kern_mutex.c revision 1.43 1 /* $NetBSD: kern_mutex.c,v 1.43 2008/05/31 13:31:25 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel mutex implementation, modeled after those found in Solaris,
34 * a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #define __MUTEX_PRIVATE
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.43 2008/05/31 13:31:25 ad Exp $");
44
45 #include <sys/param.h>
46 #include <sys/proc.h>
47 #include <sys/mutex.h>
48 #include <sys/sched.h>
49 #include <sys/sleepq.h>
50 #include <sys/systm.h>
51 #include <sys/lockdebug.h>
52 #include <sys/kernel.h>
53 #include <sys/atomic.h>
54 #include <sys/intr.h>
55 #include <sys/lock.h>
56 #include <sys/pool.h>
57
58 #include <dev/lockstat.h>
59
60 #include <machine/lock.h>
61
62 /*
63 * When not running a debug kernel, spin mutexes are not much
64 * more than an splraiseipl() and splx() pair.
65 */
66
67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
68 #define FULL
69 #endif
70
71 /*
72 * Debugging support.
73 */
74
75 #define MUTEX_WANTLOCK(mtx) \
76 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
77 (uintptr_t)__builtin_return_address(0), false, false)
78 #define MUTEX_LOCKED(mtx) \
79 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
80 (uintptr_t)__builtin_return_address(0), 0)
81 #define MUTEX_UNLOCKED(mtx) \
82 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
83 (uintptr_t)__builtin_return_address(0), 0)
84 #define MUTEX_ABORT(mtx, msg) \
85 mutex_abort(mtx, __func__, msg)
86
87 #if defined(LOCKDEBUG)
88
89 #define MUTEX_DASSERT(mtx, cond) \
90 do { \
91 if (!(cond)) \
92 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
93 } while (/* CONSTCOND */ 0);
94
95 #else /* LOCKDEBUG */
96
97 #define MUTEX_DASSERT(mtx, cond) /* nothing */
98
99 #endif /* LOCKDEBUG */
100
101 #if defined(DIAGNOSTIC)
102
103 #define MUTEX_ASSERT(mtx, cond) \
104 do { \
105 if (!(cond)) \
106 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
107 } while (/* CONSTCOND */ 0)
108
109 #else /* DIAGNOSTIC */
110
111 #define MUTEX_ASSERT(mtx, cond) /* nothing */
112
113 #endif /* DIAGNOSTIC */
114
115 /*
116 * Spin mutex SPL save / restore.
117 */
118 #ifndef MUTEX_COUNT_BIAS
119 #define MUTEX_COUNT_BIAS 0
120 #endif
121
122 #define MUTEX_SPIN_SPLRAISE(mtx) \
123 do { \
124 struct cpu_info *x__ci; \
125 int x__cnt, s; \
126 s = splraiseipl(mtx->mtx_ipl); \
127 x__ci = curcpu(); \
128 x__cnt = x__ci->ci_mtx_count--; \
129 __insn_barrier(); \
130 if (x__cnt == MUTEX_COUNT_BIAS) \
131 x__ci->ci_mtx_oldspl = (s); \
132 } while (/* CONSTCOND */ 0)
133
134 #define MUTEX_SPIN_SPLRESTORE(mtx) \
135 do { \
136 struct cpu_info *x__ci = curcpu(); \
137 int s = x__ci->ci_mtx_oldspl; \
138 __insn_barrier(); \
139 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
140 splx(s); \
141 } while (/* CONSTCOND */ 0)
142
143 /*
144 * For architectures that provide 'simple' mutexes: they provide a
145 * CAS function that is either MP-safe, or does not need to be MP
146 * safe. Adaptive mutexes on these architectures do not require an
147 * additional interlock.
148 */
149
150 #ifdef __HAVE_SIMPLE_MUTEXES
151
152 #define MUTEX_OWNER(owner) \
153 (owner & MUTEX_THREAD)
154 #define MUTEX_HAS_WAITERS(mtx) \
155 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
156
157 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
158 do { \
159 if (dodebug) \
160 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
161 } while (/* CONSTCOND */ 0);
162
163 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
164 do { \
165 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
166 if (dodebug) \
167 (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \
168 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
169 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
170 } while (/* CONSTCOND */ 0)
171
172 #define MUTEX_DESTROY(mtx) \
173 do { \
174 (mtx)->mtx_owner = MUTEX_THREAD; \
175 } while (/* CONSTCOND */ 0);
176
177 #define MUTEX_SPIN_P(mtx) \
178 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
179 #define MUTEX_ADAPTIVE_P(mtx) \
180 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
181
182 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
183 #if defined(LOCKDEBUG)
184 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0)
185 #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG
186 #else /* defined(LOCKDEBUG) */
187 #define MUTEX_OWNED(owner) ((owner) != 0)
188 #define MUTEX_INHERITDEBUG(new, old) /* nothing */
189 #endif /* defined(LOCKDEBUG) */
190
191 static inline int
192 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
193 {
194 int rv;
195 uintptr_t old = 0;
196 uintptr_t new = curthread;
197
198 MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
199 MUTEX_INHERITDEBUG(new, old);
200 rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
201 MUTEX_RECEIVE(mtx);
202 return rv;
203 }
204
205 static inline int
206 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
207 {
208 int rv;
209 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
210 MUTEX_RECEIVE(mtx);
211 return rv;
212 }
213
214 static inline void
215 MUTEX_RELEASE(kmutex_t *mtx)
216 {
217 uintptr_t new;
218
219 MUTEX_GIVE(mtx);
220 new = 0;
221 MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
222 mtx->mtx_owner = new;
223 }
224
225 static inline void
226 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
227 {
228 /* nothing */
229 }
230 #endif /* __HAVE_SIMPLE_MUTEXES */
231
232 /*
233 * Patch in stubs via strong alias where they are not available.
234 */
235
236 #if defined(LOCKDEBUG)
237 #undef __HAVE_MUTEX_STUBS
238 #undef __HAVE_SPIN_MUTEX_STUBS
239 #endif
240
241 #ifndef __HAVE_MUTEX_STUBS
242 __strong_alias(mutex_enter,mutex_vector_enter);
243 __strong_alias(mutex_exit,mutex_vector_exit);
244 #endif
245
246 #ifndef __HAVE_SPIN_MUTEX_STUBS
247 __strong_alias(mutex_spin_enter,mutex_vector_enter);
248 __strong_alias(mutex_spin_exit,mutex_vector_exit);
249 #endif
250
251 void mutex_abort(kmutex_t *, const char *, const char *);
252 void mutex_dump(volatile void *);
253 int mutex_onproc(uintptr_t, struct cpu_info **);
254
255 lockops_t mutex_spin_lockops = {
256 "Mutex",
257 LOCKOPS_SPIN,
258 mutex_dump
259 };
260
261 lockops_t mutex_adaptive_lockops = {
262 "Mutex",
263 LOCKOPS_SLEEP,
264 mutex_dump
265 };
266
267 syncobj_t mutex_syncobj = {
268 SOBJ_SLEEPQ_SORTED,
269 turnstile_unsleep,
270 turnstile_changepri,
271 sleepq_lendpri,
272 (void *)mutex_owner,
273 };
274
275 /* Mutex cache */
276 #define MUTEX_OBJ_MAGIC 0x5aa3c85d
277 struct kmutexobj {
278 kmutex_t mo_lock;
279 u_int mo_magic;
280 u_int mo_refcnt;
281 };
282
283 static int mutex_obj_ctor(void *, void *, int);
284
285 static pool_cache_t mutex_obj_cache;
286
287 /*
288 * mutex_dump:
289 *
290 * Dump the contents of a mutex structure.
291 */
292 void
293 mutex_dump(volatile void *cookie)
294 {
295 volatile kmutex_t *mtx = cookie;
296
297 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
298 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
299 MUTEX_SPIN_P(mtx));
300 }
301
302 /*
303 * mutex_abort:
304 *
305 * Dump information about an error and panic the system. This
306 * generates a lot of machine code in the DIAGNOSTIC case, so
307 * we ask the compiler to not inline it.
308 */
309 void __noinline
310 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
311 {
312
313 LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
314 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
315 }
316
317 /*
318 * mutex_init:
319 *
320 * Initialize a mutex for use. Note that adaptive mutexes are in
321 * essence spin mutexes that can sleep to avoid deadlock and wasting
322 * CPU time. We can't easily provide a type of mutex that always
323 * sleeps - see comments in mutex_vector_enter() about releasing
324 * mutexes unlocked.
325 */
326 void
327 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
328 {
329 bool dodebug;
330
331 memset(mtx, 0, sizeof(*mtx));
332
333 switch (type) {
334 case MUTEX_ADAPTIVE:
335 KASSERT(ipl == IPL_NONE);
336 break;
337 case MUTEX_DEFAULT:
338 case MUTEX_DRIVER:
339 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
340 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
341 ipl == IPL_SOFTSERIAL) {
342 type = MUTEX_ADAPTIVE;
343 } else {
344 type = MUTEX_SPIN;
345 }
346 break;
347 default:
348 break;
349 }
350
351 switch (type) {
352 case MUTEX_NODEBUG:
353 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
354 (uintptr_t)__builtin_return_address(0));
355 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
356 break;
357 case MUTEX_ADAPTIVE:
358 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
359 (uintptr_t)__builtin_return_address(0));
360 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
361 break;
362 case MUTEX_SPIN:
363 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
364 (uintptr_t)__builtin_return_address(0));
365 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
366 break;
367 default:
368 panic("mutex_init: impossible type");
369 break;
370 }
371 }
372
373 /*
374 * mutex_destroy:
375 *
376 * Tear down a mutex.
377 */
378 void
379 mutex_destroy(kmutex_t *mtx)
380 {
381
382 if (MUTEX_ADAPTIVE_P(mtx)) {
383 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
384 !MUTEX_HAS_WAITERS(mtx));
385 } else {
386 MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
387 }
388
389 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
390 MUTEX_DESTROY(mtx);
391 }
392
393 /*
394 * mutex_onproc:
395 *
396 * Return true if an adaptive mutex owner is running on a CPU in the
397 * system. If the target is waiting on the kernel big lock, then we
398 * must release it. This is necessary to avoid deadlock.
399 *
400 * Note that we can't use the mutex owner field as an LWP pointer. We
401 * don't have full control over the timing of our execution, and so the
402 * pointer could be completely invalid by the time we dereference it.
403 */
404 #ifdef MULTIPROCESSOR
405 int
406 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
407 {
408 CPU_INFO_ITERATOR cii;
409 struct cpu_info *ci;
410 struct lwp *l;
411
412 if (!MUTEX_OWNED(owner))
413 return 0;
414 l = (struct lwp *)MUTEX_OWNER(owner);
415
416 /* See if the target is running on a CPU somewhere. */
417 if ((ci = *cip) != NULL && ci->ci_curlwp == l)
418 goto run;
419 for (CPU_INFO_FOREACH(cii, ci))
420 if (ci->ci_curlwp == l)
421 goto run;
422
423 /* No: it may be safe to block now. */
424 *cip = NULL;
425 return 0;
426
427 run:
428 /* Target is running; do we need to block? */
429 *cip = ci;
430 return ci->ci_biglock_wanted != l;
431 }
432 #endif /* MULTIPROCESSOR */
433
434 /*
435 * mutex_vector_enter:
436 *
437 * Support routine for mutex_enter() that must handles all cases. In
438 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
439 * fast-path stubs are available. If an mutex_spin_enter() stub is
440 * not available, then it is also aliased directly here.
441 */
442 void
443 mutex_vector_enter(kmutex_t *mtx)
444 {
445 uintptr_t owner, curthread;
446 turnstile_t *ts;
447 #ifdef MULTIPROCESSOR
448 struct cpu_info *ci = NULL;
449 u_int count;
450 #endif
451 LOCKSTAT_COUNTER(spincnt);
452 LOCKSTAT_COUNTER(slpcnt);
453 LOCKSTAT_TIMER(spintime);
454 LOCKSTAT_TIMER(slptime);
455 LOCKSTAT_FLAG(lsflag);
456
457 /*
458 * Handle spin mutexes.
459 */
460 if (MUTEX_SPIN_P(mtx)) {
461 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
462 u_int spins = 0;
463 #endif
464 MUTEX_SPIN_SPLRAISE(mtx);
465 MUTEX_WANTLOCK(mtx);
466 #ifdef FULL
467 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
468 MUTEX_LOCKED(mtx);
469 return;
470 }
471 #if !defined(MULTIPROCESSOR)
472 MUTEX_ABORT(mtx, "locking against myself");
473 #else /* !MULTIPROCESSOR */
474
475 LOCKSTAT_ENTER(lsflag);
476 LOCKSTAT_START_TIMER(lsflag, spintime);
477 count = SPINLOCK_BACKOFF_MIN;
478
479 /*
480 * Spin testing the lock word and do exponential backoff
481 * to reduce cache line ping-ponging between CPUs.
482 */
483 do {
484 if (panicstr != NULL)
485 break;
486 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
487 SPINLOCK_BACKOFF(count);
488 #ifdef LOCKDEBUG
489 if (SPINLOCK_SPINOUT(spins))
490 MUTEX_ABORT(mtx, "spinout");
491 #endif /* LOCKDEBUG */
492 }
493 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
494
495 if (count != SPINLOCK_BACKOFF_MIN) {
496 LOCKSTAT_STOP_TIMER(lsflag, spintime);
497 LOCKSTAT_EVENT(lsflag, mtx,
498 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
499 }
500 LOCKSTAT_EXIT(lsflag);
501 #endif /* !MULTIPROCESSOR */
502 #endif /* FULL */
503 MUTEX_LOCKED(mtx);
504 return;
505 }
506
507 curthread = (uintptr_t)curlwp;
508
509 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
510 MUTEX_ASSERT(mtx, curthread != 0);
511 MUTEX_WANTLOCK(mtx);
512
513 if (panicstr == NULL) {
514 LOCKDEBUG_BARRIER(&kernel_lock, 1);
515 }
516
517 LOCKSTAT_ENTER(lsflag);
518
519 /*
520 * Adaptive mutex; spin trying to acquire the mutex. If we
521 * determine that the owner is not running on a processor,
522 * then we stop spinning, and sleep instead.
523 */
524 for (owner = mtx->mtx_owner;;) {
525 if (!MUTEX_OWNED(owner)) {
526 /*
527 * Mutex owner clear could mean two things:
528 *
529 * * The mutex has been released.
530 * * The owner field hasn't been set yet.
531 *
532 * Try to acquire it again. If that fails,
533 * we'll just loop again.
534 */
535 if (MUTEX_ACQUIRE(mtx, curthread))
536 break;
537 owner = mtx->mtx_owner;
538 continue;
539 }
540
541 if (panicstr != NULL)
542 return;
543 if (MUTEX_OWNER(owner) == curthread)
544 MUTEX_ABORT(mtx, "locking against myself");
545
546 #ifdef MULTIPROCESSOR
547 /*
548 * Check to see if the owner is running on a processor.
549 * If so, then we should just spin, as the owner will
550 * likely release the lock very soon.
551 */
552 if (mutex_onproc(owner, &ci)) {
553 LOCKSTAT_START_TIMER(lsflag, spintime);
554 count = SPINLOCK_BACKOFF_MIN;
555 for (;;) {
556 SPINLOCK_BACKOFF(count);
557 owner = mtx->mtx_owner;
558 if (!mutex_onproc(owner, &ci))
559 break;
560 }
561 LOCKSTAT_STOP_TIMER(lsflag, spintime);
562 LOCKSTAT_COUNT(spincnt, 1);
563 if (!MUTEX_OWNED(owner))
564 continue;
565 }
566 #endif
567
568 ts = turnstile_lookup(mtx);
569
570 /*
571 * Once we have the turnstile chain interlock, mark the
572 * mutex has having waiters. If that fails, spin again:
573 * chances are that the mutex has been released.
574 */
575 if (!MUTEX_SET_WAITERS(mtx, owner)) {
576 turnstile_exit(mtx);
577 owner = mtx->mtx_owner;
578 continue;
579 }
580
581 #ifdef MULTIPROCESSOR
582 /*
583 * mutex_exit() is permitted to release the mutex without
584 * any interlocking instructions, and the following can
585 * occur as a result:
586 *
587 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
588 * ---------------------------- ----------------------------
589 * .. acquire cache line
590 * .. test for waiters
591 * acquire cache line <- lose cache line
592 * lock cache line ..
593 * verify mutex is held ..
594 * set waiters ..
595 * unlock cache line ..
596 * lose cache line -> acquire cache line
597 * .. clear lock word, waiters
598 * return success
599 *
600 * There is a another race that can occur: a third CPU could
601 * acquire the mutex as soon as it is released. Since
602 * adaptive mutexes are primarily spin mutexes, this is not
603 * something that we need to worry about too much. What we
604 * do need to ensure is that the waiters bit gets set.
605 *
606 * To allow the unlocked release, we need to make some
607 * assumptions here:
608 *
609 * o Release is the only non-atomic/unlocked operation
610 * that can be performed on the mutex. (It must still
611 * be atomic on the local CPU, e.g. in case interrupted
612 * or preempted).
613 *
614 * o At any given time, MUTEX_SET_WAITERS() can only ever
615 * be in progress on one CPU in the system - guaranteed
616 * by the turnstile chain lock.
617 *
618 * o No other operations other than MUTEX_SET_WAITERS()
619 * and release can modify a mutex with a non-zero
620 * owner field.
621 *
622 * o The result of a successful MUTEX_SET_WAITERS() call
623 * is an unbuffered write that is immediately visible
624 * to all other processors in the system.
625 *
626 * o If the holding LWP switches away, it posts a store
627 * fence before changing curlwp, ensuring that any
628 * overwrite of the mutex waiters flag by mutex_exit()
629 * completes before the modification of curlwp becomes
630 * visible to this CPU.
631 *
632 * o mi_switch() posts a store fence before setting curlwp
633 * and before resuming execution of an LWP.
634 *
635 * o _kernel_lock() posts a store fence before setting
636 * curcpu()->ci_biglock_wanted, and after clearing it.
637 * This ensures that any overwrite of the mutex waiters
638 * flag by mutex_exit() completes before the modification
639 * of ci_biglock_wanted becomes visible.
640 *
641 * We now post a read memory barrier (after setting the
642 * waiters field) and check the lock holder's status again.
643 * Some of the possible outcomes (not an exhaustive list):
644 *
645 * 1. The onproc check returns true: the holding LWP is
646 * running again. The lock may be released soon and
647 * we should spin. Importantly, we can't trust the
648 * value of the waiters flag.
649 *
650 * 2. The onproc check returns false: the holding LWP is
651 * not running. We now have the opportunity to check
652 * if mutex_exit() has blatted the modifications made
653 * by MUTEX_SET_WAITERS().
654 *
655 * 3. The onproc check returns false: the holding LWP may
656 * or may not be running. It has context switched at
657 * some point during our check. Again, we have the
658 * chance to see if the waiters bit is still set or
659 * has been overwritten.
660 *
661 * 4. The onproc check returns false: the holding LWP is
662 * running on a CPU, but wants the big lock. It's OK
663 * to check the waiters field in this case.
664 *
665 * 5. The has-waiters check fails: the mutex has been
666 * released, the waiters flag cleared and another LWP
667 * now owns the mutex.
668 *
669 * 6. The has-waiters check fails: the mutex has been
670 * released.
671 *
672 * If the waiters bit is not set it's unsafe to go asleep,
673 * as we might never be awoken.
674 */
675 if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
676 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
677 turnstile_exit(mtx);
678 owner = mtx->mtx_owner;
679 continue;
680 }
681 #endif /* MULTIPROCESSOR */
682
683 LOCKSTAT_START_TIMER(lsflag, slptime);
684
685 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
686
687 LOCKSTAT_STOP_TIMER(lsflag, slptime);
688 LOCKSTAT_COUNT(slpcnt, 1);
689
690 owner = mtx->mtx_owner;
691 }
692
693 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
694 slpcnt, slptime);
695 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
696 spincnt, spintime);
697 LOCKSTAT_EXIT(lsflag);
698
699 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
700 MUTEX_LOCKED(mtx);
701 }
702
703 /*
704 * mutex_vector_exit:
705 *
706 * Support routine for mutex_exit() that handles all cases.
707 */
708 void
709 mutex_vector_exit(kmutex_t *mtx)
710 {
711 turnstile_t *ts;
712 uintptr_t curthread;
713
714 if (MUTEX_SPIN_P(mtx)) {
715 #ifdef FULL
716 if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
717 if (panicstr != NULL)
718 return;
719 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
720 }
721 MUTEX_UNLOCKED(mtx);
722 __cpu_simple_unlock(&mtx->mtx_lock);
723 #endif
724 MUTEX_SPIN_SPLRESTORE(mtx);
725 return;
726 }
727
728 if (__predict_false((uintptr_t)panicstr | cold)) {
729 MUTEX_UNLOCKED(mtx);
730 MUTEX_RELEASE(mtx);
731 return;
732 }
733
734 curthread = (uintptr_t)curlwp;
735 MUTEX_DASSERT(mtx, curthread != 0);
736 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
737 MUTEX_UNLOCKED(mtx);
738
739 #ifdef LOCKDEBUG
740 /*
741 * Avoid having to take the turnstile chain lock every time
742 * around. Raise the priority level to splhigh() in order
743 * to disable preemption and so make the following atomic.
744 */
745 {
746 int s = splhigh();
747 if (!MUTEX_HAS_WAITERS(mtx)) {
748 MUTEX_RELEASE(mtx);
749 splx(s);
750 return;
751 }
752 splx(s);
753 }
754 #endif
755
756 /*
757 * Get this lock's turnstile. This gets the interlock on
758 * the sleep queue. Once we have that, we can clear the
759 * lock. If there was no turnstile for the lock, there
760 * were no waiters remaining.
761 */
762 ts = turnstile_lookup(mtx);
763
764 if (ts == NULL) {
765 MUTEX_RELEASE(mtx);
766 turnstile_exit(mtx);
767 } else {
768 MUTEX_RELEASE(mtx);
769 turnstile_wakeup(ts, TS_WRITER_Q,
770 TS_WAITERS(ts, TS_WRITER_Q), NULL);
771 }
772 }
773
774 #ifndef __HAVE_SIMPLE_MUTEXES
775 /*
776 * mutex_wakeup:
777 *
778 * Support routine for mutex_exit() that wakes up all waiters.
779 * We assume that the mutex has been released, but it need not
780 * be.
781 */
782 void
783 mutex_wakeup(kmutex_t *mtx)
784 {
785 turnstile_t *ts;
786
787 ts = turnstile_lookup(mtx);
788 if (ts == NULL) {
789 turnstile_exit(mtx);
790 return;
791 }
792 MUTEX_CLEAR_WAITERS(mtx);
793 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
794 }
795 #endif /* !__HAVE_SIMPLE_MUTEXES */
796
797 /*
798 * mutex_owned:
799 *
800 * Return true if the current LWP (adaptive) or CPU (spin)
801 * holds the mutex.
802 */
803 int
804 mutex_owned(kmutex_t *mtx)
805 {
806
807 if (mtx == NULL)
808 return 0;
809 if (MUTEX_ADAPTIVE_P(mtx))
810 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
811 #ifdef FULL
812 return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
813 #else
814 return 1;
815 #endif
816 }
817
818 /*
819 * mutex_owner:
820 *
821 * Return the current owner of an adaptive mutex. Used for
822 * priority inheritance.
823 */
824 lwp_t *
825 mutex_owner(kmutex_t *mtx)
826 {
827
828 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
829 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
830 }
831
832 /*
833 * mutex_tryenter:
834 *
835 * Try to acquire the mutex; return non-zero if we did.
836 */
837 int
838 mutex_tryenter(kmutex_t *mtx)
839 {
840 uintptr_t curthread;
841
842 /*
843 * Handle spin mutexes.
844 */
845 if (MUTEX_SPIN_P(mtx)) {
846 MUTEX_SPIN_SPLRAISE(mtx);
847 #ifdef FULL
848 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
849 MUTEX_WANTLOCK(mtx);
850 MUTEX_LOCKED(mtx);
851 return 1;
852 }
853 MUTEX_SPIN_SPLRESTORE(mtx);
854 #else
855 MUTEX_WANTLOCK(mtx);
856 MUTEX_LOCKED(mtx);
857 return 1;
858 #endif
859 } else {
860 curthread = (uintptr_t)curlwp;
861 MUTEX_ASSERT(mtx, curthread != 0);
862 if (MUTEX_ACQUIRE(mtx, curthread)) {
863 MUTEX_WANTLOCK(mtx);
864 MUTEX_LOCKED(mtx);
865 MUTEX_DASSERT(mtx,
866 MUTEX_OWNER(mtx->mtx_owner) == curthread);
867 return 1;
868 }
869 }
870
871 return 0;
872 }
873
874 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
875 /*
876 * mutex_spin_retry:
877 *
878 * Support routine for mutex_spin_enter(). Assumes that the caller
879 * has already raised the SPL, and adjusted counters.
880 */
881 void
882 mutex_spin_retry(kmutex_t *mtx)
883 {
884 #ifdef MULTIPROCESSOR
885 u_int count;
886 LOCKSTAT_TIMER(spintime);
887 LOCKSTAT_FLAG(lsflag);
888 #ifdef LOCKDEBUG
889 u_int spins = 0;
890 #endif /* LOCKDEBUG */
891
892 MUTEX_WANTLOCK(mtx);
893
894 LOCKSTAT_ENTER(lsflag);
895 LOCKSTAT_START_TIMER(lsflag, spintime);
896 count = SPINLOCK_BACKOFF_MIN;
897
898 /*
899 * Spin testing the lock word and do exponential backoff
900 * to reduce cache line ping-ponging between CPUs.
901 */
902 do {
903 if (panicstr != NULL)
904 break;
905 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
906 SPINLOCK_BACKOFF(count);
907 #ifdef LOCKDEBUG
908 if (SPINLOCK_SPINOUT(spins))
909 MUTEX_ABORT(mtx, "spinout");
910 #endif /* LOCKDEBUG */
911 }
912 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
913
914 LOCKSTAT_STOP_TIMER(lsflag, spintime);
915 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
916 LOCKSTAT_EXIT(lsflag);
917
918 MUTEX_LOCKED(mtx);
919 #else /* MULTIPROCESSOR */
920 MUTEX_ABORT(mtx, "locking against myself");
921 #endif /* MULTIPROCESSOR */
922 }
923 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
924
925 /*
926 * mutex_obj_init:
927 *
928 * Initialize the mutex object store.
929 */
930 void
931 mutex_obj_init(void)
932 {
933
934 mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
935 coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
936 NULL, NULL);
937 }
938
939 /*
940 * mutex_obj_ctor:
941 *
942 * Initialize a new lock for the cache.
943 */
944 static int
945 mutex_obj_ctor(void *arg, void *obj, int flags)
946 {
947 struct kmutexobj * mo = obj;
948
949 mo->mo_magic = MUTEX_OBJ_MAGIC;
950
951 return 0;
952 }
953
954 /*
955 * mutex_obj_alloc:
956 *
957 * Allocate a single lock object.
958 */
959 kmutex_t *
960 mutex_obj_alloc(kmutex_type_t type, int ipl)
961 {
962 struct kmutexobj *mo;
963
964 mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
965 mutex_init(&mo->mo_lock, type, ipl);
966 mo->mo_refcnt = 1;
967
968 return (kmutex_t *)mo;
969 }
970
971 /*
972 * mutex_obj_hold:
973 *
974 * Add a single reference to a lock object. A reference to the object
975 * must already be held, and must be held across this call.
976 */
977 void
978 mutex_obj_hold(kmutex_t *lock)
979 {
980 struct kmutexobj *mo = (struct kmutexobj *)lock;
981
982 KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
983 KASSERT(mo->mo_refcnt > 0);
984
985 atomic_inc_uint(&mo->mo_refcnt);
986 }
987
988 /*
989 * mutex_obj_free:
990 *
991 * Drop a reference from a lock object. If the last reference is being
992 * dropped, free the object and return true. Otherwise, return false.
993 */
994 bool
995 mutex_obj_free(kmutex_t *lock)
996 {
997 struct kmutexobj *mo = (struct kmutexobj *)lock;
998
999 KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
1000 KASSERT(mo->mo_refcnt > 0);
1001
1002 if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
1003 return false;
1004 }
1005 mutex_destroy(&mo->mo_lock);
1006 pool_cache_put(mutex_obj_cache, mo);
1007 return true;
1008 }
1009