kern_mutex.c revision 1.5 1 /* $NetBSD: kern_mutex.c,v 1.5 2007/02/26 09:20:53 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Kernel mutex implementation, modeled after those found in Solaris,
41 * a description of which can be found in:
42 *
43 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
44 * Richard McDougall.
45 */
46
47 #include "opt_multiprocessor.h"
48
49 #define __MUTEX_PRIVATE
50
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.5 2007/02/26 09:20:53 yamt Exp $");
53
54 #include <sys/param.h>
55 #include <sys/proc.h>
56 #include <sys/mutex.h>
57 #include <sys/sched.h>
58 #include <sys/sleepq.h>
59 #include <sys/systm.h>
60 #include <sys/lockdebug.h>
61 #include <sys/kernel.h>
62
63 #include <dev/lockstat.h>
64
65 #include <machine/intr.h>
66
67 /*
68 * When not running a debug kernel, spin mutexes are not much
69 * more than an splraiseipl() and splx() pair.
70 */
71
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define FULL
74 #endif
75
76 /*
77 * Debugging support.
78 */
79
80 #define MUTEX_WANTLOCK(mtx) \
81 LOCKDEBUG_WANTLOCK(MUTEX_GETID(mtx), \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_LOCKED(mtx) \
84 LOCKDEBUG_LOCKED(MUTEX_GETID(mtx), \
85 (uintptr_t)__builtin_return_address(0), 0)
86 #define MUTEX_UNLOCKED(mtx) \
87 LOCKDEBUG_UNLOCKED(MUTEX_GETID(mtx), \
88 (uintptr_t)__builtin_return_address(0), 0)
89 #define MUTEX_ABORT(mtx, msg) \
90 mutex_abort(mtx, __FUNCTION__, msg)
91
92 #if defined(LOCKDEBUG)
93
94 #define MUTEX_DASSERT(mtx, cond) \
95 do { \
96 if (!(cond)) \
97 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
98 } while (/* CONSTCOND */ 0);
99
100 #else /* LOCKDEBUG */
101
102 #define MUTEX_DASSERT(mtx, cond) /* nothing */
103
104 #endif /* LOCKDEBUG */
105
106 #if defined(DIAGNOSTIC)
107
108 #define MUTEX_ASSERT(mtx, cond) \
109 do { \
110 if (!(cond)) \
111 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
112 } while (/* CONSTCOND */ 0)
113
114 #else /* DIAGNOSTIC */
115
116 #define MUTEX_ASSERT(mtx, cond) /* nothing */
117
118 #endif /* DIAGNOSTIC */
119
120 /*
121 * Spin mutex SPL save / restore.
122 */
123
124 #define MUTEX_SPIN_SPLRAISE(mtx) \
125 do { \
126 struct cpu_info *x__ci = curcpu(); \
127 int x__cnt, s; \
128 x__cnt = x__ci->ci_mtx_count--; \
129 s = splraiseipl(mtx->mtx_ipl); \
130 if (x__cnt == 0) \
131 x__ci->ci_mtx_oldspl = (s); \
132 } while (/* CONSTCOND */ 0)
133
134 #define MUTEX_SPIN_SPLRESTORE(mtx) \
135 do { \
136 struct cpu_info *x__ci = curcpu(); \
137 int s = x__ci->ci_mtx_oldspl; \
138 __insn_barrier(); \
139 if (++(x__ci->ci_mtx_count) == 0) \
140 splx(s); \
141 } while (/* CONSTCOND */ 0)
142
143 /*
144 * For architectures that provide 'simple' mutexes: they provide a
145 * CAS function that is either MP-safe, or does not need to be MP
146 * safe. Adaptive mutexes on these architectures do not require an
147 * additional interlock.
148 */
149
150 #ifdef __HAVE_SIMPLE_MUTEXES
151
152 #define MUTEX_OWNER(owner) \
153 (owner & MUTEX_THREAD)
154 #define MUTEX_OWNED(owner) \
155 (owner != 0)
156 #define MUTEX_HAS_WAITERS(mtx) \
157 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
158
159 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, id) \
160 do { \
161 (mtx)->mtx_id = (id); \
162 } while (/* CONSTCOND */ 0);
163
164 #define MUTEX_INITIALIZE_SPIN(mtx, id, ipl) \
165 do { \
166 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
167 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
168 (mtx)->mtx_id = (id); \
169 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
170 } while (/* CONSTCOND */ 0)
171
172 #define MUTEX_DESTROY(mtx) \
173 do { \
174 (mtx)->mtx_owner = MUTEX_THREAD; \
175 (mtx)->mtx_id = -1; \
176 } while (/* CONSTCOND */ 0);
177
178 #define MUTEX_SPIN_P(mtx) \
179 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
180 #define MUTEX_ADAPTIVE_P(mtx) \
181 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
182
183 #define MUTEX_GETID(mtx) ((mtx)->mtx_id)
184
185 static inline int
186 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
187 {
188 int rv;
189 rv = MUTEX_CAS(&mtx->mtx_owner, 0UL, curthread);
190 MUTEX_RECEIVE();
191 return rv;
192 }
193
194 static inline int
195 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
196 {
197 int rv;
198 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
199 MUTEX_RECEIVE();
200 return rv;
201 }
202
203 static inline void
204 MUTEX_RELEASE(kmutex_t *mtx)
205 {
206 MUTEX_GIVE();
207 mtx->mtx_owner = 0;
208 }
209
210 static inline void
211 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
212 {
213 /* nothing */
214 }
215 #endif /* __HAVE_SIMPLE_MUTEXES */
216
217 /*
218 * Patch in stubs via strong alias where they are not available.
219 */
220
221 #if defined(LOCKDEBUG)
222 #undef __HAVE_MUTEX_STUBS
223 #undef __HAVE_SPIN_MUTEX_STUBS
224 #endif
225
226 #ifndef __HAVE_MUTEX_STUBS
227 __strong_alias(mutex_enter, mutex_vector_enter);
228 __strong_alias(mutex_exit, mutex_vector_exit);
229 #endif
230
231 #ifndef __HAVE_SPIN_MUTEX_STUBS
232 __strong_alias(mutex_spin_enter, mutex_vector_enter);
233 __strong_alias(mutex_spin_exit, mutex_vector_exit);
234 #endif
235
236 void mutex_abort(kmutex_t *, const char *, const char *);
237 void mutex_dump(volatile void *);
238 int mutex_onproc(uintptr_t, struct cpu_info **);
239 static struct lwp *mutex_getowner(wchan_t); /* XXX naming conflict */
240
241 lockops_t mutex_spin_lockops = {
242 "Mutex",
243 0,
244 mutex_dump
245 };
246
247 lockops_t mutex_adaptive_lockops = {
248 "Mutex",
249 1,
250 mutex_dump
251 };
252
253 syncobj_t mutex_syncobj = {
254 SOBJ_SLEEPQ_SORTED,
255 turnstile_unsleep,
256 turnstile_changepri,
257 sleepq_lendpri,
258 mutex_getowner,
259 };
260
261 /*
262 * mutex_dump:
263 *
264 * Dump the contents of a mutex structure.
265 */
266 void
267 mutex_dump(volatile void *cookie)
268 {
269 volatile kmutex_t *mtx = cookie;
270
271 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
272 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
273 MUTEX_SPIN_P(mtx));
274 }
275
276 /*
277 * mutex_abort:
278 *
279 * Dump information about an error and panic the system. This
280 * generates a lot of machine code in the DIAGNOSTIC case, so
281 * we ask the compiler to not inline it.
282 */
283 __attribute ((noinline)) __attribute ((noreturn)) void
284 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
285 {
286
287 LOCKDEBUG_ABORT(MUTEX_GETID(mtx), mtx, (MUTEX_SPIN_P(mtx) ?
288 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
289 /* NOTREACHED */
290 }
291
292 /*
293 * mutex_init:
294 *
295 * Initialize a mutex for use. Note that adaptive mutexes are in
296 * essence spin mutexes that can sleep to avoid deadlock and wasting
297 * CPU time. We can't easily provide a type of mutex that always
298 * sleeps - see comments in mutex_vector_enter() about releasing
299 * mutexes unlocked.
300 */
301 void
302 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
303 {
304 u_int id;
305
306 memset(mtx, 0, sizeof(*mtx));
307
308 if (type == MUTEX_DRIVER)
309 type = (ipl == IPL_NONE ? MUTEX_ADAPTIVE : MUTEX_SPIN);
310
311 switch (type) {
312 case MUTEX_ADAPTIVE:
313 case MUTEX_DEFAULT:
314 KASSERT(ipl == IPL_NONE);
315 id = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops);
316 MUTEX_INITIALIZE_ADAPTIVE(mtx, id);
317 break;
318 case MUTEX_SPIN:
319 id = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops);
320 MUTEX_INITIALIZE_SPIN(mtx, id, ipl);
321 break;
322 default:
323 panic("mutex_init: impossible type");
324 break;
325 }
326 }
327
328 /*
329 * mutex_destroy:
330 *
331 * Tear down a mutex.
332 */
333 void
334 mutex_destroy(kmutex_t *mtx)
335 {
336
337 if (MUTEX_ADAPTIVE_P(mtx)) {
338 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
339 !MUTEX_HAS_WAITERS(mtx));
340 } else {
341 MUTEX_ASSERT(mtx, mtx->mtx_lock != __SIMPLELOCK_LOCKED);
342 }
343
344 LOCKDEBUG_FREE(mtx, MUTEX_GETID(mtx));
345 MUTEX_DESTROY(mtx);
346 }
347
348 /*
349 * mutex_onproc:
350 *
351 * Return true if an adaptive mutex owner is running on a CPU in the
352 * system. If the target is waiting on the kernel big lock, then we
353 * return false immediately. This is necessary to avoid deadlock
354 * against the big lock.
355 *
356 * Note that we can't use the mutex owner field as an LWP pointer. We
357 * don't have full control over the timing of our execution, and so the
358 * pointer could be completely invalid by the time we dereference it.
359 *
360 * XXX This should be optimised further to reduce potential cache line
361 * ping-ponging and skewing of the spin time while busy waiting.
362 */
363 #ifdef MULTIPROCESSOR
364 int
365 mutex_onproc(uintptr_t owner, struct cpu_info **cip)
366 {
367 CPU_INFO_ITERATOR cii;
368 struct cpu_info *ci;
369 struct lwp *l;
370
371 if (!MUTEX_OWNED(owner))
372 return 0;
373 l = (struct lwp *)MUTEX_OWNER(owner);
374
375 if ((ci = *cip) != NULL && ci->ci_curlwp == l) {
376 mb_read(); /* XXXSMP Very expensive, necessary? */
377 return ci->ci_biglock_wanted != l;
378 }
379
380 for (CPU_INFO_FOREACH(cii, ci)) {
381 if (ci->ci_curlwp == l) {
382 *cip = ci;
383 mb_read(); /* XXXSMP Very expensive, necessary? */
384 return ci->ci_biglock_wanted != l;
385 }
386 }
387
388 *cip = NULL;
389 return 0;
390 }
391 #endif
392
393 /*
394 * mutex_vector_enter:
395 *
396 * Support routine for mutex_enter() that must handles all cases. In
397 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
398 * fast-path stubs are available. If an mutex_spin_enter() stub is
399 * not available, then it is also aliased directly here.
400 */
401 void
402 mutex_vector_enter(kmutex_t *mtx)
403 {
404 uintptr_t owner, curthread;
405 turnstile_t *ts;
406 #ifdef MULTIPROCESSOR
407 struct cpu_info *ci = NULL;
408 u_int count;
409 #endif
410 LOCKSTAT_COUNTER(spincnt);
411 LOCKSTAT_COUNTER(slpcnt);
412 LOCKSTAT_TIMER(spintime);
413 LOCKSTAT_TIMER(slptime);
414 LOCKSTAT_FLAG(lsflag);
415
416 /*
417 * Handle spin mutexes.
418 */
419 if (MUTEX_SPIN_P(mtx)) {
420 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
421 u_int spins = 0;
422 #endif
423 MUTEX_SPIN_SPLRAISE(mtx);
424 MUTEX_WANTLOCK(mtx);
425 #ifdef FULL
426 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
427 MUTEX_LOCKED(mtx);
428 return;
429 }
430 #if !defined(MULTIPROCESSOR)
431 MUTEX_ABORT(mtx, "locking against myself");
432 #else /* !MULTIPROCESSOR */
433
434 LOCKSTAT_ENTER(lsflag);
435 LOCKSTAT_START_TIMER(lsflag, spintime);
436 count = SPINLOCK_BACKOFF_MIN;
437
438 /*
439 * Spin testing the lock word and do exponential backoff
440 * to reduce cache line ping-ponging between CPUs.
441 */
442 do {
443 if (panicstr != NULL)
444 break;
445 while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
446 SPINLOCK_BACKOFF(count);
447 #ifdef LOCKDEBUG
448 if (SPINLOCK_SPINOUT(spins))
449 MUTEX_ABORT(mtx, "spinout");
450 #endif /* LOCKDEBUG */
451 }
452 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
453
454 if (count != SPINLOCK_BACKOFF_MIN) {
455 LOCKSTAT_STOP_TIMER(lsflag, spintime);
456 LOCKSTAT_EVENT(lsflag, mtx,
457 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
458 }
459 LOCKSTAT_EXIT(lsflag);
460 #endif /* !MULTIPROCESSOR */
461 #endif /* FULL */
462 MUTEX_LOCKED(mtx);
463 return;
464 }
465
466 curthread = (uintptr_t)curlwp;
467
468 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
469 MUTEX_ASSERT(mtx, curthread != 0);
470 MUTEX_WANTLOCK(mtx);
471
472 #ifdef LOCKDEBUG
473 if (panicstr == NULL) {
474 simple_lock_only_held(NULL, "mutex_enter");
475 #ifdef MULTIPROCESSOR
476 LOCKDEBUG_BARRIER(&kernel_lock, 1);
477 #else
478 LOCKDEBUG_BARRIER(NULL, 1);
479 #endif
480 }
481 #endif
482
483 LOCKSTAT_ENTER(lsflag);
484
485 /*
486 * Adaptive mutex; spin trying to acquire the mutex. If we
487 * determine that the owner is not running on a processor,
488 * then we stop spinning, and sleep instead.
489 */
490 for (;;) {
491 owner = mtx->mtx_owner;
492 if (!MUTEX_OWNED(owner)) {
493 /*
494 * Mutex owner clear could mean two things:
495 *
496 * * The mutex has been released.
497 * * The owner field hasn't been set yet.
498 *
499 * Try to acquire it again. If that fails,
500 * we'll just loop again.
501 */
502 if (MUTEX_ACQUIRE(mtx, curthread))
503 break;
504 continue;
505 }
506
507 if (panicstr != NULL)
508 return;
509 if (MUTEX_OWNER(owner) == curthread)
510 MUTEX_ABORT(mtx, "locking against myself");
511
512 #ifdef MULTIPROCESSOR
513 /*
514 * Check to see if the owner is running on a processor.
515 * If so, then we should just spin, as the owner will
516 * likely release the lock very soon.
517 */
518 if (mutex_onproc(owner, &ci)) {
519 LOCKSTAT_START_TIMER(lsflag, spintime);
520 count = SPINLOCK_BACKOFF_MIN;
521 for (;;) {
522 owner = mtx->mtx_owner;
523 if (!mutex_onproc(owner, &ci))
524 break;
525 SPINLOCK_BACKOFF(count);
526 }
527 LOCKSTAT_STOP_TIMER(lsflag, spintime);
528 LOCKSTAT_COUNT(spincnt, 1);
529 if (!MUTEX_OWNED(owner))
530 continue;
531 }
532 #endif
533
534 ts = turnstile_lookup(mtx);
535
536 /*
537 * Once we have the turnstile chain interlock, mark the
538 * mutex has having waiters. If that fails, spin again:
539 * chances are that the mutex has been released.
540 */
541 if (!MUTEX_SET_WAITERS(mtx, owner)) {
542 turnstile_exit(mtx);
543 continue;
544 }
545
546 #ifdef MULTIPROCESSOR
547 /*
548 * mutex_exit() is permitted to release the mutex without
549 * any interlocking instructions, and the following can
550 * occur as a result:
551 *
552 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
553 * ---------------------------- ----------------------------
554 * .. acquire cache line
555 * .. test for waiters
556 * acquire cache line <- lose cache line
557 * lock cache line ..
558 * verify mutex is held ..
559 * set waiters ..
560 * unlock cache line ..
561 * lose cache line -> acquire cache line
562 * .. clear lock word, waiters
563 * return success
564 *
565 * There is a another race that can occur: a third CPU could
566 * acquire the mutex as soon as it is released. Since
567 * adaptive mutexes are primarily spin mutexes, this is not
568 * something that we need to worry about too much. What we
569 * do need to ensure is that the waiters bit gets set.
570 *
571 * To allow the unlocked release, we need to make some
572 * assumptions here:
573 *
574 * o Release is the only non-atomic/unlocked operation
575 * that can be performed on the mutex. (It must still
576 * be atomic on the local CPU, e.g. in case interrupted
577 * or preempted).
578 *
579 * o At any given time, MUTEX_SET_WAITERS() can only ever
580 * be in progress on one CPU in the system - guarenteed
581 * by the turnstile chain lock.
582 *
583 * o No other operations other than MUTEX_SET_WAITERS()
584 * and release can modify a mutex with a non-zero
585 * owner field.
586 *
587 * o The result of a successful MUTEX_SET_WAITERS() call
588 * is an unbuffered write that is immediately visible
589 * to all other processors in the system.
590 *
591 * o If the holding LWP switches away, it posts a store
592 * fence before changing curlwp, ensuring that any
593 * overwrite of the mutex waiters flag by mutex_exit()
594 * completes before the modification of curlwp becomes
595 * visible to this CPU.
596 *
597 * o cpu_switch() posts a store fence before setting curlwp
598 * and before resuming execution of an LWP.
599 *
600 * o _kernel_lock() posts a store fence before setting
601 * curcpu()->ci_biglock_wanted, and after clearing it.
602 * This ensures that any overwrite of the mutex waiters
603 * flag by mutex_exit() completes before the modification
604 * of ci_biglock_wanted becomes visible.
605 *
606 * We now post a read memory barrier (after setting the
607 * waiters field) and check the lock holder's status again.
608 * Some of the possible outcomes (not an exhaustive list):
609 *
610 * 1. The onproc check returns true: the holding LWP is
611 * running again. The lock may be released soon and
612 * we should spin. Importantly, we can't trust the
613 * value of the waiters flag.
614 *
615 * 2. The onproc check returns false: the holding LWP is
616 * not running. We now have the oppertunity to check
617 * if mutex_exit() has blatted the modifications made
618 * by MUTEX_SET_WAITERS().
619 *
620 * 3. The onproc check returns false: the holding LWP may
621 * or may not be running. It has context switched at
622 * some point during our check. Again, we have the
623 * chance to see if the waiters bit is still set or
624 * has been overwritten.
625 *
626 * 4. The onproc check returns false: the holding LWP is
627 * running on a CPU, but wants the big lock. It's OK
628 * to check the waiters field in this case.
629 *
630 * 5. The has-waiters check fails: the mutex has been
631 * released, the waiters flag cleared and another LWP
632 * now owns the mutex.
633 *
634 * 6. The has-waiters check fails: the mutex has been
635 * released.
636 *
637 * If the waiters bit is not set it's unsafe to go asleep,
638 * as we might never be awoken.
639 */
640 mb_read();
641 if (mutex_onproc(owner, &ci) || !MUTEX_HAS_WAITERS(mtx)) {
642 turnstile_exit(mtx);
643 continue;
644 }
645 #endif /* MULTIPROCESSOR */
646
647 LOCKSTAT_START_TIMER(lsflag, slptime);
648
649 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
650
651 LOCKSTAT_STOP_TIMER(lsflag, slptime);
652 LOCKSTAT_COUNT(slpcnt, 1);
653
654 turnstile_unblock();
655 }
656
657 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
658 slpcnt, slptime);
659 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
660 spincnt, spintime);
661 LOCKSTAT_EXIT(lsflag);
662
663 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
664 MUTEX_LOCKED(mtx);
665 }
666
667 /*
668 * mutex_vector_exit:
669 *
670 * Support routine for mutex_exit() that handles all cases.
671 */
672 void
673 mutex_vector_exit(kmutex_t *mtx)
674 {
675 turnstile_t *ts;
676 uintptr_t curthread;
677
678 if (MUTEX_SPIN_P(mtx)) {
679 #ifdef FULL
680 if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
681 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
682 MUTEX_UNLOCKED(mtx);
683 __cpu_simple_unlock(&mtx->mtx_lock);
684 #endif
685 MUTEX_SPIN_SPLRESTORE(mtx);
686 return;
687 }
688
689 if (__predict_false(panicstr != NULL) || __predict_false(cold)) {
690 MUTEX_UNLOCKED(mtx);
691 MUTEX_RELEASE(mtx);
692 return;
693 }
694
695 curthread = (uintptr_t)curlwp;
696 MUTEX_DASSERT(mtx, curthread != 0);
697 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
698 MUTEX_UNLOCKED(mtx);
699
700 /*
701 * Get this lock's turnstile. This gets the interlock on
702 * the sleep queue. Once we have that, we can clear the
703 * lock. If there was no turnstile for the lock, there
704 * were no waiters remaining.
705 */
706 ts = turnstile_lookup(mtx);
707
708 if (ts == NULL) {
709 MUTEX_RELEASE(mtx);
710 turnstile_exit(mtx);
711 } else {
712 MUTEX_RELEASE(mtx);
713 turnstile_wakeup(ts, TS_WRITER_Q,
714 TS_WAITERS(ts, TS_WRITER_Q), NULL);
715 }
716 }
717
718 #ifndef __HAVE_SIMPLE_MUTEXES
719 /*
720 * mutex_wakeup:
721 *
722 * Support routine for mutex_exit() that wakes up all waiters.
723 * We assume that the mutex has been released, but it need not
724 * be.
725 */
726 void
727 mutex_wakeup(kmutex_t *mtx)
728 {
729 turnstile_t *ts;
730
731 ts = turnstile_lookup(mtx);
732 if (ts == NULL) {
733 turnstile_exit(mtx);
734 return;
735 }
736 MUTEX_CLEAR_WAITERS(mtx);
737 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
738 }
739 #endif /* !__HAVE_SIMPLE_MUTEXES */
740
741 /*
742 * mutex_owned:
743 *
744 * Return true if the current LWP (adaptive) or CPU (spin)
745 * holds the mutex.
746 */
747 int
748 mutex_owned(kmutex_t *mtx)
749 {
750
751 if (MUTEX_ADAPTIVE_P(mtx))
752 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
753 #ifdef FULL
754 return mtx->mtx_lock == __SIMPLELOCK_LOCKED;
755 #else
756 return 1;
757 #endif
758 }
759
760 /*
761 * mutex_owner:
762 *
763 * Return the current owner of an adaptive mutex.
764 */
765 struct lwp *
766 mutex_owner(kmutex_t *mtx)
767 {
768
769 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
770 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
771 }
772
773 static struct lwp *
774 mutex_getowner(wchan_t obj)
775 {
776 kmutex_t *mtx = (void *)(uintptr_t)obj; /* discard qualifiers */
777
778 return mutex_owner(mtx);
779 }
780
781 /*
782 * mutex_tryenter:
783 *
784 * Try to acquire the mutex; return non-zero if we did.
785 */
786 int
787 mutex_tryenter(kmutex_t *mtx)
788 {
789 uintptr_t curthread;
790
791 /*
792 * Handle spin mutexes.
793 */
794 if (MUTEX_SPIN_P(mtx)) {
795 MUTEX_SPIN_SPLRAISE(mtx);
796 #ifdef FULL
797 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
798 MUTEX_WANTLOCK(mtx);
799 MUTEX_LOCKED(mtx);
800 return 1;
801 }
802 MUTEX_SPIN_SPLRESTORE(mtx);
803 #else
804 MUTEX_WANTLOCK(mtx);
805 MUTEX_LOCKED(mtx);
806 return 1;
807 #endif
808 } else {
809 curthread = (uintptr_t)curlwp;
810 MUTEX_ASSERT(mtx, curthread != 0);
811 if (MUTEX_ACQUIRE(mtx, curthread)) {
812 MUTEX_WANTLOCK(mtx);
813 MUTEX_LOCKED(mtx);
814 MUTEX_DASSERT(mtx,
815 MUTEX_OWNER(mtx->mtx_owner) == curthread);
816 return 1;
817 }
818 }
819
820 return 0;
821 }
822
823 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
824 /*
825 * mutex_spin_retry:
826 *
827 * Support routine for mutex_spin_enter(). Assumes that the caller
828 * has already raised the SPL, and adjusted counters.
829 */
830 void
831 mutex_spin_retry(kmutex_t *mtx)
832 {
833 #ifdef MULTIPROCESSOR
834 u_int count;
835 LOCKSTAT_TIMER(spintime);
836 LOCKSTAT_FLAG(lsflag);
837 #ifdef LOCKDEBUG
838 u_int spins = 0;
839 #endif /* LOCKDEBUG */
840
841 MUTEX_WANTLOCK(mtx);
842
843 LOCKSTAT_ENTER(lsflag);
844 LOCKSTAT_START_TIMER(lsflag, spintime);
845 count = SPINLOCK_BACKOFF_MIN;
846
847 /*
848 * Spin testing the lock word and do exponential backoff
849 * to reduce cache line ping-ponging between CPUs.
850 */
851 do {
852 if (panicstr != NULL)
853 break;
854 while (mtx->mtx_lock == __SIMPLELOCK_LOCKED) {
855 SPINLOCK_BACKOFF(count);
856 #ifdef LOCKDEBUG
857 if (SPINLOCK_SPINOUT(spins))
858 MUTEX_ABORT(mtx, "spinout");
859 #endif /* LOCKDEBUG */
860 }
861 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
862
863 LOCKSTAT_STOP_TIMER(lsflag, spintime);
864 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
865 LOCKSTAT_EXIT(lsflag);
866
867 MUTEX_LOCKED(mtx);
868 #else /* MULTIPROCESSOR */
869 MUTEX_ABORT(mtx, "locking against myself");
870 #endif /* MULTIPROCESSOR */
871 }
872 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
873
874 /*
875 * sched_lock_idle:
876 *
877 * XXX Ugly hack for cpu_switch().
878 */
879 void
880 sched_lock_idle(void)
881 {
882 #ifdef FULL
883 kmutex_t *mtx = &sched_mutex;
884
885 curcpu()->ci_mtx_count--;
886
887 if (!__cpu_simple_lock_try(&mtx->mtx_lock)) {
888 mutex_spin_retry(mtx);
889 return;
890 }
891
892 MUTEX_LOCKED(mtx);
893 #else
894 curcpu()->ci_mtx_count--;
895 #endif /* FULL */
896 }
897
898 /*
899 * sched_unlock_idle:
900 *
901 * XXX Ugly hack for cpu_switch().
902 */
903 void
904 sched_unlock_idle(void)
905 {
906 #ifdef FULL
907 kmutex_t *mtx = &sched_mutex;
908
909 if (mtx->mtx_lock != __SIMPLELOCK_LOCKED)
910 MUTEX_ABORT(mtx, "sched_unlock_idle");
911
912 MUTEX_UNLOCKED(mtx);
913 __cpu_simple_unlock(&mtx->mtx_lock);
914 #endif /* FULL */
915 curcpu()->ci_mtx_count++;
916 }
917