Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.42
      1 /*	$NetBSD: kern_mutex.c,v 1.42 2008/05/31 13:15:21 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.42 2008/05/31 13:15:21 ad Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/proc.h>
     47 #include <sys/mutex.h>
     48 #include <sys/sched.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/systm.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/kernel.h>
     53 #include <sys/atomic.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 #include <sys/pool.h>
     57 
     58 #include <dev/lockstat.h>
     59 
     60 #include <machine/lock.h>
     61 
     62 /*
     63  * When not running a debug kernel, spin mutexes are not much
     64  * more than an splraiseipl() and splx() pair.
     65  */
     66 
     67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     68 #define	FULL
     69 #endif
     70 
     71 /*
     72  * Debugging support.
     73  */
     74 
     75 #define	MUTEX_WANTLOCK(mtx)					\
     76     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     77         (uintptr_t)__builtin_return_address(0), false, false)
     78 #define	MUTEX_LOCKED(mtx)					\
     79     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     80         (uintptr_t)__builtin_return_address(0), 0)
     81 #define	MUTEX_UNLOCKED(mtx)					\
     82     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     83         (uintptr_t)__builtin_return_address(0), 0)
     84 #define	MUTEX_ABORT(mtx, msg)					\
     85     mutex_abort(mtx, __func__, msg)
     86 
     87 #if defined(LOCKDEBUG)
     88 
     89 #define	MUTEX_DASSERT(mtx, cond)				\
     90 do {								\
     91 	if (!(cond))						\
     92 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     93 } while (/* CONSTCOND */ 0);
     94 
     95 #else	/* LOCKDEBUG */
     96 
     97 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
     98 
     99 #endif /* LOCKDEBUG */
    100 
    101 #if defined(DIAGNOSTIC)
    102 
    103 #define	MUTEX_ASSERT(mtx, cond)					\
    104 do {								\
    105 	if (!(cond))						\
    106 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    107 } while (/* CONSTCOND */ 0)
    108 
    109 #else	/* DIAGNOSTIC */
    110 
    111 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    112 
    113 #endif	/* DIAGNOSTIC */
    114 
    115 /*
    116  * Spin mutex SPL save / restore.
    117  */
    118 #ifndef MUTEX_COUNT_BIAS
    119 #define	MUTEX_COUNT_BIAS	0
    120 #endif
    121 
    122 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    123 do {									\
    124 	struct cpu_info *x__ci;						\
    125 	int x__cnt, s;							\
    126 	s = splraiseipl(mtx->mtx_ipl);					\
    127 	x__ci = curcpu();						\
    128 	x__cnt = x__ci->ci_mtx_count--;					\
    129 	__insn_barrier();						\
    130 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    131 		x__ci->ci_mtx_oldspl = (s);				\
    132 } while (/* CONSTCOND */ 0)
    133 
    134 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    135 do {									\
    136 	struct cpu_info *x__ci = curcpu();				\
    137 	int s = x__ci->ci_mtx_oldspl;					\
    138 	__insn_barrier();						\
    139 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    140 		splx(s);						\
    141 } while (/* CONSTCOND */ 0)
    142 
    143 /*
    144  * For architectures that provide 'simple' mutexes: they provide a
    145  * CAS function that is either MP-safe, or does not need to be MP
    146  * safe.  Adaptive mutexes on these architectures do not require an
    147  * additional interlock.
    148  */
    149 
    150 #ifdef __HAVE_SIMPLE_MUTEXES
    151 
    152 #define	MUTEX_OWNER(owner)						\
    153 	(owner & MUTEX_THREAD)
    154 #define	MUTEX_HAS_WAITERS(mtx)						\
    155 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    156 
    157 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    158 do {									\
    159 	if (dodebug)							\
    160 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    161 } while (/* CONSTCOND */ 0);
    162 
    163 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    164 do {									\
    165 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    166 	if (dodebug)							\
    167 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    168 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    169 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    170 } while (/* CONSTCOND */ 0)
    171 
    172 #define	MUTEX_DESTROY(mtx)						\
    173 do {									\
    174 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    175 } while (/* CONSTCOND */ 0);
    176 
    177 #define	MUTEX_SPIN_P(mtx)		\
    178     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    179 #define	MUTEX_ADAPTIVE_P(mtx)		\
    180     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    181 
    182 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    183 #if defined(LOCKDEBUG)
    184 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    185 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    186 #else /* defined(LOCKDEBUG) */
    187 #define	MUTEX_OWNED(owner)		((owner) != 0)
    188 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    189 #endif /* defined(LOCKDEBUG) */
    190 
    191 static inline int
    192 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    193 {
    194 	int rv;
    195 	uintptr_t old = 0;
    196 	uintptr_t new = curthread;
    197 
    198 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    199 	MUTEX_INHERITDEBUG(new, old);
    200 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    201 	MUTEX_RECEIVE(mtx);
    202 	return rv;
    203 }
    204 
    205 static inline int
    206 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    207 {
    208 	int rv;
    209 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    210 	MUTEX_RECEIVE(mtx);
    211 	return rv;
    212 }
    213 
    214 static inline void
    215 MUTEX_RELEASE(kmutex_t *mtx)
    216 {
    217 	uintptr_t new;
    218 
    219 	MUTEX_GIVE(mtx);
    220 	new = 0;
    221 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    222 	mtx->mtx_owner = new;
    223 }
    224 
    225 static inline void
    226 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    227 {
    228 	/* nothing */
    229 }
    230 #endif	/* __HAVE_SIMPLE_MUTEXES */
    231 
    232 /*
    233  * Patch in stubs via strong alias where they are not available.
    234  */
    235 
    236 #if defined(LOCKDEBUG)
    237 #undef	__HAVE_MUTEX_STUBS
    238 #undef	__HAVE_SPIN_MUTEX_STUBS
    239 #endif
    240 
    241 #ifndef __HAVE_MUTEX_STUBS
    242 __strong_alias(mutex_enter,mutex_vector_enter);
    243 __strong_alias(mutex_exit,mutex_vector_exit);
    244 #endif
    245 
    246 #ifndef __HAVE_SPIN_MUTEX_STUBS
    247 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    248 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    249 #endif
    250 
    251 void	mutex_abort(kmutex_t *, const char *, const char *);
    252 void	mutex_dump(volatile void *);
    253 int	mutex_onproc(uintptr_t, struct cpu_info **);
    254 
    255 lockops_t mutex_spin_lockops = {
    256 	"Mutex",
    257 	LOCKOPS_SPIN,
    258 	mutex_dump
    259 };
    260 
    261 lockops_t mutex_adaptive_lockops = {
    262 	"Mutex",
    263 	LOCKOPS_SLEEP,
    264 	mutex_dump
    265 };
    266 
    267 syncobj_t mutex_syncobj = {
    268 	SOBJ_SLEEPQ_SORTED,
    269 	turnstile_unsleep,
    270 	turnstile_changepri,
    271 	sleepq_lendpri,
    272 	(void *)mutex_owner,
    273 };
    274 
    275 /* Mutex cache */
    276 #define	MUTEX_OBJ_MAGIC	0x5aa3c85d
    277 struct kmutexobj {
    278 	kmutex_t	mo_lock;
    279 	u_int		mo_magic;
    280 	u_int		mo_refcnt;
    281 };
    282 
    283 static int	mutex_obj_ctor(void *, void *, int);
    284 
    285 static pool_cache_t	mutex_obj_cache;
    286 
    287 /*
    288  * mutex_dump:
    289  *
    290  *	Dump the contents of a mutex structure.
    291  */
    292 void
    293 mutex_dump(volatile void *cookie)
    294 {
    295 	volatile kmutex_t *mtx = cookie;
    296 
    297 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    298 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    299 	    MUTEX_SPIN_P(mtx));
    300 }
    301 
    302 /*
    303  * mutex_abort:
    304  *
    305  *	Dump information about an error and panic the system.  This
    306  *	generates a lot of machine code in the DIAGNOSTIC case, so
    307  *	we ask the compiler to not inline it.
    308  */
    309 
    310 #if __GNUC_PREREQ__(3, 0)
    311 __attribute ((noinline)) __attribute ((noreturn))
    312 #endif
    313 void
    314 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    315 {
    316 
    317 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    318 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    319 	/* NOTREACHED */
    320 }
    321 
    322 /*
    323  * mutex_init:
    324  *
    325  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    326  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    327  *	CPU time.  We can't easily provide a type of mutex that always
    328  *	sleeps - see comments in mutex_vector_enter() about releasing
    329  *	mutexes unlocked.
    330  */
    331 void
    332 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    333 {
    334 	bool dodebug;
    335 
    336 	memset(mtx, 0, sizeof(*mtx));
    337 
    338 	switch (type) {
    339 	case MUTEX_ADAPTIVE:
    340 		KASSERT(ipl == IPL_NONE);
    341 		break;
    342 	case MUTEX_DEFAULT:
    343 	case MUTEX_DRIVER:
    344 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    345 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    346 		    ipl == IPL_SOFTSERIAL) {
    347 			type = MUTEX_ADAPTIVE;
    348 		} else {
    349 			type = MUTEX_SPIN;
    350 		}
    351 		break;
    352 	default:
    353 		break;
    354 	}
    355 
    356 	switch (type) {
    357 	case MUTEX_NODEBUG:
    358 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    359 		    (uintptr_t)__builtin_return_address(0));
    360 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    361 		break;
    362 	case MUTEX_ADAPTIVE:
    363 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    364 		    (uintptr_t)__builtin_return_address(0));
    365 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    366 		break;
    367 	case MUTEX_SPIN:
    368 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    369 		    (uintptr_t)__builtin_return_address(0));
    370 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    371 		break;
    372 	default:
    373 		panic("mutex_init: impossible type");
    374 		break;
    375 	}
    376 }
    377 
    378 /*
    379  * mutex_destroy:
    380  *
    381  *	Tear down a mutex.
    382  */
    383 void
    384 mutex_destroy(kmutex_t *mtx)
    385 {
    386 
    387 	if (MUTEX_ADAPTIVE_P(mtx)) {
    388 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    389 		    !MUTEX_HAS_WAITERS(mtx));
    390 	} else {
    391 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    392 	}
    393 
    394 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    395 	MUTEX_DESTROY(mtx);
    396 }
    397 
    398 /*
    399  * mutex_onproc:
    400  *
    401  *	Return true if an adaptive mutex owner is running on a CPU in the
    402  *	system.  If the target is waiting on the kernel big lock, then we
    403  *	must release it.  This is necessary to avoid deadlock.
    404  *
    405  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    406  *	don't have full control over the timing of our execution, and so the
    407  *	pointer could be completely invalid by the time we dereference it.
    408  */
    409 #ifdef MULTIPROCESSOR
    410 int
    411 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    412 {
    413 	CPU_INFO_ITERATOR cii;
    414 	struct cpu_info *ci;
    415 	struct lwp *l;
    416 
    417 	if (!MUTEX_OWNED(owner))
    418 		return 0;
    419 	l = (struct lwp *)MUTEX_OWNER(owner);
    420 
    421 	/* See if the target is running on a CPU somewhere. */
    422 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    423 		goto run;
    424 	for (CPU_INFO_FOREACH(cii, ci))
    425 		if (ci->ci_curlwp == l)
    426 			goto run;
    427 
    428 	/* No: it may be safe to block now. */
    429 	*cip = NULL;
    430 	return 0;
    431 
    432  run:
    433  	/* Target is running; do we need to block? */
    434  	*cip = ci;
    435 	return ci->ci_biglock_wanted != l;
    436 }
    437 #endif	/* MULTIPROCESSOR */
    438 
    439 /*
    440  * mutex_vector_enter:
    441  *
    442  *	Support routine for mutex_enter() that must handles all cases.  In
    443  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    444  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    445  *	not available, then it is also aliased directly here.
    446  */
    447 void
    448 mutex_vector_enter(kmutex_t *mtx)
    449 {
    450 	uintptr_t owner, curthread;
    451 	turnstile_t *ts;
    452 #ifdef MULTIPROCESSOR
    453 	struct cpu_info *ci = NULL;
    454 	u_int count;
    455 #endif
    456 	LOCKSTAT_COUNTER(spincnt);
    457 	LOCKSTAT_COUNTER(slpcnt);
    458 	LOCKSTAT_TIMER(spintime);
    459 	LOCKSTAT_TIMER(slptime);
    460 	LOCKSTAT_FLAG(lsflag);
    461 
    462 	/*
    463 	 * Handle spin mutexes.
    464 	 */
    465 	if (MUTEX_SPIN_P(mtx)) {
    466 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    467 		u_int spins = 0;
    468 #endif
    469 		MUTEX_SPIN_SPLRAISE(mtx);
    470 		MUTEX_WANTLOCK(mtx);
    471 #ifdef FULL
    472 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    473 			MUTEX_LOCKED(mtx);
    474 			return;
    475 		}
    476 #if !defined(MULTIPROCESSOR)
    477 		MUTEX_ABORT(mtx, "locking against myself");
    478 #else /* !MULTIPROCESSOR */
    479 
    480 		LOCKSTAT_ENTER(lsflag);
    481 		LOCKSTAT_START_TIMER(lsflag, spintime);
    482 		count = SPINLOCK_BACKOFF_MIN;
    483 
    484 		/*
    485 		 * Spin testing the lock word and do exponential backoff
    486 		 * to reduce cache line ping-ponging between CPUs.
    487 		 */
    488 		do {
    489 			if (panicstr != NULL)
    490 				break;
    491 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    492 				SPINLOCK_BACKOFF(count);
    493 #ifdef LOCKDEBUG
    494 				if (SPINLOCK_SPINOUT(spins))
    495 					MUTEX_ABORT(mtx, "spinout");
    496 #endif	/* LOCKDEBUG */
    497 			}
    498 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    499 
    500 		if (count != SPINLOCK_BACKOFF_MIN) {
    501 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    502 			LOCKSTAT_EVENT(lsflag, mtx,
    503 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    504 		}
    505 		LOCKSTAT_EXIT(lsflag);
    506 #endif	/* !MULTIPROCESSOR */
    507 #endif	/* FULL */
    508 		MUTEX_LOCKED(mtx);
    509 		return;
    510 	}
    511 
    512 	curthread = (uintptr_t)curlwp;
    513 
    514 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    515 	MUTEX_ASSERT(mtx, curthread != 0);
    516 	MUTEX_WANTLOCK(mtx);
    517 
    518 	if (panicstr == NULL) {
    519 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    520 	}
    521 
    522 	LOCKSTAT_ENTER(lsflag);
    523 
    524 	/*
    525 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    526 	 * determine that the owner is not running on a processor,
    527 	 * then we stop spinning, and sleep instead.
    528 	 */
    529 	for (owner = mtx->mtx_owner;;) {
    530 		if (!MUTEX_OWNED(owner)) {
    531 			/*
    532 			 * Mutex owner clear could mean two things:
    533 			 *
    534 			 *	* The mutex has been released.
    535 			 *	* The owner field hasn't been set yet.
    536 			 *
    537 			 * Try to acquire it again.  If that fails,
    538 			 * we'll just loop again.
    539 			 */
    540 			if (MUTEX_ACQUIRE(mtx, curthread))
    541 				break;
    542 			owner = mtx->mtx_owner;
    543 			continue;
    544 		}
    545 
    546 		if (panicstr != NULL)
    547 			return;
    548 		if (MUTEX_OWNER(owner) == curthread)
    549 			MUTEX_ABORT(mtx, "locking against myself");
    550 
    551 #ifdef MULTIPROCESSOR
    552 		/*
    553 		 * Check to see if the owner is running on a processor.
    554 		 * If so, then we should just spin, as the owner will
    555 		 * likely release the lock very soon.
    556 		 */
    557 		if (mutex_onproc(owner, &ci)) {
    558 			LOCKSTAT_START_TIMER(lsflag, spintime);
    559 			count = SPINLOCK_BACKOFF_MIN;
    560 			for (;;) {
    561 				SPINLOCK_BACKOFF(count);
    562 				owner = mtx->mtx_owner;
    563 				if (!mutex_onproc(owner, &ci))
    564 					break;
    565 			}
    566 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    567 			LOCKSTAT_COUNT(spincnt, 1);
    568 			if (!MUTEX_OWNED(owner))
    569 				continue;
    570 		}
    571 #endif
    572 
    573 		ts = turnstile_lookup(mtx);
    574 
    575 		/*
    576 		 * Once we have the turnstile chain interlock, mark the
    577 		 * mutex has having waiters.  If that fails, spin again:
    578 		 * chances are that the mutex has been released.
    579 		 */
    580 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    581 			turnstile_exit(mtx);
    582 			owner = mtx->mtx_owner;
    583 			continue;
    584 		}
    585 
    586 #ifdef MULTIPROCESSOR
    587 		/*
    588 		 * mutex_exit() is permitted to release the mutex without
    589 		 * any interlocking instructions, and the following can
    590 		 * occur as a result:
    591 		 *
    592 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    593 		 * ---------------------------- ----------------------------
    594 		 *		..		    acquire cache line
    595 		 *		..                   test for waiters
    596 		 *	acquire cache line    <-      lose cache line
    597 		 *	 lock cache line	           ..
    598 		 *     verify mutex is held                ..
    599 		 *	    set waiters  	           ..
    600 		 *	 unlock cache line		   ..
    601 		 *	  lose cache line     ->    acquire cache line
    602 		 *		..	          clear lock word, waiters
    603 		 *	  return success
    604 		 *
    605 		 * There is a another race that can occur: a third CPU could
    606 		 * acquire the mutex as soon as it is released.  Since
    607 		 * adaptive mutexes are primarily spin mutexes, this is not
    608 		 * something that we need to worry about too much.  What we
    609 		 * do need to ensure is that the waiters bit gets set.
    610 		 *
    611 		 * To allow the unlocked release, we need to make some
    612 		 * assumptions here:
    613 		 *
    614 		 * o Release is the only non-atomic/unlocked operation
    615 		 *   that can be performed on the mutex.  (It must still
    616 		 *   be atomic on the local CPU, e.g. in case interrupted
    617 		 *   or preempted).
    618 		 *
    619 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    620 		 *   be in progress on one CPU in the system - guaranteed
    621 		 *   by the turnstile chain lock.
    622 		 *
    623 		 * o No other operations other than MUTEX_SET_WAITERS()
    624 		 *   and release can modify a mutex with a non-zero
    625 		 *   owner field.
    626 		 *
    627 		 * o The result of a successful MUTEX_SET_WAITERS() call
    628 		 *   is an unbuffered write that is immediately visible
    629 		 *   to all other processors in the system.
    630 		 *
    631 		 * o If the holding LWP switches away, it posts a store
    632 		 *   fence before changing curlwp, ensuring that any
    633 		 *   overwrite of the mutex waiters flag by mutex_exit()
    634 		 *   completes before the modification of curlwp becomes
    635 		 *   visible to this CPU.
    636 		 *
    637 		 * o mi_switch() posts a store fence before setting curlwp
    638 		 *   and before resuming execution of an LWP.
    639 		 *
    640 		 * o _kernel_lock() posts a store fence before setting
    641 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    642 		 *   This ensures that any overwrite of the mutex waiters
    643 		 *   flag by mutex_exit() completes before the modification
    644 		 *   of ci_biglock_wanted becomes visible.
    645 		 *
    646 		 * We now post a read memory barrier (after setting the
    647 		 * waiters field) and check the lock holder's status again.
    648 		 * Some of the possible outcomes (not an exhaustive list):
    649 		 *
    650 		 * 1. The onproc check returns true: the holding LWP is
    651 		 *    running again.  The lock may be released soon and
    652 		 *    we should spin.  Importantly, we can't trust the
    653 		 *    value of the waiters flag.
    654 		 *
    655 		 * 2. The onproc check returns false: the holding LWP is
    656 		 *    not running.  We now have the opportunity to check
    657 		 *    if mutex_exit() has blatted the modifications made
    658 		 *    by MUTEX_SET_WAITERS().
    659 		 *
    660 		 * 3. The onproc check returns false: the holding LWP may
    661 		 *    or may not be running.  It has context switched at
    662 		 *    some point during our check.  Again, we have the
    663 		 *    chance to see if the waiters bit is still set or
    664 		 *    has been overwritten.
    665 		 *
    666 		 * 4. The onproc check returns false: the holding LWP is
    667 		 *    running on a CPU, but wants the big lock.  It's OK
    668 		 *    to check the waiters field in this case.
    669 		 *
    670 		 * 5. The has-waiters check fails: the mutex has been
    671 		 *    released, the waiters flag cleared and another LWP
    672 		 *    now owns the mutex.
    673 		 *
    674 		 * 6. The has-waiters check fails: the mutex has been
    675 		 *    released.
    676 		 *
    677 		 * If the waiters bit is not set it's unsafe to go asleep,
    678 		 * as we might never be awoken.
    679 		 */
    680 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    681 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    682 			turnstile_exit(mtx);
    683 			owner = mtx->mtx_owner;
    684 			continue;
    685 		}
    686 #endif	/* MULTIPROCESSOR */
    687 
    688 		LOCKSTAT_START_TIMER(lsflag, slptime);
    689 
    690 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    691 
    692 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    693 		LOCKSTAT_COUNT(slpcnt, 1);
    694 
    695 		owner = mtx->mtx_owner;
    696 	}
    697 
    698 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    699 	    slpcnt, slptime);
    700 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    701 	    spincnt, spintime);
    702 	LOCKSTAT_EXIT(lsflag);
    703 
    704 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    705 	MUTEX_LOCKED(mtx);
    706 }
    707 
    708 /*
    709  * mutex_vector_exit:
    710  *
    711  *	Support routine for mutex_exit() that handles all cases.
    712  */
    713 void
    714 mutex_vector_exit(kmutex_t *mtx)
    715 {
    716 	turnstile_t *ts;
    717 	uintptr_t curthread;
    718 
    719 	if (MUTEX_SPIN_P(mtx)) {
    720 #ifdef FULL
    721 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    722 			if (panicstr != NULL)
    723 				return;
    724 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    725 		}
    726 		MUTEX_UNLOCKED(mtx);
    727 		__cpu_simple_unlock(&mtx->mtx_lock);
    728 #endif
    729 		MUTEX_SPIN_SPLRESTORE(mtx);
    730 		return;
    731 	}
    732 
    733 	if (__predict_false((uintptr_t)panicstr | cold)) {
    734 		MUTEX_UNLOCKED(mtx);
    735 		MUTEX_RELEASE(mtx);
    736 		return;
    737 	}
    738 
    739 	curthread = (uintptr_t)curlwp;
    740 	MUTEX_DASSERT(mtx, curthread != 0);
    741 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    742 	MUTEX_UNLOCKED(mtx);
    743 
    744 #ifdef LOCKDEBUG
    745 	/*
    746 	 * Avoid having to take the turnstile chain lock every time
    747 	 * around.  Raise the priority level to splhigh() in order
    748 	 * to disable preemption and so make the following atomic.
    749 	 */
    750 	{
    751 		int s = splhigh();
    752 		if (!MUTEX_HAS_WAITERS(mtx)) {
    753 			MUTEX_RELEASE(mtx);
    754 			splx(s);
    755 			return;
    756 		}
    757 		splx(s);
    758 	}
    759 #endif
    760 
    761 	/*
    762 	 * Get this lock's turnstile.  This gets the interlock on
    763 	 * the sleep queue.  Once we have that, we can clear the
    764 	 * lock.  If there was no turnstile for the lock, there
    765 	 * were no waiters remaining.
    766 	 */
    767 	ts = turnstile_lookup(mtx);
    768 
    769 	if (ts == NULL) {
    770 		MUTEX_RELEASE(mtx);
    771 		turnstile_exit(mtx);
    772 	} else {
    773 		MUTEX_RELEASE(mtx);
    774 		turnstile_wakeup(ts, TS_WRITER_Q,
    775 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    776 	}
    777 }
    778 
    779 #ifndef __HAVE_SIMPLE_MUTEXES
    780 /*
    781  * mutex_wakeup:
    782  *
    783  *	Support routine for mutex_exit() that wakes up all waiters.
    784  *	We assume that the mutex has been released, but it need not
    785  *	be.
    786  */
    787 void
    788 mutex_wakeup(kmutex_t *mtx)
    789 {
    790 	turnstile_t *ts;
    791 
    792 	ts = turnstile_lookup(mtx);
    793 	if (ts == NULL) {
    794 		turnstile_exit(mtx);
    795 		return;
    796 	}
    797 	MUTEX_CLEAR_WAITERS(mtx);
    798 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    799 }
    800 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    801 
    802 /*
    803  * mutex_owned:
    804  *
    805  *	Return true if the current LWP (adaptive) or CPU (spin)
    806  *	holds the mutex.
    807  */
    808 int
    809 mutex_owned(kmutex_t *mtx)
    810 {
    811 
    812 	if (mtx == NULL)
    813 		return 0;
    814 	if (MUTEX_ADAPTIVE_P(mtx))
    815 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    816 #ifdef FULL
    817 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    818 #else
    819 	return 1;
    820 #endif
    821 }
    822 
    823 /*
    824  * mutex_owner:
    825  *
    826  *	Return the current owner of an adaptive mutex.  Used for
    827  *	priority inheritance.
    828  */
    829 lwp_t *
    830 mutex_owner(kmutex_t *mtx)
    831 {
    832 
    833 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    834 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    835 }
    836 
    837 /*
    838  * mutex_tryenter:
    839  *
    840  *	Try to acquire the mutex; return non-zero if we did.
    841  */
    842 int
    843 mutex_tryenter(kmutex_t *mtx)
    844 {
    845 	uintptr_t curthread;
    846 
    847 	/*
    848 	 * Handle spin mutexes.
    849 	 */
    850 	if (MUTEX_SPIN_P(mtx)) {
    851 		MUTEX_SPIN_SPLRAISE(mtx);
    852 #ifdef FULL
    853 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    854 			MUTEX_WANTLOCK(mtx);
    855 			MUTEX_LOCKED(mtx);
    856 			return 1;
    857 		}
    858 		MUTEX_SPIN_SPLRESTORE(mtx);
    859 #else
    860 		MUTEX_WANTLOCK(mtx);
    861 		MUTEX_LOCKED(mtx);
    862 		return 1;
    863 #endif
    864 	} else {
    865 		curthread = (uintptr_t)curlwp;
    866 		MUTEX_ASSERT(mtx, curthread != 0);
    867 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    868 			MUTEX_WANTLOCK(mtx);
    869 			MUTEX_LOCKED(mtx);
    870 			MUTEX_DASSERT(mtx,
    871 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    872 			return 1;
    873 		}
    874 	}
    875 
    876 	return 0;
    877 }
    878 
    879 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    880 /*
    881  * mutex_spin_retry:
    882  *
    883  *	Support routine for mutex_spin_enter().  Assumes that the caller
    884  *	has already raised the SPL, and adjusted counters.
    885  */
    886 void
    887 mutex_spin_retry(kmutex_t *mtx)
    888 {
    889 #ifdef MULTIPROCESSOR
    890 	u_int count;
    891 	LOCKSTAT_TIMER(spintime);
    892 	LOCKSTAT_FLAG(lsflag);
    893 #ifdef LOCKDEBUG
    894 	u_int spins = 0;
    895 #endif	/* LOCKDEBUG */
    896 
    897 	MUTEX_WANTLOCK(mtx);
    898 
    899 	LOCKSTAT_ENTER(lsflag);
    900 	LOCKSTAT_START_TIMER(lsflag, spintime);
    901 	count = SPINLOCK_BACKOFF_MIN;
    902 
    903 	/*
    904 	 * Spin testing the lock word and do exponential backoff
    905 	 * to reduce cache line ping-ponging between CPUs.
    906 	 */
    907 	do {
    908 		if (panicstr != NULL)
    909 			break;
    910 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    911 			SPINLOCK_BACKOFF(count);
    912 #ifdef LOCKDEBUG
    913 			if (SPINLOCK_SPINOUT(spins))
    914 				MUTEX_ABORT(mtx, "spinout");
    915 #endif	/* LOCKDEBUG */
    916 		}
    917 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    918 
    919 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    920 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    921 	LOCKSTAT_EXIT(lsflag);
    922 
    923 	MUTEX_LOCKED(mtx);
    924 #else	/* MULTIPROCESSOR */
    925 	MUTEX_ABORT(mtx, "locking against myself");
    926 #endif	/* MULTIPROCESSOR */
    927 }
    928 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    929 
    930 /*
    931  * mutex_obj_init:
    932  *
    933  *	Initialize the mutex object store.
    934  */
    935 void
    936 mutex_obj_init(void)
    937 {
    938 
    939 	mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
    940 	    coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
    941 	    NULL, NULL);
    942 }
    943 
    944 /*
    945  * mutex_obj_ctor:
    946  *
    947  *	Initialize a new lock for the cache.
    948  */
    949 static int
    950 mutex_obj_ctor(void *arg, void *obj, int flags)
    951 {
    952 	struct kmutexobj * mo = obj;
    953 
    954 	mo->mo_magic = MUTEX_OBJ_MAGIC;
    955 
    956 	return 0;
    957 }
    958 
    959 /*
    960  * mutex_obj_alloc:
    961  *
    962  *	Allocate a single lock object.
    963  */
    964 kmutex_t *
    965 mutex_obj_alloc(kmutex_type_t type, int ipl)
    966 {
    967 	struct kmutexobj *mo;
    968 
    969 	mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
    970 	mutex_init(&mo->mo_lock, type, ipl);
    971 	mo->mo_refcnt = 1;
    972 
    973 	return (kmutex_t *)mo;
    974 }
    975 
    976 /*
    977  * mutex_obj_hold:
    978  *
    979  *	Add a single reference to a lock object.  A reference to the object
    980  *	must already be held, and must be held across this call.
    981  */
    982 void
    983 mutex_obj_hold(kmutex_t *lock)
    984 {
    985 	struct kmutexobj *mo = (struct kmutexobj *)lock;
    986 
    987 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
    988 	KASSERT(mo->mo_refcnt > 0);
    989 
    990 	atomic_inc_uint(&mo->mo_refcnt);
    991 }
    992 
    993 /*
    994  * mutex_obj_free:
    995  *
    996  *	Drop a reference from a lock object.  If the last reference is being
    997  *	dropped, free the object and return true.  Otherwise, return false.
    998  */
    999 bool
   1000 mutex_obj_free(kmutex_t *lock)
   1001 {
   1002 	struct kmutexobj *mo = (struct kmutexobj *)lock;
   1003 
   1004 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
   1005 	KASSERT(mo->mo_refcnt > 0);
   1006 
   1007 	if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
   1008 		return false;
   1009 	}
   1010 	mutex_destroy(&mo->mo_lock);
   1011 	pool_cache_put(mutex_obj_cache, mo);
   1012 	return true;
   1013 }
   1014