Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.43
      1 /*	$NetBSD: kern_mutex.c,v 1.43 2008/05/31 13:31:25 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.43 2008/05/31 13:31:25 ad Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/proc.h>
     47 #include <sys/mutex.h>
     48 #include <sys/sched.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/systm.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/kernel.h>
     53 #include <sys/atomic.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 #include <sys/pool.h>
     57 
     58 #include <dev/lockstat.h>
     59 
     60 #include <machine/lock.h>
     61 
     62 /*
     63  * When not running a debug kernel, spin mutexes are not much
     64  * more than an splraiseipl() and splx() pair.
     65  */
     66 
     67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     68 #define	FULL
     69 #endif
     70 
     71 /*
     72  * Debugging support.
     73  */
     74 
     75 #define	MUTEX_WANTLOCK(mtx)					\
     76     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     77         (uintptr_t)__builtin_return_address(0), false, false)
     78 #define	MUTEX_LOCKED(mtx)					\
     79     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     80         (uintptr_t)__builtin_return_address(0), 0)
     81 #define	MUTEX_UNLOCKED(mtx)					\
     82     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     83         (uintptr_t)__builtin_return_address(0), 0)
     84 #define	MUTEX_ABORT(mtx, msg)					\
     85     mutex_abort(mtx, __func__, msg)
     86 
     87 #if defined(LOCKDEBUG)
     88 
     89 #define	MUTEX_DASSERT(mtx, cond)				\
     90 do {								\
     91 	if (!(cond))						\
     92 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     93 } while (/* CONSTCOND */ 0);
     94 
     95 #else	/* LOCKDEBUG */
     96 
     97 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
     98 
     99 #endif /* LOCKDEBUG */
    100 
    101 #if defined(DIAGNOSTIC)
    102 
    103 #define	MUTEX_ASSERT(mtx, cond)					\
    104 do {								\
    105 	if (!(cond))						\
    106 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    107 } while (/* CONSTCOND */ 0)
    108 
    109 #else	/* DIAGNOSTIC */
    110 
    111 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    112 
    113 #endif	/* DIAGNOSTIC */
    114 
    115 /*
    116  * Spin mutex SPL save / restore.
    117  */
    118 #ifndef MUTEX_COUNT_BIAS
    119 #define	MUTEX_COUNT_BIAS	0
    120 #endif
    121 
    122 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    123 do {									\
    124 	struct cpu_info *x__ci;						\
    125 	int x__cnt, s;							\
    126 	s = splraiseipl(mtx->mtx_ipl);					\
    127 	x__ci = curcpu();						\
    128 	x__cnt = x__ci->ci_mtx_count--;					\
    129 	__insn_barrier();						\
    130 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    131 		x__ci->ci_mtx_oldspl = (s);				\
    132 } while (/* CONSTCOND */ 0)
    133 
    134 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    135 do {									\
    136 	struct cpu_info *x__ci = curcpu();				\
    137 	int s = x__ci->ci_mtx_oldspl;					\
    138 	__insn_barrier();						\
    139 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    140 		splx(s);						\
    141 } while (/* CONSTCOND */ 0)
    142 
    143 /*
    144  * For architectures that provide 'simple' mutexes: they provide a
    145  * CAS function that is either MP-safe, or does not need to be MP
    146  * safe.  Adaptive mutexes on these architectures do not require an
    147  * additional interlock.
    148  */
    149 
    150 #ifdef __HAVE_SIMPLE_MUTEXES
    151 
    152 #define	MUTEX_OWNER(owner)						\
    153 	(owner & MUTEX_THREAD)
    154 #define	MUTEX_HAS_WAITERS(mtx)						\
    155 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    156 
    157 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    158 do {									\
    159 	if (dodebug)							\
    160 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    161 } while (/* CONSTCOND */ 0);
    162 
    163 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    164 do {									\
    165 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    166 	if (dodebug)							\
    167 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    168 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    169 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    170 } while (/* CONSTCOND */ 0)
    171 
    172 #define	MUTEX_DESTROY(mtx)						\
    173 do {									\
    174 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    175 } while (/* CONSTCOND */ 0);
    176 
    177 #define	MUTEX_SPIN_P(mtx)		\
    178     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    179 #define	MUTEX_ADAPTIVE_P(mtx)		\
    180     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    181 
    182 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    183 #if defined(LOCKDEBUG)
    184 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    185 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    186 #else /* defined(LOCKDEBUG) */
    187 #define	MUTEX_OWNED(owner)		((owner) != 0)
    188 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    189 #endif /* defined(LOCKDEBUG) */
    190 
    191 static inline int
    192 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    193 {
    194 	int rv;
    195 	uintptr_t old = 0;
    196 	uintptr_t new = curthread;
    197 
    198 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    199 	MUTEX_INHERITDEBUG(new, old);
    200 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    201 	MUTEX_RECEIVE(mtx);
    202 	return rv;
    203 }
    204 
    205 static inline int
    206 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    207 {
    208 	int rv;
    209 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    210 	MUTEX_RECEIVE(mtx);
    211 	return rv;
    212 }
    213 
    214 static inline void
    215 MUTEX_RELEASE(kmutex_t *mtx)
    216 {
    217 	uintptr_t new;
    218 
    219 	MUTEX_GIVE(mtx);
    220 	new = 0;
    221 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    222 	mtx->mtx_owner = new;
    223 }
    224 
    225 static inline void
    226 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    227 {
    228 	/* nothing */
    229 }
    230 #endif	/* __HAVE_SIMPLE_MUTEXES */
    231 
    232 /*
    233  * Patch in stubs via strong alias where they are not available.
    234  */
    235 
    236 #if defined(LOCKDEBUG)
    237 #undef	__HAVE_MUTEX_STUBS
    238 #undef	__HAVE_SPIN_MUTEX_STUBS
    239 #endif
    240 
    241 #ifndef __HAVE_MUTEX_STUBS
    242 __strong_alias(mutex_enter,mutex_vector_enter);
    243 __strong_alias(mutex_exit,mutex_vector_exit);
    244 #endif
    245 
    246 #ifndef __HAVE_SPIN_MUTEX_STUBS
    247 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    248 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    249 #endif
    250 
    251 void	mutex_abort(kmutex_t *, const char *, const char *);
    252 void	mutex_dump(volatile void *);
    253 int	mutex_onproc(uintptr_t, struct cpu_info **);
    254 
    255 lockops_t mutex_spin_lockops = {
    256 	"Mutex",
    257 	LOCKOPS_SPIN,
    258 	mutex_dump
    259 };
    260 
    261 lockops_t mutex_adaptive_lockops = {
    262 	"Mutex",
    263 	LOCKOPS_SLEEP,
    264 	mutex_dump
    265 };
    266 
    267 syncobj_t mutex_syncobj = {
    268 	SOBJ_SLEEPQ_SORTED,
    269 	turnstile_unsleep,
    270 	turnstile_changepri,
    271 	sleepq_lendpri,
    272 	(void *)mutex_owner,
    273 };
    274 
    275 /* Mutex cache */
    276 #define	MUTEX_OBJ_MAGIC	0x5aa3c85d
    277 struct kmutexobj {
    278 	kmutex_t	mo_lock;
    279 	u_int		mo_magic;
    280 	u_int		mo_refcnt;
    281 };
    282 
    283 static int	mutex_obj_ctor(void *, void *, int);
    284 
    285 static pool_cache_t	mutex_obj_cache;
    286 
    287 /*
    288  * mutex_dump:
    289  *
    290  *	Dump the contents of a mutex structure.
    291  */
    292 void
    293 mutex_dump(volatile void *cookie)
    294 {
    295 	volatile kmutex_t *mtx = cookie;
    296 
    297 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    298 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    299 	    MUTEX_SPIN_P(mtx));
    300 }
    301 
    302 /*
    303  * mutex_abort:
    304  *
    305  *	Dump information about an error and panic the system.  This
    306  *	generates a lot of machine code in the DIAGNOSTIC case, so
    307  *	we ask the compiler to not inline it.
    308  */
    309 void __noinline
    310 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    311 {
    312 
    313 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    314 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    315 }
    316 
    317 /*
    318  * mutex_init:
    319  *
    320  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    321  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    322  *	CPU time.  We can't easily provide a type of mutex that always
    323  *	sleeps - see comments in mutex_vector_enter() about releasing
    324  *	mutexes unlocked.
    325  */
    326 void
    327 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    328 {
    329 	bool dodebug;
    330 
    331 	memset(mtx, 0, sizeof(*mtx));
    332 
    333 	switch (type) {
    334 	case MUTEX_ADAPTIVE:
    335 		KASSERT(ipl == IPL_NONE);
    336 		break;
    337 	case MUTEX_DEFAULT:
    338 	case MUTEX_DRIVER:
    339 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    340 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    341 		    ipl == IPL_SOFTSERIAL) {
    342 			type = MUTEX_ADAPTIVE;
    343 		} else {
    344 			type = MUTEX_SPIN;
    345 		}
    346 		break;
    347 	default:
    348 		break;
    349 	}
    350 
    351 	switch (type) {
    352 	case MUTEX_NODEBUG:
    353 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    354 		    (uintptr_t)__builtin_return_address(0));
    355 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    356 		break;
    357 	case MUTEX_ADAPTIVE:
    358 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    359 		    (uintptr_t)__builtin_return_address(0));
    360 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    361 		break;
    362 	case MUTEX_SPIN:
    363 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    364 		    (uintptr_t)__builtin_return_address(0));
    365 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    366 		break;
    367 	default:
    368 		panic("mutex_init: impossible type");
    369 		break;
    370 	}
    371 }
    372 
    373 /*
    374  * mutex_destroy:
    375  *
    376  *	Tear down a mutex.
    377  */
    378 void
    379 mutex_destroy(kmutex_t *mtx)
    380 {
    381 
    382 	if (MUTEX_ADAPTIVE_P(mtx)) {
    383 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    384 		    !MUTEX_HAS_WAITERS(mtx));
    385 	} else {
    386 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    387 	}
    388 
    389 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    390 	MUTEX_DESTROY(mtx);
    391 }
    392 
    393 /*
    394  * mutex_onproc:
    395  *
    396  *	Return true if an adaptive mutex owner is running on a CPU in the
    397  *	system.  If the target is waiting on the kernel big lock, then we
    398  *	must release it.  This is necessary to avoid deadlock.
    399  *
    400  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    401  *	don't have full control over the timing of our execution, and so the
    402  *	pointer could be completely invalid by the time we dereference it.
    403  */
    404 #ifdef MULTIPROCESSOR
    405 int
    406 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    407 {
    408 	CPU_INFO_ITERATOR cii;
    409 	struct cpu_info *ci;
    410 	struct lwp *l;
    411 
    412 	if (!MUTEX_OWNED(owner))
    413 		return 0;
    414 	l = (struct lwp *)MUTEX_OWNER(owner);
    415 
    416 	/* See if the target is running on a CPU somewhere. */
    417 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    418 		goto run;
    419 	for (CPU_INFO_FOREACH(cii, ci))
    420 		if (ci->ci_curlwp == l)
    421 			goto run;
    422 
    423 	/* No: it may be safe to block now. */
    424 	*cip = NULL;
    425 	return 0;
    426 
    427  run:
    428  	/* Target is running; do we need to block? */
    429  	*cip = ci;
    430 	return ci->ci_biglock_wanted != l;
    431 }
    432 #endif	/* MULTIPROCESSOR */
    433 
    434 /*
    435  * mutex_vector_enter:
    436  *
    437  *	Support routine for mutex_enter() that must handles all cases.  In
    438  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    439  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    440  *	not available, then it is also aliased directly here.
    441  */
    442 void
    443 mutex_vector_enter(kmutex_t *mtx)
    444 {
    445 	uintptr_t owner, curthread;
    446 	turnstile_t *ts;
    447 #ifdef MULTIPROCESSOR
    448 	struct cpu_info *ci = NULL;
    449 	u_int count;
    450 #endif
    451 	LOCKSTAT_COUNTER(spincnt);
    452 	LOCKSTAT_COUNTER(slpcnt);
    453 	LOCKSTAT_TIMER(spintime);
    454 	LOCKSTAT_TIMER(slptime);
    455 	LOCKSTAT_FLAG(lsflag);
    456 
    457 	/*
    458 	 * Handle spin mutexes.
    459 	 */
    460 	if (MUTEX_SPIN_P(mtx)) {
    461 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    462 		u_int spins = 0;
    463 #endif
    464 		MUTEX_SPIN_SPLRAISE(mtx);
    465 		MUTEX_WANTLOCK(mtx);
    466 #ifdef FULL
    467 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    468 			MUTEX_LOCKED(mtx);
    469 			return;
    470 		}
    471 #if !defined(MULTIPROCESSOR)
    472 		MUTEX_ABORT(mtx, "locking against myself");
    473 #else /* !MULTIPROCESSOR */
    474 
    475 		LOCKSTAT_ENTER(lsflag);
    476 		LOCKSTAT_START_TIMER(lsflag, spintime);
    477 		count = SPINLOCK_BACKOFF_MIN;
    478 
    479 		/*
    480 		 * Spin testing the lock word and do exponential backoff
    481 		 * to reduce cache line ping-ponging between CPUs.
    482 		 */
    483 		do {
    484 			if (panicstr != NULL)
    485 				break;
    486 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    487 				SPINLOCK_BACKOFF(count);
    488 #ifdef LOCKDEBUG
    489 				if (SPINLOCK_SPINOUT(spins))
    490 					MUTEX_ABORT(mtx, "spinout");
    491 #endif	/* LOCKDEBUG */
    492 			}
    493 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    494 
    495 		if (count != SPINLOCK_BACKOFF_MIN) {
    496 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    497 			LOCKSTAT_EVENT(lsflag, mtx,
    498 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    499 		}
    500 		LOCKSTAT_EXIT(lsflag);
    501 #endif	/* !MULTIPROCESSOR */
    502 #endif	/* FULL */
    503 		MUTEX_LOCKED(mtx);
    504 		return;
    505 	}
    506 
    507 	curthread = (uintptr_t)curlwp;
    508 
    509 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    510 	MUTEX_ASSERT(mtx, curthread != 0);
    511 	MUTEX_WANTLOCK(mtx);
    512 
    513 	if (panicstr == NULL) {
    514 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    515 	}
    516 
    517 	LOCKSTAT_ENTER(lsflag);
    518 
    519 	/*
    520 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    521 	 * determine that the owner is not running on a processor,
    522 	 * then we stop spinning, and sleep instead.
    523 	 */
    524 	for (owner = mtx->mtx_owner;;) {
    525 		if (!MUTEX_OWNED(owner)) {
    526 			/*
    527 			 * Mutex owner clear could mean two things:
    528 			 *
    529 			 *	* The mutex has been released.
    530 			 *	* The owner field hasn't been set yet.
    531 			 *
    532 			 * Try to acquire it again.  If that fails,
    533 			 * we'll just loop again.
    534 			 */
    535 			if (MUTEX_ACQUIRE(mtx, curthread))
    536 				break;
    537 			owner = mtx->mtx_owner;
    538 			continue;
    539 		}
    540 
    541 		if (panicstr != NULL)
    542 			return;
    543 		if (MUTEX_OWNER(owner) == curthread)
    544 			MUTEX_ABORT(mtx, "locking against myself");
    545 
    546 #ifdef MULTIPROCESSOR
    547 		/*
    548 		 * Check to see if the owner is running on a processor.
    549 		 * If so, then we should just spin, as the owner will
    550 		 * likely release the lock very soon.
    551 		 */
    552 		if (mutex_onproc(owner, &ci)) {
    553 			LOCKSTAT_START_TIMER(lsflag, spintime);
    554 			count = SPINLOCK_BACKOFF_MIN;
    555 			for (;;) {
    556 				SPINLOCK_BACKOFF(count);
    557 				owner = mtx->mtx_owner;
    558 				if (!mutex_onproc(owner, &ci))
    559 					break;
    560 			}
    561 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    562 			LOCKSTAT_COUNT(spincnt, 1);
    563 			if (!MUTEX_OWNED(owner))
    564 				continue;
    565 		}
    566 #endif
    567 
    568 		ts = turnstile_lookup(mtx);
    569 
    570 		/*
    571 		 * Once we have the turnstile chain interlock, mark the
    572 		 * mutex has having waiters.  If that fails, spin again:
    573 		 * chances are that the mutex has been released.
    574 		 */
    575 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    576 			turnstile_exit(mtx);
    577 			owner = mtx->mtx_owner;
    578 			continue;
    579 		}
    580 
    581 #ifdef MULTIPROCESSOR
    582 		/*
    583 		 * mutex_exit() is permitted to release the mutex without
    584 		 * any interlocking instructions, and the following can
    585 		 * occur as a result:
    586 		 *
    587 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    588 		 * ---------------------------- ----------------------------
    589 		 *		..		    acquire cache line
    590 		 *		..                   test for waiters
    591 		 *	acquire cache line    <-      lose cache line
    592 		 *	 lock cache line	           ..
    593 		 *     verify mutex is held                ..
    594 		 *	    set waiters  	           ..
    595 		 *	 unlock cache line		   ..
    596 		 *	  lose cache line     ->    acquire cache line
    597 		 *		..	          clear lock word, waiters
    598 		 *	  return success
    599 		 *
    600 		 * There is a another race that can occur: a third CPU could
    601 		 * acquire the mutex as soon as it is released.  Since
    602 		 * adaptive mutexes are primarily spin mutexes, this is not
    603 		 * something that we need to worry about too much.  What we
    604 		 * do need to ensure is that the waiters bit gets set.
    605 		 *
    606 		 * To allow the unlocked release, we need to make some
    607 		 * assumptions here:
    608 		 *
    609 		 * o Release is the only non-atomic/unlocked operation
    610 		 *   that can be performed on the mutex.  (It must still
    611 		 *   be atomic on the local CPU, e.g. in case interrupted
    612 		 *   or preempted).
    613 		 *
    614 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    615 		 *   be in progress on one CPU in the system - guaranteed
    616 		 *   by the turnstile chain lock.
    617 		 *
    618 		 * o No other operations other than MUTEX_SET_WAITERS()
    619 		 *   and release can modify a mutex with a non-zero
    620 		 *   owner field.
    621 		 *
    622 		 * o The result of a successful MUTEX_SET_WAITERS() call
    623 		 *   is an unbuffered write that is immediately visible
    624 		 *   to all other processors in the system.
    625 		 *
    626 		 * o If the holding LWP switches away, it posts a store
    627 		 *   fence before changing curlwp, ensuring that any
    628 		 *   overwrite of the mutex waiters flag by mutex_exit()
    629 		 *   completes before the modification of curlwp becomes
    630 		 *   visible to this CPU.
    631 		 *
    632 		 * o mi_switch() posts a store fence before setting curlwp
    633 		 *   and before resuming execution of an LWP.
    634 		 *
    635 		 * o _kernel_lock() posts a store fence before setting
    636 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    637 		 *   This ensures that any overwrite of the mutex waiters
    638 		 *   flag by mutex_exit() completes before the modification
    639 		 *   of ci_biglock_wanted becomes visible.
    640 		 *
    641 		 * We now post a read memory barrier (after setting the
    642 		 * waiters field) and check the lock holder's status again.
    643 		 * Some of the possible outcomes (not an exhaustive list):
    644 		 *
    645 		 * 1. The onproc check returns true: the holding LWP is
    646 		 *    running again.  The lock may be released soon and
    647 		 *    we should spin.  Importantly, we can't trust the
    648 		 *    value of the waiters flag.
    649 		 *
    650 		 * 2. The onproc check returns false: the holding LWP is
    651 		 *    not running.  We now have the opportunity to check
    652 		 *    if mutex_exit() has blatted the modifications made
    653 		 *    by MUTEX_SET_WAITERS().
    654 		 *
    655 		 * 3. The onproc check returns false: the holding LWP may
    656 		 *    or may not be running.  It has context switched at
    657 		 *    some point during our check.  Again, we have the
    658 		 *    chance to see if the waiters bit is still set or
    659 		 *    has been overwritten.
    660 		 *
    661 		 * 4. The onproc check returns false: the holding LWP is
    662 		 *    running on a CPU, but wants the big lock.  It's OK
    663 		 *    to check the waiters field in this case.
    664 		 *
    665 		 * 5. The has-waiters check fails: the mutex has been
    666 		 *    released, the waiters flag cleared and another LWP
    667 		 *    now owns the mutex.
    668 		 *
    669 		 * 6. The has-waiters check fails: the mutex has been
    670 		 *    released.
    671 		 *
    672 		 * If the waiters bit is not set it's unsafe to go asleep,
    673 		 * as we might never be awoken.
    674 		 */
    675 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    676 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    677 			turnstile_exit(mtx);
    678 			owner = mtx->mtx_owner;
    679 			continue;
    680 		}
    681 #endif	/* MULTIPROCESSOR */
    682 
    683 		LOCKSTAT_START_TIMER(lsflag, slptime);
    684 
    685 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    686 
    687 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    688 		LOCKSTAT_COUNT(slpcnt, 1);
    689 
    690 		owner = mtx->mtx_owner;
    691 	}
    692 
    693 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    694 	    slpcnt, slptime);
    695 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    696 	    spincnt, spintime);
    697 	LOCKSTAT_EXIT(lsflag);
    698 
    699 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    700 	MUTEX_LOCKED(mtx);
    701 }
    702 
    703 /*
    704  * mutex_vector_exit:
    705  *
    706  *	Support routine for mutex_exit() that handles all cases.
    707  */
    708 void
    709 mutex_vector_exit(kmutex_t *mtx)
    710 {
    711 	turnstile_t *ts;
    712 	uintptr_t curthread;
    713 
    714 	if (MUTEX_SPIN_P(mtx)) {
    715 #ifdef FULL
    716 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    717 			if (panicstr != NULL)
    718 				return;
    719 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    720 		}
    721 		MUTEX_UNLOCKED(mtx);
    722 		__cpu_simple_unlock(&mtx->mtx_lock);
    723 #endif
    724 		MUTEX_SPIN_SPLRESTORE(mtx);
    725 		return;
    726 	}
    727 
    728 	if (__predict_false((uintptr_t)panicstr | cold)) {
    729 		MUTEX_UNLOCKED(mtx);
    730 		MUTEX_RELEASE(mtx);
    731 		return;
    732 	}
    733 
    734 	curthread = (uintptr_t)curlwp;
    735 	MUTEX_DASSERT(mtx, curthread != 0);
    736 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    737 	MUTEX_UNLOCKED(mtx);
    738 
    739 #ifdef LOCKDEBUG
    740 	/*
    741 	 * Avoid having to take the turnstile chain lock every time
    742 	 * around.  Raise the priority level to splhigh() in order
    743 	 * to disable preemption and so make the following atomic.
    744 	 */
    745 	{
    746 		int s = splhigh();
    747 		if (!MUTEX_HAS_WAITERS(mtx)) {
    748 			MUTEX_RELEASE(mtx);
    749 			splx(s);
    750 			return;
    751 		}
    752 		splx(s);
    753 	}
    754 #endif
    755 
    756 	/*
    757 	 * Get this lock's turnstile.  This gets the interlock on
    758 	 * the sleep queue.  Once we have that, we can clear the
    759 	 * lock.  If there was no turnstile for the lock, there
    760 	 * were no waiters remaining.
    761 	 */
    762 	ts = turnstile_lookup(mtx);
    763 
    764 	if (ts == NULL) {
    765 		MUTEX_RELEASE(mtx);
    766 		turnstile_exit(mtx);
    767 	} else {
    768 		MUTEX_RELEASE(mtx);
    769 		turnstile_wakeup(ts, TS_WRITER_Q,
    770 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    771 	}
    772 }
    773 
    774 #ifndef __HAVE_SIMPLE_MUTEXES
    775 /*
    776  * mutex_wakeup:
    777  *
    778  *	Support routine for mutex_exit() that wakes up all waiters.
    779  *	We assume that the mutex has been released, but it need not
    780  *	be.
    781  */
    782 void
    783 mutex_wakeup(kmutex_t *mtx)
    784 {
    785 	turnstile_t *ts;
    786 
    787 	ts = turnstile_lookup(mtx);
    788 	if (ts == NULL) {
    789 		turnstile_exit(mtx);
    790 		return;
    791 	}
    792 	MUTEX_CLEAR_WAITERS(mtx);
    793 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    794 }
    795 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    796 
    797 /*
    798  * mutex_owned:
    799  *
    800  *	Return true if the current LWP (adaptive) or CPU (spin)
    801  *	holds the mutex.
    802  */
    803 int
    804 mutex_owned(kmutex_t *mtx)
    805 {
    806 
    807 	if (mtx == NULL)
    808 		return 0;
    809 	if (MUTEX_ADAPTIVE_P(mtx))
    810 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    811 #ifdef FULL
    812 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    813 #else
    814 	return 1;
    815 #endif
    816 }
    817 
    818 /*
    819  * mutex_owner:
    820  *
    821  *	Return the current owner of an adaptive mutex.  Used for
    822  *	priority inheritance.
    823  */
    824 lwp_t *
    825 mutex_owner(kmutex_t *mtx)
    826 {
    827 
    828 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    829 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    830 }
    831 
    832 /*
    833  * mutex_tryenter:
    834  *
    835  *	Try to acquire the mutex; return non-zero if we did.
    836  */
    837 int
    838 mutex_tryenter(kmutex_t *mtx)
    839 {
    840 	uintptr_t curthread;
    841 
    842 	/*
    843 	 * Handle spin mutexes.
    844 	 */
    845 	if (MUTEX_SPIN_P(mtx)) {
    846 		MUTEX_SPIN_SPLRAISE(mtx);
    847 #ifdef FULL
    848 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    849 			MUTEX_WANTLOCK(mtx);
    850 			MUTEX_LOCKED(mtx);
    851 			return 1;
    852 		}
    853 		MUTEX_SPIN_SPLRESTORE(mtx);
    854 #else
    855 		MUTEX_WANTLOCK(mtx);
    856 		MUTEX_LOCKED(mtx);
    857 		return 1;
    858 #endif
    859 	} else {
    860 		curthread = (uintptr_t)curlwp;
    861 		MUTEX_ASSERT(mtx, curthread != 0);
    862 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    863 			MUTEX_WANTLOCK(mtx);
    864 			MUTEX_LOCKED(mtx);
    865 			MUTEX_DASSERT(mtx,
    866 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    867 			return 1;
    868 		}
    869 	}
    870 
    871 	return 0;
    872 }
    873 
    874 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    875 /*
    876  * mutex_spin_retry:
    877  *
    878  *	Support routine for mutex_spin_enter().  Assumes that the caller
    879  *	has already raised the SPL, and adjusted counters.
    880  */
    881 void
    882 mutex_spin_retry(kmutex_t *mtx)
    883 {
    884 #ifdef MULTIPROCESSOR
    885 	u_int count;
    886 	LOCKSTAT_TIMER(spintime);
    887 	LOCKSTAT_FLAG(lsflag);
    888 #ifdef LOCKDEBUG
    889 	u_int spins = 0;
    890 #endif	/* LOCKDEBUG */
    891 
    892 	MUTEX_WANTLOCK(mtx);
    893 
    894 	LOCKSTAT_ENTER(lsflag);
    895 	LOCKSTAT_START_TIMER(lsflag, spintime);
    896 	count = SPINLOCK_BACKOFF_MIN;
    897 
    898 	/*
    899 	 * Spin testing the lock word and do exponential backoff
    900 	 * to reduce cache line ping-ponging between CPUs.
    901 	 */
    902 	do {
    903 		if (panicstr != NULL)
    904 			break;
    905 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    906 			SPINLOCK_BACKOFF(count);
    907 #ifdef LOCKDEBUG
    908 			if (SPINLOCK_SPINOUT(spins))
    909 				MUTEX_ABORT(mtx, "spinout");
    910 #endif	/* LOCKDEBUG */
    911 		}
    912 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    913 
    914 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    915 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    916 	LOCKSTAT_EXIT(lsflag);
    917 
    918 	MUTEX_LOCKED(mtx);
    919 #else	/* MULTIPROCESSOR */
    920 	MUTEX_ABORT(mtx, "locking against myself");
    921 #endif	/* MULTIPROCESSOR */
    922 }
    923 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    924 
    925 /*
    926  * mutex_obj_init:
    927  *
    928  *	Initialize the mutex object store.
    929  */
    930 void
    931 mutex_obj_init(void)
    932 {
    933 
    934 	mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
    935 	    coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
    936 	    NULL, NULL);
    937 }
    938 
    939 /*
    940  * mutex_obj_ctor:
    941  *
    942  *	Initialize a new lock for the cache.
    943  */
    944 static int
    945 mutex_obj_ctor(void *arg, void *obj, int flags)
    946 {
    947 	struct kmutexobj * mo = obj;
    948 
    949 	mo->mo_magic = MUTEX_OBJ_MAGIC;
    950 
    951 	return 0;
    952 }
    953 
    954 /*
    955  * mutex_obj_alloc:
    956  *
    957  *	Allocate a single lock object.
    958  */
    959 kmutex_t *
    960 mutex_obj_alloc(kmutex_type_t type, int ipl)
    961 {
    962 	struct kmutexobj *mo;
    963 
    964 	mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
    965 	mutex_init(&mo->mo_lock, type, ipl);
    966 	mo->mo_refcnt = 1;
    967 
    968 	return (kmutex_t *)mo;
    969 }
    970 
    971 /*
    972  * mutex_obj_hold:
    973  *
    974  *	Add a single reference to a lock object.  A reference to the object
    975  *	must already be held, and must be held across this call.
    976  */
    977 void
    978 mutex_obj_hold(kmutex_t *lock)
    979 {
    980 	struct kmutexobj *mo = (struct kmutexobj *)lock;
    981 
    982 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
    983 	KASSERT(mo->mo_refcnt > 0);
    984 
    985 	atomic_inc_uint(&mo->mo_refcnt);
    986 }
    987 
    988 /*
    989  * mutex_obj_free:
    990  *
    991  *	Drop a reference from a lock object.  If the last reference is being
    992  *	dropped, free the object and return true.  Otherwise, return false.
    993  */
    994 bool
    995 mutex_obj_free(kmutex_t *lock)
    996 {
    997 	struct kmutexobj *mo = (struct kmutexobj *)lock;
    998 
    999 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
   1000 	KASSERT(mo->mo_refcnt > 0);
   1001 
   1002 	if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
   1003 		return false;
   1004 	}
   1005 	mutex_destroy(&mo->mo_lock);
   1006 	pool_cache_put(mutex_obj_cache, mo);
   1007 	return true;
   1008 }
   1009