Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.46
      1 /*	$NetBSD: kern_mutex.c,v 1.46 2009/11/04 13:29:45 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.46 2009/11/04 13:29:45 pooka Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/atomic.h>
     47 #include <sys/proc.h>
     48 #include <sys/mutex.h>
     49 #include <sys/sched.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/systm.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/kernel.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 
     57 #include <dev/lockstat.h>
     58 
     59 #include <machine/lock.h>
     60 
     61 #include "opt_sa.h"
     62 
     63 /*
     64  * When not running a debug kernel, spin mutexes are not much
     65  * more than an splraiseipl() and splx() pair.
     66  */
     67 
     68 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     69 #define	FULL
     70 #endif
     71 
     72 /*
     73  * Debugging support.
     74  */
     75 
     76 #define	MUTEX_WANTLOCK(mtx)					\
     77     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     78         (uintptr_t)__builtin_return_address(0), false, false)
     79 #define	MUTEX_LOCKED(mtx)					\
     80     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     81         (uintptr_t)__builtin_return_address(0), 0)
     82 #define	MUTEX_UNLOCKED(mtx)					\
     83     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     84         (uintptr_t)__builtin_return_address(0), 0)
     85 #define	MUTEX_ABORT(mtx, msg)					\
     86     mutex_abort(mtx, __func__, msg)
     87 
     88 #if defined(LOCKDEBUG)
     89 
     90 #define	MUTEX_DASSERT(mtx, cond)				\
     91 do {								\
     92 	if (!(cond))						\
     93 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     94 } while (/* CONSTCOND */ 0);
     95 
     96 #else	/* LOCKDEBUG */
     97 
     98 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
     99 
    100 #endif /* LOCKDEBUG */
    101 
    102 #if defined(DIAGNOSTIC)
    103 
    104 #define	MUTEX_ASSERT(mtx, cond)					\
    105 do {								\
    106 	if (!(cond))						\
    107 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    108 } while (/* CONSTCOND */ 0)
    109 
    110 #else	/* DIAGNOSTIC */
    111 
    112 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    113 
    114 #endif	/* DIAGNOSTIC */
    115 
    116 /*
    117  * Spin mutex SPL save / restore.
    118  */
    119 #ifndef MUTEX_COUNT_BIAS
    120 #define	MUTEX_COUNT_BIAS	0
    121 #endif
    122 
    123 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    124 do {									\
    125 	struct cpu_info *x__ci;						\
    126 	int x__cnt, s;							\
    127 	s = splraiseipl(mtx->mtx_ipl);					\
    128 	x__ci = curcpu();						\
    129 	x__cnt = x__ci->ci_mtx_count--;					\
    130 	__insn_barrier();						\
    131 	if (x__cnt == MUTEX_COUNT_BIAS)					\
    132 		x__ci->ci_mtx_oldspl = (s);				\
    133 } while (/* CONSTCOND */ 0)
    134 
    135 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    136 do {									\
    137 	struct cpu_info *x__ci = curcpu();				\
    138 	int s = x__ci->ci_mtx_oldspl;					\
    139 	__insn_barrier();						\
    140 	if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS)		\
    141 		splx(s);						\
    142 } while (/* CONSTCOND */ 0)
    143 
    144 /*
    145  * For architectures that provide 'simple' mutexes: they provide a
    146  * CAS function that is either MP-safe, or does not need to be MP
    147  * safe.  Adaptive mutexes on these architectures do not require an
    148  * additional interlock.
    149  */
    150 
    151 #ifdef __HAVE_SIMPLE_MUTEXES
    152 
    153 #define	MUTEX_OWNER(owner)						\
    154 	(owner & MUTEX_THREAD)
    155 #define	MUTEX_HAS_WAITERS(mtx)						\
    156 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    157 
    158 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    159 do {									\
    160 	if (dodebug)							\
    161 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    162 } while (/* CONSTCOND */ 0);
    163 
    164 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    165 do {									\
    166 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    167 	if (dodebug)							\
    168 		(mtx)->mtx_owner |= MUTEX_BIT_DEBUG;			\
    169 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    170 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    171 } while (/* CONSTCOND */ 0)
    172 
    173 #define	MUTEX_DESTROY(mtx)						\
    174 do {									\
    175 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    176 } while (/* CONSTCOND */ 0);
    177 
    178 #define	MUTEX_SPIN_P(mtx)		\
    179     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    180 #define	MUTEX_ADAPTIVE_P(mtx)		\
    181     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    182 
    183 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0)
    184 #if defined(LOCKDEBUG)
    185 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_DEBUG) != 0)
    186 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_DEBUG
    187 #else /* defined(LOCKDEBUG) */
    188 #define	MUTEX_OWNED(owner)		((owner) != 0)
    189 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    190 #endif /* defined(LOCKDEBUG) */
    191 
    192 static inline int
    193 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    194 {
    195 	int rv;
    196 	uintptr_t old = 0;
    197 	uintptr_t new = curthread;
    198 
    199 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    200 	MUTEX_INHERITDEBUG(new, old);
    201 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    202 	MUTEX_RECEIVE(mtx);
    203 	return rv;
    204 }
    205 
    206 static inline int
    207 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    208 {
    209 	int rv;
    210 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    211 	MUTEX_RECEIVE(mtx);
    212 	return rv;
    213 }
    214 
    215 static inline void
    216 MUTEX_RELEASE(kmutex_t *mtx)
    217 {
    218 	uintptr_t new;
    219 
    220 	MUTEX_GIVE(mtx);
    221 	new = 0;
    222 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    223 	mtx->mtx_owner = new;
    224 }
    225 
    226 static inline void
    227 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    228 {
    229 	/* nothing */
    230 }
    231 #endif	/* __HAVE_SIMPLE_MUTEXES */
    232 
    233 /*
    234  * Patch in stubs via strong alias where they are not available.
    235  */
    236 
    237 #if defined(LOCKDEBUG)
    238 #undef	__HAVE_MUTEX_STUBS
    239 #undef	__HAVE_SPIN_MUTEX_STUBS
    240 #endif
    241 
    242 #ifndef __HAVE_MUTEX_STUBS
    243 __strong_alias(mutex_enter,mutex_vector_enter);
    244 __strong_alias(mutex_exit,mutex_vector_exit);
    245 #endif
    246 
    247 #ifndef __HAVE_SPIN_MUTEX_STUBS
    248 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    249 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    250 #endif
    251 
    252 void	mutex_abort(kmutex_t *, const char *, const char *);
    253 void	mutex_dump(volatile void *);
    254 int	mutex_onproc(uintptr_t, struct cpu_info **);
    255 
    256 lockops_t mutex_spin_lockops = {
    257 	"Mutex",
    258 	LOCKOPS_SPIN,
    259 	mutex_dump
    260 };
    261 
    262 lockops_t mutex_adaptive_lockops = {
    263 	"Mutex",
    264 	LOCKOPS_SLEEP,
    265 	mutex_dump
    266 };
    267 
    268 syncobj_t mutex_syncobj = {
    269 	SOBJ_SLEEPQ_SORTED,
    270 	turnstile_unsleep,
    271 	turnstile_changepri,
    272 	sleepq_lendpri,
    273 	(void *)mutex_owner,
    274 };
    275 
    276 /*
    277  * mutex_dump:
    278  *
    279  *	Dump the contents of a mutex structure.
    280  */
    281 void
    282 mutex_dump(volatile void *cookie)
    283 {
    284 	volatile kmutex_t *mtx = cookie;
    285 
    286 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    287 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    288 	    MUTEX_SPIN_P(mtx));
    289 }
    290 
    291 /*
    292  * mutex_abort:
    293  *
    294  *	Dump information about an error and panic the system.  This
    295  *	generates a lot of machine code in the DIAGNOSTIC case, so
    296  *	we ask the compiler to not inline it.
    297  */
    298 void __noinline
    299 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    300 {
    301 
    302 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    303 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    304 }
    305 
    306 /*
    307  * mutex_init:
    308  *
    309  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    310  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    311  *	CPU time.  We can't easily provide a type of mutex that always
    312  *	sleeps - see comments in mutex_vector_enter() about releasing
    313  *	mutexes unlocked.
    314  */
    315 void
    316 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    317 {
    318 	bool dodebug;
    319 
    320 	memset(mtx, 0, sizeof(*mtx));
    321 
    322 	switch (type) {
    323 	case MUTEX_ADAPTIVE:
    324 		KASSERT(ipl == IPL_NONE);
    325 		break;
    326 	case MUTEX_DEFAULT:
    327 	case MUTEX_DRIVER:
    328 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    329 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    330 		    ipl == IPL_SOFTSERIAL) {
    331 			type = MUTEX_ADAPTIVE;
    332 		} else {
    333 			type = MUTEX_SPIN;
    334 		}
    335 		break;
    336 	default:
    337 		break;
    338 	}
    339 
    340 	switch (type) {
    341 	case MUTEX_NODEBUG:
    342 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    343 		    (uintptr_t)__builtin_return_address(0));
    344 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    345 		break;
    346 	case MUTEX_ADAPTIVE:
    347 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    348 		    (uintptr_t)__builtin_return_address(0));
    349 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    350 		break;
    351 	case MUTEX_SPIN:
    352 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    353 		    (uintptr_t)__builtin_return_address(0));
    354 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    355 		break;
    356 	default:
    357 		panic("mutex_init: impossible type");
    358 		break;
    359 	}
    360 }
    361 
    362 /*
    363  * mutex_destroy:
    364  *
    365  *	Tear down a mutex.
    366  */
    367 void
    368 mutex_destroy(kmutex_t *mtx)
    369 {
    370 
    371 	if (MUTEX_ADAPTIVE_P(mtx)) {
    372 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    373 		    !MUTEX_HAS_WAITERS(mtx));
    374 	} else {
    375 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    376 	}
    377 
    378 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    379 	MUTEX_DESTROY(mtx);
    380 }
    381 
    382 /*
    383  * mutex_onproc:
    384  *
    385  *	Return true if an adaptive mutex owner is running on a CPU in the
    386  *	system.  If the target is waiting on the kernel big lock, then we
    387  *	must release it.  This is necessary to avoid deadlock.
    388  *
    389  *	Note that we can't use the mutex owner field as an LWP pointer.  We
    390  *	don't have full control over the timing of our execution, and so the
    391  *	pointer could be completely invalid by the time we dereference it.
    392  */
    393 #ifdef MULTIPROCESSOR
    394 int
    395 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
    396 {
    397 	CPU_INFO_ITERATOR cii;
    398 	struct cpu_info *ci;
    399 	struct lwp *l;
    400 
    401 	if (!MUTEX_OWNED(owner))
    402 		return 0;
    403 	l = (struct lwp *)MUTEX_OWNER(owner);
    404 
    405 	/* See if the target is running on a CPU somewhere. */
    406 	if ((ci = *cip) != NULL && ci->ci_curlwp == l)
    407 		goto run;
    408 	for (CPU_INFO_FOREACH(cii, ci))
    409 		if (ci->ci_curlwp == l)
    410 			goto run;
    411 
    412 	/* No: it may be safe to block now. */
    413 	*cip = NULL;
    414 	return 0;
    415 
    416  run:
    417  	/* Target is running; do we need to block? */
    418  	*cip = ci;
    419 	return ci->ci_biglock_wanted != l;
    420 }
    421 #endif	/* MULTIPROCESSOR */
    422 
    423 /*
    424  * mutex_vector_enter:
    425  *
    426  *	Support routine for mutex_enter() that must handle all cases.  In
    427  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    428  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    429  *	not available, then it is also aliased directly here.
    430  */
    431 void
    432 mutex_vector_enter(kmutex_t *mtx)
    433 {
    434 	uintptr_t owner, curthread;
    435 	turnstile_t *ts;
    436 #ifdef MULTIPROCESSOR
    437 	struct cpu_info *ci = NULL;
    438 	u_int count;
    439 #endif
    440 #ifdef KERN_SA
    441 	int f;
    442 #endif
    443 	LOCKSTAT_COUNTER(spincnt);
    444 	LOCKSTAT_COUNTER(slpcnt);
    445 	LOCKSTAT_TIMER(spintime);
    446 	LOCKSTAT_TIMER(slptime);
    447 	LOCKSTAT_FLAG(lsflag);
    448 
    449 	/*
    450 	 * Handle spin mutexes.
    451 	 */
    452 	if (MUTEX_SPIN_P(mtx)) {
    453 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    454 		u_int spins = 0;
    455 #endif
    456 		MUTEX_SPIN_SPLRAISE(mtx);
    457 		MUTEX_WANTLOCK(mtx);
    458 #ifdef FULL
    459 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    460 			MUTEX_LOCKED(mtx);
    461 			return;
    462 		}
    463 #if !defined(MULTIPROCESSOR)
    464 		MUTEX_ABORT(mtx, "locking against myself");
    465 #else /* !MULTIPROCESSOR */
    466 
    467 		LOCKSTAT_ENTER(lsflag);
    468 		LOCKSTAT_START_TIMER(lsflag, spintime);
    469 		count = SPINLOCK_BACKOFF_MIN;
    470 
    471 		/*
    472 		 * Spin testing the lock word and do exponential backoff
    473 		 * to reduce cache line ping-ponging between CPUs.
    474 		 */
    475 		do {
    476 			if (panicstr != NULL)
    477 				break;
    478 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    479 				SPINLOCK_BACKOFF(count);
    480 #ifdef LOCKDEBUG
    481 				if (SPINLOCK_SPINOUT(spins))
    482 					MUTEX_ABORT(mtx, "spinout");
    483 #endif	/* LOCKDEBUG */
    484 			}
    485 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    486 
    487 		if (count != SPINLOCK_BACKOFF_MIN) {
    488 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    489 			LOCKSTAT_EVENT(lsflag, mtx,
    490 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    491 		}
    492 		LOCKSTAT_EXIT(lsflag);
    493 #endif	/* !MULTIPROCESSOR */
    494 #endif	/* FULL */
    495 		MUTEX_LOCKED(mtx);
    496 		return;
    497 	}
    498 
    499 	curthread = (uintptr_t)curlwp;
    500 
    501 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    502 	MUTEX_ASSERT(mtx, curthread != 0);
    503 	MUTEX_WANTLOCK(mtx);
    504 
    505 	if (panicstr == NULL) {
    506 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    507 	}
    508 
    509 	LOCKSTAT_ENTER(lsflag);
    510 
    511 	/*
    512 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    513 	 * determine that the owner is not running on a processor,
    514 	 * then we stop spinning, and sleep instead.
    515 	 */
    516 	for (owner = mtx->mtx_owner;;) {
    517 		if (!MUTEX_OWNED(owner)) {
    518 			/*
    519 			 * Mutex owner clear could mean two things:
    520 			 *
    521 			 *	* The mutex has been released.
    522 			 *	* The owner field hasn't been set yet.
    523 			 *
    524 			 * Try to acquire it again.  If that fails,
    525 			 * we'll just loop again.
    526 			 */
    527 			if (MUTEX_ACQUIRE(mtx, curthread))
    528 				break;
    529 			owner = mtx->mtx_owner;
    530 			continue;
    531 		}
    532 
    533 		if (__predict_false(panicstr != NULL))
    534 			return;
    535 		if (__predict_false(MUTEX_OWNER(owner) == curthread))
    536 			MUTEX_ABORT(mtx, "locking against myself");
    537 
    538 #ifdef MULTIPROCESSOR
    539 		/*
    540 		 * Check to see if the owner is running on a processor.
    541 		 * If so, then we should just spin, as the owner will
    542 		 * likely release the lock very soon.
    543 		 */
    544 		if (mutex_onproc(owner, &ci)) {
    545 			LOCKSTAT_START_TIMER(lsflag, spintime);
    546 			count = SPINLOCK_BACKOFF_MIN;
    547 			for (;;) {
    548 				SPINLOCK_BACKOFF(count);
    549 				owner = mtx->mtx_owner;
    550 				if (!mutex_onproc(owner, &ci))
    551 					break;
    552 			}
    553 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    554 			LOCKSTAT_COUNT(spincnt, 1);
    555 			if (!MUTEX_OWNED(owner))
    556 				continue;
    557 		}
    558 #endif
    559 
    560 		ts = turnstile_lookup(mtx);
    561 
    562 		/*
    563 		 * Once we have the turnstile chain interlock, mark the
    564 		 * mutex has having waiters.  If that fails, spin again:
    565 		 * chances are that the mutex has been released.
    566 		 */
    567 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    568 			turnstile_exit(mtx);
    569 			owner = mtx->mtx_owner;
    570 			continue;
    571 		}
    572 
    573 #ifdef MULTIPROCESSOR
    574 		/*
    575 		 * mutex_exit() is permitted to release the mutex without
    576 		 * any interlocking instructions, and the following can
    577 		 * occur as a result:
    578 		 *
    579 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    580 		 * ---------------------------- ----------------------------
    581 		 *		..		    acquire cache line
    582 		 *		..                   test for waiters
    583 		 *	acquire cache line    <-      lose cache line
    584 		 *	 lock cache line	           ..
    585 		 *     verify mutex is held                ..
    586 		 *	    set waiters  	           ..
    587 		 *	 unlock cache line		   ..
    588 		 *	  lose cache line     ->    acquire cache line
    589 		 *		..	          clear lock word, waiters
    590 		 *	  return success
    591 		 *
    592 		 * There is a another race that can occur: a third CPU could
    593 		 * acquire the mutex as soon as it is released.  Since
    594 		 * adaptive mutexes are primarily spin mutexes, this is not
    595 		 * something that we need to worry about too much.  What we
    596 		 * do need to ensure is that the waiters bit gets set.
    597 		 *
    598 		 * To allow the unlocked release, we need to make some
    599 		 * assumptions here:
    600 		 *
    601 		 * o Release is the only non-atomic/unlocked operation
    602 		 *   that can be performed on the mutex.  (It must still
    603 		 *   be atomic on the local CPU, e.g. in case interrupted
    604 		 *   or preempted).
    605 		 *
    606 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    607 		 *   be in progress on one CPU in the system - guaranteed
    608 		 *   by the turnstile chain lock.
    609 		 *
    610 		 * o No other operations other than MUTEX_SET_WAITERS()
    611 		 *   and release can modify a mutex with a non-zero
    612 		 *   owner field.
    613 		 *
    614 		 * o The result of a successful MUTEX_SET_WAITERS() call
    615 		 *   is an unbuffered write that is immediately visible
    616 		 *   to all other processors in the system.
    617 		 *
    618 		 * o If the holding LWP switches away, it posts a store
    619 		 *   fence before changing curlwp, ensuring that any
    620 		 *   overwrite of the mutex waiters flag by mutex_exit()
    621 		 *   completes before the modification of curlwp becomes
    622 		 *   visible to this CPU.
    623 		 *
    624 		 * o mi_switch() posts a store fence before setting curlwp
    625 		 *   and before resuming execution of an LWP.
    626 		 *
    627 		 * o _kernel_lock() posts a store fence before setting
    628 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    629 		 *   This ensures that any overwrite of the mutex waiters
    630 		 *   flag by mutex_exit() completes before the modification
    631 		 *   of ci_biglock_wanted becomes visible.
    632 		 *
    633 		 * We now post a read memory barrier (after setting the
    634 		 * waiters field) and check the lock holder's status again.
    635 		 * Some of the possible outcomes (not an exhaustive list):
    636 		 *
    637 		 * 1. The onproc check returns true: the holding LWP is
    638 		 *    running again.  The lock may be released soon and
    639 		 *    we should spin.  Importantly, we can't trust the
    640 		 *    value of the waiters flag.
    641 		 *
    642 		 * 2. The onproc check returns false: the holding LWP is
    643 		 *    not running.  We now have the opportunity to check
    644 		 *    if mutex_exit() has blatted the modifications made
    645 		 *    by MUTEX_SET_WAITERS().
    646 		 *
    647 		 * 3. The onproc check returns false: the holding LWP may
    648 		 *    or may not be running.  It has context switched at
    649 		 *    some point during our check.  Again, we have the
    650 		 *    chance to see if the waiters bit is still set or
    651 		 *    has been overwritten.
    652 		 *
    653 		 * 4. The onproc check returns false: the holding LWP is
    654 		 *    running on a CPU, but wants the big lock.  It's OK
    655 		 *    to check the waiters field in this case.
    656 		 *
    657 		 * 5. The has-waiters check fails: the mutex has been
    658 		 *    released, the waiters flag cleared and another LWP
    659 		 *    now owns the mutex.
    660 		 *
    661 		 * 6. The has-waiters check fails: the mutex has been
    662 		 *    released.
    663 		 *
    664 		 * If the waiters bit is not set it's unsafe to go asleep,
    665 		 * as we might never be awoken.
    666 		 */
    667 		if ((membar_consumer(), mutex_onproc(owner, &ci)) ||
    668 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    669 			turnstile_exit(mtx);
    670 			owner = mtx->mtx_owner;
    671 			continue;
    672 		}
    673 #endif	/* MULTIPROCESSOR */
    674 
    675 #ifdef KERN_SA
    676 		/*
    677 		 * Sleeping for a mutex should not generate an upcall.
    678 		 * So set LP_SA_NOBLOCK to indicate this.
    679 		 * f indicates if we should clear LP_SA_NOBLOCK when done.
    680 		 */
    681 		f = ~curlwp->l_pflag & LP_SA_NOBLOCK;
    682 		curlwp->l_pflag |= LP_SA_NOBLOCK;
    683 #endif /* KERN_SA */
    684 
    685 		LOCKSTAT_START_TIMER(lsflag, slptime);
    686 
    687 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    688 
    689 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    690 		LOCKSTAT_COUNT(slpcnt, 1);
    691 
    692 #ifdef KERN_SA
    693 		curlwp->l_pflag ^= f;
    694 #endif /* KERN_SA */
    695 
    696 		owner = mtx->mtx_owner;
    697 	}
    698 
    699 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    700 	    slpcnt, slptime);
    701 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    702 	    spincnt, spintime);
    703 	LOCKSTAT_EXIT(lsflag);
    704 
    705 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    706 	MUTEX_LOCKED(mtx);
    707 }
    708 
    709 /*
    710  * mutex_vector_exit:
    711  *
    712  *	Support routine for mutex_exit() that handles all cases.
    713  */
    714 void
    715 mutex_vector_exit(kmutex_t *mtx)
    716 {
    717 	turnstile_t *ts;
    718 	uintptr_t curthread;
    719 
    720 	if (MUTEX_SPIN_P(mtx)) {
    721 #ifdef FULL
    722 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    723 			if (panicstr != NULL)
    724 				return;
    725 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    726 		}
    727 		MUTEX_UNLOCKED(mtx);
    728 		__cpu_simple_unlock(&mtx->mtx_lock);
    729 #endif
    730 		MUTEX_SPIN_SPLRESTORE(mtx);
    731 		return;
    732 	}
    733 
    734 	if (__predict_false((uintptr_t)panicstr | cold)) {
    735 		MUTEX_UNLOCKED(mtx);
    736 		MUTEX_RELEASE(mtx);
    737 		return;
    738 	}
    739 
    740 	curthread = (uintptr_t)curlwp;
    741 	MUTEX_DASSERT(mtx, curthread != 0);
    742 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    743 	MUTEX_UNLOCKED(mtx);
    744 
    745 #ifdef LOCKDEBUG
    746 	/*
    747 	 * Avoid having to take the turnstile chain lock every time
    748 	 * around.  Raise the priority level to splhigh() in order
    749 	 * to disable preemption and so make the following atomic.
    750 	 */
    751 	{
    752 		int s = splhigh();
    753 		if (!MUTEX_HAS_WAITERS(mtx)) {
    754 			MUTEX_RELEASE(mtx);
    755 			splx(s);
    756 			return;
    757 		}
    758 		splx(s);
    759 	}
    760 #endif
    761 
    762 	/*
    763 	 * Get this lock's turnstile.  This gets the interlock on
    764 	 * the sleep queue.  Once we have that, we can clear the
    765 	 * lock.  If there was no turnstile for the lock, there
    766 	 * were no waiters remaining.
    767 	 */
    768 	ts = turnstile_lookup(mtx);
    769 
    770 	if (ts == NULL) {
    771 		MUTEX_RELEASE(mtx);
    772 		turnstile_exit(mtx);
    773 	} else {
    774 		MUTEX_RELEASE(mtx);
    775 		turnstile_wakeup(ts, TS_WRITER_Q,
    776 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    777 	}
    778 }
    779 
    780 #ifndef __HAVE_SIMPLE_MUTEXES
    781 /*
    782  * mutex_wakeup:
    783  *
    784  *	Support routine for mutex_exit() that wakes up all waiters.
    785  *	We assume that the mutex has been released, but it need not
    786  *	be.
    787  */
    788 void
    789 mutex_wakeup(kmutex_t *mtx)
    790 {
    791 	turnstile_t *ts;
    792 
    793 	ts = turnstile_lookup(mtx);
    794 	if (ts == NULL) {
    795 		turnstile_exit(mtx);
    796 		return;
    797 	}
    798 	MUTEX_CLEAR_WAITERS(mtx);
    799 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    800 }
    801 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    802 
    803 /*
    804  * mutex_owned:
    805  *
    806  *	Return true if the current LWP (adaptive) or CPU (spin)
    807  *	holds the mutex.
    808  */
    809 int
    810 mutex_owned(kmutex_t *mtx)
    811 {
    812 
    813 	if (mtx == NULL)
    814 		return 0;
    815 	if (MUTEX_ADAPTIVE_P(mtx))
    816 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    817 #ifdef FULL
    818 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    819 #else
    820 	return 1;
    821 #endif
    822 }
    823 
    824 /*
    825  * mutex_owner:
    826  *
    827  *	Return the current owner of an adaptive mutex.  Used for
    828  *	priority inheritance.
    829  */
    830 lwp_t *
    831 mutex_owner(kmutex_t *mtx)
    832 {
    833 
    834 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    835 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    836 }
    837 
    838 /*
    839  * mutex_tryenter:
    840  *
    841  *	Try to acquire the mutex; return non-zero if we did.
    842  */
    843 int
    844 mutex_tryenter(kmutex_t *mtx)
    845 {
    846 	uintptr_t curthread;
    847 
    848 	/*
    849 	 * Handle spin mutexes.
    850 	 */
    851 	if (MUTEX_SPIN_P(mtx)) {
    852 		MUTEX_SPIN_SPLRAISE(mtx);
    853 #ifdef FULL
    854 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    855 			MUTEX_WANTLOCK(mtx);
    856 			MUTEX_LOCKED(mtx);
    857 			return 1;
    858 		}
    859 		MUTEX_SPIN_SPLRESTORE(mtx);
    860 #else
    861 		MUTEX_WANTLOCK(mtx);
    862 		MUTEX_LOCKED(mtx);
    863 		return 1;
    864 #endif
    865 	} else {
    866 		curthread = (uintptr_t)curlwp;
    867 		MUTEX_ASSERT(mtx, curthread != 0);
    868 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    869 			MUTEX_WANTLOCK(mtx);
    870 			MUTEX_LOCKED(mtx);
    871 			MUTEX_DASSERT(mtx,
    872 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    873 			return 1;
    874 		}
    875 	}
    876 
    877 	return 0;
    878 }
    879 
    880 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    881 /*
    882  * mutex_spin_retry:
    883  *
    884  *	Support routine for mutex_spin_enter().  Assumes that the caller
    885  *	has already raised the SPL, and adjusted counters.
    886  */
    887 void
    888 mutex_spin_retry(kmutex_t *mtx)
    889 {
    890 #ifdef MULTIPROCESSOR
    891 	u_int count;
    892 	LOCKSTAT_TIMER(spintime);
    893 	LOCKSTAT_FLAG(lsflag);
    894 #ifdef LOCKDEBUG
    895 	u_int spins = 0;
    896 #endif	/* LOCKDEBUG */
    897 
    898 	MUTEX_WANTLOCK(mtx);
    899 
    900 	LOCKSTAT_ENTER(lsflag);
    901 	LOCKSTAT_START_TIMER(lsflag, spintime);
    902 	count = SPINLOCK_BACKOFF_MIN;
    903 
    904 	/*
    905 	 * Spin testing the lock word and do exponential backoff
    906 	 * to reduce cache line ping-ponging between CPUs.
    907 	 */
    908 	do {
    909 		if (panicstr != NULL)
    910 			break;
    911 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    912 			SPINLOCK_BACKOFF(count);
    913 #ifdef LOCKDEBUG
    914 			if (SPINLOCK_SPINOUT(spins))
    915 				MUTEX_ABORT(mtx, "spinout");
    916 #endif	/* LOCKDEBUG */
    917 		}
    918 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    919 
    920 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    921 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    922 	LOCKSTAT_EXIT(lsflag);
    923 
    924 	MUTEX_LOCKED(mtx);
    925 #else	/* MULTIPROCESSOR */
    926 	MUTEX_ABORT(mtx, "locking against myself");
    927 #endif	/* MULTIPROCESSOR */
    928 }
    929 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    930