Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.44
      1 /*	$NetBSD: kern_mutex.c,v 1.44 2008/10/15 06:51:20 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.44 2008/10/15 06:51:20 wrstuden Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/proc.h>
     47 #include <sys/mutex.h>
     48 #include <sys/sched.h>
     49 #include <sys/sleepq.h>
     50 #include <sys/systm.h>
     51 #include <sys/lockdebug.h>
     52 #include <sys/kernel.h>
     53 #include <sys/atomic.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 #include <sys/pool.h>
     57 
     58 #include <dev/lockstat.h>
     59 
     60 #include <machine/lock.h>
     61 
     62 #include "opt_sa.h"
     63 
     64 /*
     65  * When not running a debug kernel, spin mutexes are not much
     66  * more than an splraiseipl() and splx() pair.
     67  */
     68 
     69 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     70 #define	FULL
     71 #endif
     72 
     73 /*
     74  * Debugging support.
     75  */
     76 
     77 #define	MUTEX_WANTLOCK(mtx)					\
     78     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     79         (uintptr_t)__builtin_return_address(0), false, false)
     80 #define	MUTEX_LOCKED(mtx)					\
     81     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     82         (uintptr_t)__builtin_return_address(0), 0)
     83 #define	MUTEX_UNLOCKED(mtx)					\
     84     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     85         (uintptr_t)__builtin_return_address(0), 0)
     86 #define	MUTEX_ABORT(mtx, msg)					\
     87     mutex_abort(mtx, __func__, msg)
     88 
     89 #if defined(LOCKDEBUG)
     90 
     91 #define	MUTEX_DASSERT(mtx, cond)				\
     92 do {								\
     93 	if (!(cond))						\
     94 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     95 } while (/* CONSTCOND */ 0);
     96 
     97 #else	/* LOCKDEBUG */
     98 
     99 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    100 
    101 #endif /* LOCKDEBUG */
    102 
    103 #if defined(DIAGNOSTIC)
    104 
    105 #define	MUTEX_ASSERT(mtx, cond)					\
    106 do {								\
    107 	if (!(cond))						\
    108 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    109 } while (/* CONSTCOND */ 0)
    110 
    111 #else	/* DIAGNOSTIC */
    112 
    113 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    114 
    115 #endif	/* DIAGNOSTIC */
    116 
    117 /*
    118  * Spin mutex SPL save / restore.
    119  */
    120 #ifndef MUTEX_COUNT_BIAS
    121 #define	MUTEX_COUNT_BIAS	0
    122 #endif
    123 
    124 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    125 do {									\
    126 	struct cpu_info *x__ci;						\
    127 	int x__cnt, s;							\
    128 	s = splraiseipl(mtx->mtx_ipl);					\
    129 	x__ci = curcpu();						\
    130 	x__cnt = x__ci->ci_mtx_count--;					\
    131 	__insn_barrier();						\
    132 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    133 		x__ci->ci_mtx_oldspl = (s);				\
    134 } while (/* CONSTCOND */ 0)
    135 
    136 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    137 do {									\
    138 	struct cpu_info *x__ci = curcpu();				\
    139 	int s = x__ci->ci_mtx_oldspl;					\
    140 	__insn_barrier();						\
    141 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    142 		splx(s);						\
    143 } while (/* CONSTCOND */ 0)
    144 
    145 /*
    146  * For architectures that provide 'simple' mutexes: they provide a
    147  * CAS function that is either MP-safe, or does not need to be MP
    148  * safe.  Adaptive mutexes on these architectures do not require an
    149  * additional interlock.
    150  */
    151 
    152 #ifdef __HAVE_SIMPLE_MUTEXES
    153 
    154 #define	MUTEX_OWNER(owner)						\
    155 	(owner & MUTEX_THREAD)
    156 #define	MUTEX_HAS_WAITERS(mtx)						\
    157 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    158 
    159 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    160 do {									\
    161 	if (dodebug)							\
    162 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    163 } while (/* CONSTCOND */ 0);
    164 
    165 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    166 do {									\
    167 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    168 	if (dodebug)							\
    169 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    170 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    171 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    172 } while (/* CONSTCOND */ 0)
    173 
    174 #define	MUTEX_DESTROY(mtx)						\
    175 do {									\
    176 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    177 } while (/* CONSTCOND */ 0);
    178 
    179 #define	MUTEX_SPIN_P(mtx)		\
    180     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    181 #define	MUTEX_ADAPTIVE_P(mtx)		\
    182     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    183 
    184 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    185 #if defined(LOCKDEBUG)
    186 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    187 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    188 #else /* defined(LOCKDEBUG) */
    189 #define	MUTEX_OWNED(owner)		((owner) != 0)
    190 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    191 #endif /* defined(LOCKDEBUG) */
    192 
    193 static inline int
    194 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    195 {
    196 	int rv;
    197 	uintptr_t old = 0;
    198 	uintptr_t new = curthread;
    199 
    200 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    201 	MUTEX_INHERITDEBUG(new, old);
    202 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    203 	MUTEX_RECEIVE(mtx);
    204 	return rv;
    205 }
    206 
    207 static inline int
    208 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    209 {
    210 	int rv;
    211 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    212 	MUTEX_RECEIVE(mtx);
    213 	return rv;
    214 }
    215 
    216 static inline void
    217 MUTEX_RELEASE(kmutex_t *mtx)
    218 {
    219 	uintptr_t new;
    220 
    221 	MUTEX_GIVE(mtx);
    222 	new = 0;
    223 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    224 	mtx->mtx_owner = new;
    225 }
    226 
    227 static inline void
    228 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    229 {
    230 	/* nothing */
    231 }
    232 #endif	/* __HAVE_SIMPLE_MUTEXES */
    233 
    234 /*
    235  * Patch in stubs via strong alias where they are not available.
    236  */
    237 
    238 #if defined(LOCKDEBUG)
    239 #undef	__HAVE_MUTEX_STUBS
    240 #undef	__HAVE_SPIN_MUTEX_STUBS
    241 #endif
    242 
    243 #ifndef __HAVE_MUTEX_STUBS
    244 __strong_alias(mutex_enter,mutex_vector_enter);
    245 __strong_alias(mutex_exit,mutex_vector_exit);
    246 #endif
    247 
    248 #ifndef __HAVE_SPIN_MUTEX_STUBS
    249 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    250 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    251 #endif
    252 
    253 void	mutex_abort(kmutex_t *, const char *, const char *);
    254 void	mutex_dump(volatile void *);
    255 int	mutex_onproc(uintptr_t, struct cpu_info **);
    256 
    257 lockops_t mutex_spin_lockops = {
    258 	"Mutex",
    259 	LOCKOPS_SPIN,
    260 	mutex_dump
    261 };
    262 
    263 lockops_t mutex_adaptive_lockops = {
    264 	"Mutex",
    265 	LOCKOPS_SLEEP,
    266 	mutex_dump
    267 };
    268 
    269 syncobj_t mutex_syncobj = {
    270 	SOBJ_SLEEPQ_SORTED,
    271 	turnstile_unsleep,
    272 	turnstile_changepri,
    273 	sleepq_lendpri,
    274 	(void *)mutex_owner,
    275 };
    276 
    277 /* Mutex cache */
    278 #define	MUTEX_OBJ_MAGIC	0x5aa3c85d
    279 struct kmutexobj {
    280 	kmutex_t	mo_lock;
    281 	u_int		mo_magic;
    282 	u_int		mo_refcnt;
    283 };
    284 
    285 static int	mutex_obj_ctor(void *, void *, int);
    286 
    287 static pool_cache_t	mutex_obj_cache;
    288 
    289 /*
    290  * mutex_dump:
    291  *
    292  *	Dump the contents of a mutex structure.
    293  */
    294 void
    295 mutex_dump(volatile void *cookie)
    296 {
    297 	volatile kmutex_t *mtx = cookie;
    298 
    299 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    300 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    301 	    MUTEX_SPIN_P(mtx));
    302 }
    303 
    304 /*
    305  * mutex_abort:
    306  *
    307  *	Dump information about an error and panic the system.  This
    308  *	generates a lot of machine code in the DIAGNOSTIC case, so
    309  *	we ask the compiler to not inline it.
    310  */
    311 void __noinline
    312 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    313 {
    314 
    315 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    316 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    317 }
    318 
    319 /*
    320  * mutex_init:
    321  *
    322  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    323  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    324  *	CPU time.  We can't easily provide a type of mutex that always
    325  *	sleeps - see comments in mutex_vector_enter() about releasing
    326  *	mutexes unlocked.
    327  */
    328 void
    329 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    330 {
    331 	bool dodebug;
    332 
    333 	memset(mtx, 0, sizeof(*mtx));
    334 
    335 	switch (type) {
    336 	case MUTEX_ADAPTIVE:
    337 		KASSERT(ipl == IPL_NONE);
    338 		break;
    339 	case MUTEX_DEFAULT:
    340 	case MUTEX_DRIVER:
    341 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    342 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    343 		    ipl == IPL_SOFTSERIAL) {
    344 			type = MUTEX_ADAPTIVE;
    345 		} else {
    346 			type = MUTEX_SPIN;
    347 		}
    348 		break;
    349 	default:
    350 		break;
    351 	}
    352 
    353 	switch (type) {
    354 	case MUTEX_NODEBUG:
    355 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    356 		    (uintptr_t)__builtin_return_address(0));
    357 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    358 		break;
    359 	case MUTEX_ADAPTIVE:
    360 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    361 		    (uintptr_t)__builtin_return_address(0));
    362 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    363 		break;
    364 	case MUTEX_SPIN:
    365 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    366 		    (uintptr_t)__builtin_return_address(0));
    367 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    368 		break;
    369 	default:
    370 		panic("mutex_init: impossible type");
    371 		break;
    372 	}
    373 }
    374 
    375 /*
    376  * mutex_destroy:
    377  *
    378  *	Tear down a mutex.
    379  */
    380 void
    381 mutex_destroy(kmutex_t *mtx)
    382 {
    383 
    384 	if (MUTEX_ADAPTIVE_P(mtx)) {
    385 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    386 		    !MUTEX_HAS_WAITERS(mtx));
    387 	} else {
    388 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    389 	}
    390 
    391 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    392 	MUTEX_DESTROY(mtx);
    393 }
    394 
    395 /*
    396  * mutex_onproc:
    397  *
    398  *	Return true if an adaptive mutex owner is running on a CPU in the
    399  *	system.  If the target is waiting on the kernel big lock, then we
    400  *	must release it.  This is necessary to avoid deadlock.
    401  *
    402  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    403  *	don't have full control over the timing of our execution, and so the
    404  *	pointer could be completely invalid by the time we dereference it.
    405  */
    406 #ifdef MULTIPROCESSOR
    407 int
    408 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    409 {
    410 	CPU_INFO_ITERATOR cii;
    411 	struct cpu_info *ci;
    412 	struct lwp *l;
    413 
    414 	if (!MUTEX_OWNED(owner))
    415 		return 0;
    416 	l = (struct lwp *)MUTEX_OWNER(owner);
    417 
    418 	/* See if the target is running on a CPU somewhere. */
    419 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    420 		goto run;
    421 	for (CPU_INFO_FOREACH(cii, ci))
    422 		if (ci->ci_curlwp == l)
    423 			goto run;
    424 
    425 	/* No: it may be safe to block now. */
    426 	*cip = NULL;
    427 	return 0;
    428 
    429  run:
    430  	/* Target is running; do we need to block? */
    431  	*cip = ci;
    432 	return ci->ci_biglock_wanted != l;
    433 }
    434 #endif	/* MULTIPROCESSOR */
    435 
    436 /*
    437  * mutex_vector_enter:
    438  *
    439  *	Support routine for mutex_enter() that must handles all cases.  In
    440  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    441  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    442  *	not available, then it is also aliased directly here.
    443  */
    444 void
    445 mutex_vector_enter(kmutex_t *mtx)
    446 {
    447 	uintptr_t owner, curthread;
    448 	turnstile_t *ts;
    449 #ifdef MULTIPROCESSOR
    450 	struct cpu_info *ci = NULL;
    451 	u_int count;
    452 #endif
    453 #ifdef KERN_SA
    454 	int f;
    455 #endif
    456 	LOCKSTAT_COUNTER(spincnt);
    457 	LOCKSTAT_COUNTER(slpcnt);
    458 	LOCKSTAT_TIMER(spintime);
    459 	LOCKSTAT_TIMER(slptime);
    460 	LOCKSTAT_FLAG(lsflag);
    461 
    462 	/*
    463 	 * Handle spin mutexes.
    464 	 */
    465 	if (MUTEX_SPIN_P(mtx)) {
    466 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    467 		u_int spins = 0;
    468 #endif
    469 		MUTEX_SPIN_SPLRAISE(mtx);
    470 		MUTEX_WANTLOCK(mtx);
    471 #ifdef FULL
    472 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    473 			MUTEX_LOCKED(mtx);
    474 			return;
    475 		}
    476 #if !defined(MULTIPROCESSOR)
    477 		MUTEX_ABORT(mtx, "locking against myself");
    478 #else /* !MULTIPROCESSOR */
    479 
    480 		LOCKSTAT_ENTER(lsflag);
    481 		LOCKSTAT_START_TIMER(lsflag, spintime);
    482 		count = SPINLOCK_BACKOFF_MIN;
    483 
    484 		/*
    485 		 * Spin testing the lock word and do exponential backoff
    486 		 * to reduce cache line ping-ponging between CPUs.
    487 		 */
    488 		do {
    489 			if (panicstr != NULL)
    490 				break;
    491 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    492 				SPINLOCK_BACKOFF(count);
    493 #ifdef LOCKDEBUG
    494 				if (SPINLOCK_SPINOUT(spins))
    495 					MUTEX_ABORT(mtx, "spinout");
    496 #endif	/* LOCKDEBUG */
    497 			}
    498 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    499 
    500 		if (count != SPINLOCK_BACKOFF_MIN) {
    501 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    502 			LOCKSTAT_EVENT(lsflag, mtx,
    503 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    504 		}
    505 		LOCKSTAT_EXIT(lsflag);
    506 #endif	/* !MULTIPROCESSOR */
    507 #endif	/* FULL */
    508 		MUTEX_LOCKED(mtx);
    509 		return;
    510 	}
    511 
    512 	curthread = (uintptr_t)curlwp;
    513 
    514 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    515 	MUTEX_ASSERT(mtx, curthread != 0);
    516 	MUTEX_WANTLOCK(mtx);
    517 
    518 	if (panicstr == NULL) {
    519 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    520 	}
    521 
    522 	LOCKSTAT_ENTER(lsflag);
    523 
    524 	/*
    525 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    526 	 * determine that the owner is not running on a processor,
    527 	 * then we stop spinning, and sleep instead.
    528 	 */
    529 	for (owner = mtx->mtx_owner;;) {
    530 		if (!MUTEX_OWNED(owner)) {
    531 			/*
    532 			 * Mutex owner clear could mean two things:
    533 			 *
    534 			 *	* The mutex has been released.
    535 			 *	* The owner field hasn't been set yet.
    536 			 *
    537 			 * Try to acquire it again.  If that fails,
    538 			 * we'll just loop again.
    539 			 */
    540 			if (MUTEX_ACQUIRE(mtx, curthread))
    541 				break;
    542 			owner = mtx->mtx_owner;
    543 			continue;
    544 		}
    545 
    546 		if (panicstr != NULL)
    547 			return;
    548 		if (MUTEX_OWNER(owner) == curthread)
    549 			MUTEX_ABORT(mtx, "locking against myself");
    550 
    551 #ifdef MULTIPROCESSOR
    552 		/*
    553 		 * Check to see if the owner is running on a processor.
    554 		 * If so, then we should just spin, as the owner will
    555 		 * likely release the lock very soon.
    556 		 */
    557 		if (mutex_onproc(owner, &ci)) {
    558 			LOCKSTAT_START_TIMER(lsflag, spintime);
    559 			count = SPINLOCK_BACKOFF_MIN;
    560 			for (;;) {
    561 				SPINLOCK_BACKOFF(count);
    562 				owner = mtx->mtx_owner;
    563 				if (!mutex_onproc(owner, &ci))
    564 					break;
    565 			}
    566 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    567 			LOCKSTAT_COUNT(spincnt, 1);
    568 			if (!MUTEX_OWNED(owner))
    569 				continue;
    570 		}
    571 #endif
    572 
    573 		ts = turnstile_lookup(mtx);
    574 
    575 		/*
    576 		 * Once we have the turnstile chain interlock, mark the
    577 		 * mutex has having waiters.  If that fails, spin again:
    578 		 * chances are that the mutex has been released.
    579 		 */
    580 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    581 			turnstile_exit(mtx);
    582 			owner = mtx->mtx_owner;
    583 			continue;
    584 		}
    585 
    586 #ifdef MULTIPROCESSOR
    587 		/*
    588 		 * mutex_exit() is permitted to release the mutex without
    589 		 * any interlocking instructions, and the following can
    590 		 * occur as a result:
    591 		 *
    592 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    593 		 * ---------------------------- ----------------------------
    594 		 *		..		    acquire cache line
    595 		 *		..                   test for waiters
    596 		 *	acquire cache line    <-      lose cache line
    597 		 *	 lock cache line	           ..
    598 		 *     verify mutex is held                ..
    599 		 *	    set waiters  	           ..
    600 		 *	 unlock cache line		   ..
    601 		 *	  lose cache line     ->    acquire cache line
    602 		 *		..	          clear lock word, waiters
    603 		 *	  return success
    604 		 *
    605 		 * There is a another race that can occur: a third CPU could
    606 		 * acquire the mutex as soon as it is released.  Since
    607 		 * adaptive mutexes are primarily spin mutexes, this is not
    608 		 * something that we need to worry about too much.  What we
    609 		 * do need to ensure is that the waiters bit gets set.
    610 		 *
    611 		 * To allow the unlocked release, we need to make some
    612 		 * assumptions here:
    613 		 *
    614 		 * o Release is the only non-atomic/unlocked operation
    615 		 *   that can be performed on the mutex.  (It must still
    616 		 *   be atomic on the local CPU, e.g. in case interrupted
    617 		 *   or preempted).
    618 		 *
    619 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    620 		 *   be in progress on one CPU in the system - guaranteed
    621 		 *   by the turnstile chain lock.
    622 		 *
    623 		 * o No other operations other than MUTEX_SET_WAITERS()
    624 		 *   and release can modify a mutex with a non-zero
    625 		 *   owner field.
    626 		 *
    627 		 * o The result of a successful MUTEX_SET_WAITERS() call
    628 		 *   is an unbuffered write that is immediately visible
    629 		 *   to all other processors in the system.
    630 		 *
    631 		 * o If the holding LWP switches away, it posts a store
    632 		 *   fence before changing curlwp, ensuring that any
    633 		 *   overwrite of the mutex waiters flag by mutex_exit()
    634 		 *   completes before the modification of curlwp becomes
    635 		 *   visible to this CPU.
    636 		 *
    637 		 * o mi_switch() posts a store fence before setting curlwp
    638 		 *   and before resuming execution of an LWP.
    639 		 *
    640 		 * o _kernel_lock() posts a store fence before setting
    641 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    642 		 *   This ensures that any overwrite of the mutex waiters
    643 		 *   flag by mutex_exit() completes before the modification
    644 		 *   of ci_biglock_wanted becomes visible.
    645 		 *
    646 		 * We now post a read memory barrier (after setting the
    647 		 * waiters field) and check the lock holder's status again.
    648 		 * Some of the possible outcomes (not an exhaustive list):
    649 		 *
    650 		 * 1. The onproc check returns true: the holding LWP is
    651 		 *    running again.  The lock may be released soon and
    652 		 *    we should spin.  Importantly, we can't trust the
    653 		 *    value of the waiters flag.
    654 		 *
    655 		 * 2. The onproc check returns false: the holding LWP is
    656 		 *    not running.  We now have the opportunity to check
    657 		 *    if mutex_exit() has blatted the modifications made
    658 		 *    by MUTEX_SET_WAITERS().
    659 		 *
    660 		 * 3. The onproc check returns false: the holding LWP may
    661 		 *    or may not be running.  It has context switched at
    662 		 *    some point during our check.  Again, we have the
    663 		 *    chance to see if the waiters bit is still set or
    664 		 *    has been overwritten.
    665 		 *
    666 		 * 4. The onproc check returns false: the holding LWP is
    667 		 *    running on a CPU, but wants the big lock.  It's OK
    668 		 *    to check the waiters field in this case.
    669 		 *
    670 		 * 5. The has-waiters check fails: the mutex has been
    671 		 *    released, the waiters flag cleared and another LWP
    672 		 *    now owns the mutex.
    673 		 *
    674 		 * 6. The has-waiters check fails: the mutex has been
    675 		 *    released.
    676 		 *
    677 		 * If the waiters bit is not set it's unsafe to go asleep,
    678 		 * as we might never be awoken.
    679 		 */
    680 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    681 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    682 			turnstile_exit(mtx);
    683 			owner = mtx->mtx_owner;
    684 			continue;
    685 		}
    686 #endif	/* MULTIPROCESSOR */
    687 
    688 #ifdef KERN_SA
    689 		/*
    690 		 * Sleeping for a mutex should not generate an upcall.
    691 		 * So set LP_SA_NOBLOCK to indicate this.
    692 		 * f indicates if we should clear LP_SA_NOBLOCK when done.
    693 		 */
    694 		f = ~curlwp->l_pflag & LP_SA_NOBLOCK;
    695 		curlwp->l_pflag |= LP_SA_NOBLOCK;
    696 #endif /* KERN_SA */
    697 
    698 		LOCKSTAT_START_TIMER(lsflag, slptime);
    699 
    700 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    701 
    702 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    703 		LOCKSTAT_COUNT(slpcnt, 1);
    704 
    705 #ifdef KERN_SA
    706 		curlwp->l_pflag ^= f;
    707 #endif /* KERN_SA */
    708 
    709 		owner = mtx->mtx_owner;
    710 	}
    711 
    712 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    713 	    slpcnt, slptime);
    714 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    715 	    spincnt, spintime);
    716 	LOCKSTAT_EXIT(lsflag);
    717 
    718 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    719 	MUTEX_LOCKED(mtx);
    720 }
    721 
    722 /*
    723  * mutex_vector_exit:
    724  *
    725  *	Support routine for mutex_exit() that handles all cases.
    726  */
    727 void
    728 mutex_vector_exit(kmutex_t *mtx)
    729 {
    730 	turnstile_t *ts;
    731 	uintptr_t curthread;
    732 
    733 	if (MUTEX_SPIN_P(mtx)) {
    734 #ifdef FULL
    735 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    736 			if (panicstr != NULL)
    737 				return;
    738 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    739 		}
    740 		MUTEX_UNLOCKED(mtx);
    741 		__cpu_simple_unlock(&mtx->mtx_lock);
    742 #endif
    743 		MUTEX_SPIN_SPLRESTORE(mtx);
    744 		return;
    745 	}
    746 
    747 	if (__predict_false((uintptr_t)panicstr | cold)) {
    748 		MUTEX_UNLOCKED(mtx);
    749 		MUTEX_RELEASE(mtx);
    750 		return;
    751 	}
    752 
    753 	curthread = (uintptr_t)curlwp;
    754 	MUTEX_DASSERT(mtx, curthread != 0);
    755 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    756 	MUTEX_UNLOCKED(mtx);
    757 
    758 #ifdef LOCKDEBUG
    759 	/*
    760 	 * Avoid having to take the turnstile chain lock every time
    761 	 * around.  Raise the priority level to splhigh() in order
    762 	 * to disable preemption and so make the following atomic.
    763 	 */
    764 	{
    765 		int s = splhigh();
    766 		if (!MUTEX_HAS_WAITERS(mtx)) {
    767 			MUTEX_RELEASE(mtx);
    768 			splx(s);
    769 			return;
    770 		}
    771 		splx(s);
    772 	}
    773 #endif
    774 
    775 	/*
    776 	 * Get this lock's turnstile.  This gets the interlock on
    777 	 * the sleep queue.  Once we have that, we can clear the
    778 	 * lock.  If there was no turnstile for the lock, there
    779 	 * were no waiters remaining.
    780 	 */
    781 	ts = turnstile_lookup(mtx);
    782 
    783 	if (ts == NULL) {
    784 		MUTEX_RELEASE(mtx);
    785 		turnstile_exit(mtx);
    786 	} else {
    787 		MUTEX_RELEASE(mtx);
    788 		turnstile_wakeup(ts, TS_WRITER_Q,
    789 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    790 	}
    791 }
    792 
    793 #ifndef __HAVE_SIMPLE_MUTEXES
    794 /*
    795  * mutex_wakeup:
    796  *
    797  *	Support routine for mutex_exit() that wakes up all waiters.
    798  *	We assume that the mutex has been released, but it need not
    799  *	be.
    800  */
    801 void
    802 mutex_wakeup(kmutex_t *mtx)
    803 {
    804 	turnstile_t *ts;
    805 
    806 	ts = turnstile_lookup(mtx);
    807 	if (ts == NULL) {
    808 		turnstile_exit(mtx);
    809 		return;
    810 	}
    811 	MUTEX_CLEAR_WAITERS(mtx);
    812 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    813 }
    814 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    815 
    816 /*
    817  * mutex_owned:
    818  *
    819  *	Return true if the current LWP (adaptive) or CPU (spin)
    820  *	holds the mutex.
    821  */
    822 int
    823 mutex_owned(kmutex_t *mtx)
    824 {
    825 
    826 	if (mtx == NULL)
    827 		return 0;
    828 	if (MUTEX_ADAPTIVE_P(mtx))
    829 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    830 #ifdef FULL
    831 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    832 #else
    833 	return 1;
    834 #endif
    835 }
    836 
    837 /*
    838  * mutex_owner:
    839  *
    840  *	Return the current owner of an adaptive mutex.  Used for
    841  *	priority inheritance.
    842  */
    843 lwp_t *
    844 mutex_owner(kmutex_t *mtx)
    845 {
    846 
    847 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    848 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    849 }
    850 
    851 /*
    852  * mutex_tryenter:
    853  *
    854  *	Try to acquire the mutex; return non-zero if we did.
    855  */
    856 int
    857 mutex_tryenter(kmutex_t *mtx)
    858 {
    859 	uintptr_t curthread;
    860 
    861 	/*
    862 	 * Handle spin mutexes.
    863 	 */
    864 	if (MUTEX_SPIN_P(mtx)) {
    865 		MUTEX_SPIN_SPLRAISE(mtx);
    866 #ifdef FULL
    867 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    868 			MUTEX_WANTLOCK(mtx);
    869 			MUTEX_LOCKED(mtx);
    870 			return 1;
    871 		}
    872 		MUTEX_SPIN_SPLRESTORE(mtx);
    873 #else
    874 		MUTEX_WANTLOCK(mtx);
    875 		MUTEX_LOCKED(mtx);
    876 		return 1;
    877 #endif
    878 	} else {
    879 		curthread = (uintptr_t)curlwp;
    880 		MUTEX_ASSERT(mtx, curthread != 0);
    881 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    882 			MUTEX_WANTLOCK(mtx);
    883 			MUTEX_LOCKED(mtx);
    884 			MUTEX_DASSERT(mtx,
    885 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    886 			return 1;
    887 		}
    888 	}
    889 
    890 	return 0;
    891 }
    892 
    893 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    894 /*
    895  * mutex_spin_retry:
    896  *
    897  *	Support routine for mutex_spin_enter().  Assumes that the caller
    898  *	has already raised the SPL, and adjusted counters.
    899  */
    900 void
    901 mutex_spin_retry(kmutex_t *mtx)
    902 {
    903 #ifdef MULTIPROCESSOR
    904 	u_int count;
    905 	LOCKSTAT_TIMER(spintime);
    906 	LOCKSTAT_FLAG(lsflag);
    907 #ifdef LOCKDEBUG
    908 	u_int spins = 0;
    909 #endif	/* LOCKDEBUG */
    910 
    911 	MUTEX_WANTLOCK(mtx);
    912 
    913 	LOCKSTAT_ENTER(lsflag);
    914 	LOCKSTAT_START_TIMER(lsflag, spintime);
    915 	count = SPINLOCK_BACKOFF_MIN;
    916 
    917 	/*
    918 	 * Spin testing the lock word and do exponential backoff
    919 	 * to reduce cache line ping-ponging between CPUs.
    920 	 */
    921 	do {
    922 		if (panicstr != NULL)
    923 			break;
    924 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    925 			SPINLOCK_BACKOFF(count);
    926 #ifdef LOCKDEBUG
    927 			if (SPINLOCK_SPINOUT(spins))
    928 				MUTEX_ABORT(mtx, "spinout");
    929 #endif	/* LOCKDEBUG */
    930 		}
    931 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    932 
    933 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    934 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    935 	LOCKSTAT_EXIT(lsflag);
    936 
    937 	MUTEX_LOCKED(mtx);
    938 #else	/* MULTIPROCESSOR */
    939 	MUTEX_ABORT(mtx, "locking against myself");
    940 #endif	/* MULTIPROCESSOR */
    941 }
    942 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    943 
    944 /*
    945  * mutex_obj_init:
    946  *
    947  *	Initialize the mutex object store.
    948  */
    949 void
    950 mutex_obj_init(void)
    951 {
    952 
    953 	mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj),
    954 	    coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor,
    955 	    NULL, NULL);
    956 }
    957 
    958 /*
    959  * mutex_obj_ctor:
    960  *
    961  *	Initialize a new lock for the cache.
    962  */
    963 static int
    964 mutex_obj_ctor(void *arg, void *obj, int flags)
    965 {
    966 	struct kmutexobj * mo = obj;
    967 
    968 	mo->mo_magic = MUTEX_OBJ_MAGIC;
    969 
    970 	return 0;
    971 }
    972 
    973 /*
    974  * mutex_obj_alloc:
    975  *
    976  *	Allocate a single lock object.
    977  */
    978 kmutex_t *
    979 mutex_obj_alloc(kmutex_type_t type, int ipl)
    980 {
    981 	struct kmutexobj *mo;
    982 
    983 	mo = pool_cache_get(mutex_obj_cache, PR_WAITOK);
    984 	mutex_init(&mo->mo_lock, type, ipl);
    985 	mo->mo_refcnt = 1;
    986 
    987 	return (kmutex_t *)mo;
    988 }
    989 
    990 /*
    991  * mutex_obj_hold:
    992  *
    993  *	Add a single reference to a lock object.  A reference to the object
    994  *	must already be held, and must be held across this call.
    995  */
    996 void
    997 mutex_obj_hold(kmutex_t *lock)
    998 {
    999 	struct kmutexobj *mo = (struct kmutexobj *)lock;
   1000 
   1001 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
   1002 	KASSERT(mo->mo_refcnt > 0);
   1003 
   1004 	atomic_inc_uint(&mo->mo_refcnt);
   1005 }
   1006 
   1007 /*
   1008  * mutex_obj_free:
   1009  *
   1010  *	Drop a reference from a lock object.  If the last reference is being
   1011  *	dropped, free the object and return true.  Otherwise, return false.
   1012  */
   1013 bool
   1014 mutex_obj_free(kmutex_t *lock)
   1015 {
   1016 	struct kmutexobj *mo = (struct kmutexobj *)lock;
   1017 
   1018 	KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC);
   1019 	KASSERT(mo->mo_refcnt > 0);
   1020 
   1021 	if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) {
   1022 		return false;
   1023 	}
   1024 	mutex_destroy(&mo->mo_lock);
   1025 	pool_cache_put(mutex_obj_cache, mo);
   1026 	return true;
   1027 }
   1028