exit(mtx);
772 } else {
773 MUTEX_RELEASE(mtx);
774 turnstile_wakeup(ts, TS_WRITER_Q,
775 TS_WAITERS(ts, TS_WRITER_Q), NULL);
776 }
777 }
778
779 #ifndef __HAVE_SIMPLE_MUTEXES
780 /*
781 * mutex_wakeup:
782 *
783 * Support routine for mutex_exit() that wakes up all waiters.
784 * We assume that the mutex has been released, but it need not
785 * be.
786 */
787 void
788 mutex_wakeup(kmutex_t *mtx)
789 {
790 turnstile_t *ts;
791
792 ts = turnstile_lookup(mtx);
793 if (ts == NULL) {
794 turnstile_exit(mtx);
795 return;
796 }
797 MUTEX_CLEAR_WAITERS(mtx);
798 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
799 }
800 #endif /* !__HAVE_SIMPLE_MUTEXES */
801
802 /*
803 * mutex_owned:
804 *
805 * Return true if the current LWP (adaptive) or CPU (spin)
806 * holds the mutex.
807 */
808 int
809 mutex_owned(kmutex_t *mtx)
810 {
811
812 if (mtx == NULL)
813 return 0;
814 if (MUTEX_ADAPTIVE_P(mtx))
815 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
816 #ifdef FULL
817 return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
818 #else
819 return 1;
820 #endif
821 }
822
823 /*
824 * mutex_owner:
825 *
826 * Return the current owner of an adaptive mutex. Used for
827 * priority inheritance.
828 */
829 lwp_t *
830 mutex_owner(kmutex_t *mtx)
831 {
832
833 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
834 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
835 }
836
837 /*
838 * mutex_tryenter:
839 *
840 * Try to acquire the mutex; return non-zero if we did.
841 */
842 int
843 mutex_tryenter(kmutex_t *mtx)
844 {
845 uintptr_t curthread;
846
847 /*
848 * Handle spin mutexes.
849 */
850 if (MUTEX_SPIN_P(mtx)) {
851 MUTEX_SPIN_SPLRAISE(mtx);
852 #ifdef FULL
853 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
854 MUTEX_WANTLOCK(mtx);
855 MUTEX_LOCKED(mtx);
856 return 1;
857 }
858 MUTEX_SPIN_SPLRESTORE(mtx);
859 #else
860 MUTEX_WANTLOCK(mtx);
861 MUTEX_LOCKED(mtx);
862 return 1;
863 #endif
864 } else {
865 curthread = (uintptr_t)curlwp;
866 MUTEX_ASSERT(mtx, curthread != 0);
867 if (MUTEX_ACQUIRE(mtx, curthread)) {
868 MUTEX_WANTLOCK(mtx);
869 MUTEX_LOCKED(mtx);
870 MUTEX_DASSERT(mtx,
871 MUTEX_OWNER(mtx->mtx_owner) == curthread);
872 return 1;
873 }
874 }
875
876 return 0;
877 }
878
879 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
880 /*
881 * mutex_spin_retry:
882 *
883 * Support routine for mutex_spin_enter(). Assumes that the caller
884 * has already raised the SPL, and adjusted counters.
885 */
886 void
887 mutex_spin_retry(kmutex_t *mtx)
888 {
889 #ifdef MULTIPROCESSOR
890 u_int count;
891 LOCKSTAT_TIMER(spintime);
892 LOCKSTAT_FLAG(lsflag);
893 #ifdef LOCKDEBUG
894 u_int spins = 0;
895 #endif /* LOCKDEBUG */
896
897 MUTEX_WANTLOCK(mtx);
898
899 LOCKSTAT_ENTER(lsflag);
900 LOCKSTAT_START_TIMER(lsflag, spintime);
901 count = SPINLOCK_BACKOFF_MIN;
902
903 /*
904 * Spin testing the lock word and do exponential backoff
905 * to reduce cache line ping-ponging between CPUs.
906 */
907 do {
908 if (panicstr != NULL)
909 break;
910 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
911 SPINLOCK_BACKOFF(count);
912 #ifdef LOCKDEBUG
913 if (SPINLOCK_SPINOUT(spins))
914 MUTEX_ABORT(mtx, "spinout");
915 #endif /* LOCKDEBUG */
916 }
917 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
918
919 LOCKSTAT_STOP_TIMER(lsflag, spintime);
920 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
921 LOCKSTAT_EXIT(lsflag);
922
923 MUTEX_LOCKED(mtx);
924 #else /* MULTIPROCESSOR */
925 MUTEX_ABORT(mtx, "locking against myself");
926 #endif /* MULTIPROCESSOR */
927 }
928 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
929
930 /*
931 * mutex_obj_init:
932 *
933 * Initialize the mutex object store.
934 */
935 void
936 mutex_obj_init(void)
937 {
938
939 mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
940 coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
941 NULL, NULL);
942 }
943
944 /*
945 * mutex_obj_ctor:
946 *
947 * Initialize a new lock for the cache.
948 */
949 static int
950 mutex_obj_ctor(void *arg, void *obj, int flags)
951 {
952 struct kmutexobj * mo = obj;
953
954 mo->mo_magic = MUTEX_OBJ_MAGIC;
955
956 return 0;
957 }
958
959 /*
960 * mutex_obj_alloc:
961 *
962 * Allocate a single lock object.
963 */
964 kmutex_t *
965 mutex_obj_alloc(kmutex_type_t type, int ipl)
966 {
967 struct kmutexobj *mo;
968
969 mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
970 mutex_init(&mo->mo_lock, type, ipl);
971 mo->mo_refcnt = 1;
972
973 return (kmutex_t *)mo;
974 }
975
976 /*
977 * mutex_obj_hold:
978 *
979 * Add a single reference to a lock object. A reference to the object
980 * must already be held, and must be held across this call.
981 */
982 void
983 mutex_obj_hold(kmutex_t *lock)
984 {
985 struct kmutexobj *mo = (struct kmutexobj *)lock;
986
987 KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
988 KASSERT(mo->mo_refcnt > 0);
989
990 atomic_inc_uint(&mo->mo_refcnt);
991 }
992
993 /*
994 * mutex_obj_free:
995 *
996 * Drop a reference from a lock object. If the last reference is being
997 * dropped, free the object and return true. Otherwise, return false.
998 */
999 bool
1000 mutex_obj_free(kmutex_t *lock)
1001 {
1002 struct kmutexobj *mo = (struct kmutexobj *)lock;
1003
1004 KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
1005 KASSERT(mo->mo_refcnt > 0);
1006
1007 if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
1008 return false;
1009 }
1010 mutex_destroy(&mo->mo_lock);
1011 pool_cache_put(mutex_obj_cache, mo);
1012 return true;
1013 }
1014