kern_mutex.c revision 1.50 1 /* $NetBSD: kern_mutex.c,v 1.50 2011/03/20 23:19:16 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel mutex implementation, modeled after those found in Solaris,
34 * a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #define __MUTEX_PRIVATE
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.50 2011/03/20 23:19:16 rmind Exp $");
44
45 #include <sys/param.h>
46 #include <sys/atomic.h>
47 #include <sys/proc.h>
48 #include <sys/mutex.h>
49 #include <sys/sched.h>
50 #include <sys/sleepq.h>
51 #include <sys/systm.h>
52 #include <sys/lockdebug.h>
53 #include <sys/kernel.h>
54 #include <sys/intr.h>
55 #include <sys/lock.h>
56 #include <sys/types.h>
57
58 #include <dev/lockstat.h>
59
60 #include <machine/lock.h>
61
62 #include "opt_sa.h"
63
64 /*
65 * When not running a debug kernel, spin mutexes are not much
66 * more than an splraiseipl() and splx() pair.
67 */
68
69 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
70 #define FULL
71 #endif
72
73 /*
74 * Debugging support.
75 */
76
77 #define MUTEX_WANTLOCK(mtx) \
78 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
79 (uintptr_t)__builtin_return_address(0), false, false)
80 #define MUTEX_LOCKED(mtx) \
81 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_UNLOCKED(mtx) \
84 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
85 (uintptr_t)__builtin_return_address(0), 0)
86 #define MUTEX_ABORT(mtx, msg) \
87 mutex_abort(mtx, __func__, msg)
88
89 #if defined(LOCKDEBUG)
90
91 #define MUTEX_DASSERT(mtx, cond) \
92 do { \
93 if (!(cond)) \
94 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
95 } while (/* CONSTCOND */ 0);
96
97 #else /* LOCKDEBUG */
98
99 #define MUTEX_DASSERT(mtx, cond) /* nothing */
100
101 #endif /* LOCKDEBUG */
102
103 #if defined(DIAGNOSTIC)
104
105 #define MUTEX_ASSERT(mtx, cond) \
106 do { \
107 if (!(cond)) \
108 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
109 } while (/* CONSTCOND */ 0)
110
111 #else /* DIAGNOSTIC */
112
113 #define MUTEX_ASSERT(mtx, cond) /* nothing */
114
115 #endif /* DIAGNOSTIC */
116
117 /*
118 * Spin mutex SPL save / restore.
119 */
120 #ifndef MUTEX_COUNT_BIAS
121 #define MUTEX_COUNT_BIAS 0
122 #endif
123
124 #define MUTEX_SPIN_SPLRAISE(mtx) \
125 do { \
126 struct cpu_info *x__ci; \
127 int x__cnt, s; \
128 s = splraiseipl(mtx->mtx_ipl); \
129 x__ci = curcpu(); \
130 x__cnt = x__ci->ci_mtx_count--; \
131 __insn_barrier(); \
132 if (x__cnt == MUTEX_COUNT_BIAS) \
133 x__ci->ci_mtx_oldspl = (s); \
134 } while (/* CONSTCOND */ 0)
135
136 #define MUTEX_SPIN_SPLRESTORE(mtx) \
137 do { \
138 struct cpu_info *x__ci = curcpu(); \
139 int s = x__ci->ci_mtx_oldspl; \
140 __insn_barrier(); \
141 if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \
142 splx(s); \
143 } while (/* CONSTCOND */ 0)
144
145 /*
146 * For architectures that provide 'simple' mutexes: they provide a
147 * CAS function that is either MP-safe, or does not need to be MP
148 * safe. Adaptive mutexes on these architectures do not require an
149 * additional interlock.
150 */
151
152 #ifdef __HAVE_SIMPLE_MUTEXES
153
154 #define MUTEX_OWNER(owner) \
155 (owner & MUTEX_THREAD)
156 #define MUTEX_HAS_WAITERS(mtx) \
157 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
158
159 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
160 if (!dodebug) \
161 (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
162 do { \
163 } while (/* CONSTCOND */ 0);
164
165 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
166 do { \
167 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
168 if (!dodebug) \
169 (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
170 (mtx)->mtx_ipl = makeiplcookie((ipl)); \
171 __cpu_simple_lock_init(&(mtx)->mtx_lock); \
172 } while (/* CONSTCOND */ 0)
173
174 #define MUTEX_DESTROY(mtx) \
175 do { \
176 (mtx)->mtx_owner = MUTEX_THREAD; \
177 } while (/* CONSTCOND */ 0);
178
179 #define MUTEX_SPIN_P(mtx) \
180 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
181 #define MUTEX_ADAPTIVE_P(mtx) \
182 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
183
184 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
185 #if defined(LOCKDEBUG)
186 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
187 #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_NODEBUG
188 #else /* defined(LOCKDEBUG) */
189 #define MUTEX_OWNED(owner) ((owner) != 0)
190 #define MUTEX_INHERITDEBUG(new, old) /* nothing */
191 #endif /* defined(LOCKDEBUG) */
192
193 static inline int
194 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
195 {
196 int rv;
197 uintptr_t old = 0;
198 uintptr_t new = curthread;
199
200 MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
201 MUTEX_INHERITDEBUG(new, old);
202 rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
203 MUTEX_RECEIVE(mtx);
204 return rv;
205 }
206
207 static inline int
208 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
209 {
210 int rv;
211 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
212 MUTEX_RECEIVE(mtx);
213 return rv;
214 }
215
216 static inline void
217 MUTEX_RELEASE(kmutex_t *mtx)
218 {
219 uintptr_t new;
220
221 MUTEX_GIVE(mtx);
222 new = 0;
223 MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
224 mtx->mtx_owner = new;
225 }
226
227 static inline void
228 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
229 {
230 /* nothing */
231 }
232 #endif /* __HAVE_SIMPLE_MUTEXES */
233
234 /*
235 * Patch in stubs via strong alias where they are not available.
236 */
237
238 #if defined(LOCKDEBUG)
239 #undef __HAVE_MUTEX_STUBS
240 #undef __HAVE_SPIN_MUTEX_STUBS
241 #endif
242
243 #ifndef __HAVE_MUTEX_STUBS
244 __strong_alias(mutex_enter,mutex_vector_enter);
245 __strong_alias(mutex_exit,mutex_vector_exit);
246 #endif
247
248 #ifndef __HAVE_SPIN_MUTEX_STUBS
249 __strong_alias(mutex_spin_enter,mutex_vector_enter);
250 __strong_alias(mutex_spin_exit,mutex_vector_exit);
251 #endif
252
253 static void mutex_abort(kmutex_t *, const char *, const char *);
254 static void mutex_dump(volatile void *);
255
256 lockops_t mutex_spin_lockops = {
257 "Mutex",
258 LOCKOPS_SPIN,
259 mutex_dump
260 };
261
262 lockops_t mutex_adaptive_lockops = {
263 "Mutex",
264 LOCKOPS_SLEEP,
265 mutex_dump
266 };
267
268 syncobj_t mutex_syncobj = {
269 SOBJ_SLEEPQ_SORTED,
270 turnstile_unsleep,
271 turnstile_changepri,
272 sleepq_lendpri,
273 (void *)mutex_owner,
274 };
275
276 /*
277 * mutex_dump:
278 *
279 * Dump the contents of a mutex structure.
280 */
281 void
282 mutex_dump(volatile void *cookie)
283 {
284 volatile kmutex_t *mtx = cookie;
285
286 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
287 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
288 MUTEX_SPIN_P(mtx));
289 }
290
291 /*
292 * mutex_abort:
293 *
294 * Dump information about an error and panic the system. This
295 * generates a lot of machine code in the DIAGNOSTIC case, so
296 * we ask the compiler to not inline it.
297 */
298 void __noinline
299 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
300 {
301
302 LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
303 &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
304 }
305
306 /*
307 * mutex_init:
308 *
309 * Initialize a mutex for use. Note that adaptive mutexes are in
310 * essence spin mutexes that can sleep to avoid deadlock and wasting
311 * CPU time. We can't easily provide a type of mutex that always
312 * sleeps - see comments in mutex_vector_enter() about releasing
313 * mutexes unlocked.
314 */
315 void
316 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
317 {
318 bool dodebug;
319
320 memset(mtx, 0, sizeof(*mtx));
321
322 switch (type) {
323 case MUTEX_ADAPTIVE:
324 KASSERT(ipl == IPL_NONE);
325 break;
326 case MUTEX_DEFAULT:
327 case MUTEX_DRIVER:
328 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
329 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
330 ipl == IPL_SOFTSERIAL) {
331 type = MUTEX_ADAPTIVE;
332 } else {
333 type = MUTEX_SPIN;
334 }
335 break;
336 default:
337 break;
338 }
339
340 switch (type) {
341 case MUTEX_NODEBUG:
342 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
343 (uintptr_t)__builtin_return_address(0));
344 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
345 break;
346 case MUTEX_ADAPTIVE:
347 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
348 (uintptr_t)__builtin_return_address(0));
349 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
350 break;
351 case MUTEX_SPIN:
352 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
353 (uintptr_t)__builtin_return_address(0));
354 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
355 break;
356 default:
357 panic("mutex_init: impossible type");
358 break;
359 }
360 }
361
362 /*
363 * mutex_destroy:
364 *
365 * Tear down a mutex.
366 */
367 void
368 mutex_destroy(kmutex_t *mtx)
369 {
370
371 if (MUTEX_ADAPTIVE_P(mtx)) {
372 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
373 !MUTEX_HAS_WAITERS(mtx));
374 } else {
375 MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
376 }
377
378 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
379 MUTEX_DESTROY(mtx);
380 }
381
382 #ifdef MULTIPROCESSOR
383 /*
384 * mutex_oncpu:
385 *
386 * Return true if an adaptive mutex owner is running on a CPU in the
387 * system. If the target is waiting on the kernel big lock, then we
388 * must release it. This is necessary to avoid deadlock.
389 */
390 static bool
391 mutex_oncpu(uintptr_t owner)
392 {
393 struct cpu_info *ci;
394 lwp_t *l;
395
396 KASSERT(kpreempt_disabled());
397
398 if (!MUTEX_OWNED(owner)) {
399 return false;
400 }
401
402 /*
403 * See lwp_dtor() why dereference of the LWP pointer is safe.
404 * We must have kernel preemption disabled for that.
405 */
406 l = (lwp_t *)MUTEX_OWNER(owner);
407 ci = l->l_cpu;
408
409 if (ci && ci->ci_curlwp == l) {
410 /* Target is running; do we need to block? */
411 return (ci->ci_biglock_wanted != l);
412 }
413
414 /* Not running. It may be safe to block now. */
415 return false;
416 }
417 #endif /* MULTIPROCESSOR */
418
419 /*
420 * mutex_vector_enter:
421 *
422 * Support routine for mutex_enter() that must handle all cases. In
423 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
424 * fast-path stubs are available. If an mutex_spin_enter() stub is
425 * not available, then it is also aliased directly here.
426 */
427 void
428 mutex_vector_enter(kmutex_t *mtx)
429 {
430 uintptr_t owner, curthread;
431 turnstile_t *ts;
432 #ifdef MULTIPROCESSOR
433 u_int count;
434 #endif
435 #ifdef KERN_SA
436 int f;
437 #endif
438 LOCKSTAT_COUNTER(spincnt);
439 LOCKSTAT_COUNTER(slpcnt);
440 LOCKSTAT_TIMER(spintime);
441 LOCKSTAT_TIMER(slptime);
442 LOCKSTAT_FLAG(lsflag);
443
444 /*
445 * Handle spin mutexes.
446 */
447 if (MUTEX_SPIN_P(mtx)) {
448 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
449 u_int spins = 0;
450 #endif
451 MUTEX_SPIN_SPLRAISE(mtx);
452 MUTEX_WANTLOCK(mtx);
453 #ifdef FULL
454 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
455 MUTEX_LOCKED(mtx);
456 return;
457 }
458 #if !defined(MULTIPROCESSOR)
459 MUTEX_ABORT(mtx, "locking against myself");
460 #else /* !MULTIPROCESSOR */
461
462 LOCKSTAT_ENTER(lsflag);
463 LOCKSTAT_START_TIMER(lsflag, spintime);
464 count = SPINLOCK_BACKOFF_MIN;
465
466 /*
467 * Spin testing the lock word and do exponential backoff
468 * to reduce cache line ping-ponging between CPUs.
469 */
470 do {
471 if (panicstr != NULL)
472 break;
473 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
474 SPINLOCK_BACKOFF(count);
475 #ifdef LOCKDEBUG
476 if (SPINLOCK_SPINOUT(spins))
477 MUTEX_ABORT(mtx, "spinout");
478 #endif /* LOCKDEBUG */
479 }
480 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
481
482 if (count != SPINLOCK_BACKOFF_MIN) {
483 LOCKSTAT_STOP_TIMER(lsflag, spintime);
484 LOCKSTAT_EVENT(lsflag, mtx,
485 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
486 }
487 LOCKSTAT_EXIT(lsflag);
488 #endif /* !MULTIPROCESSOR */
489 #endif /* FULL */
490 MUTEX_LOCKED(mtx);
491 return;
492 }
493
494 curthread = (uintptr_t)curlwp;
495
496 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
497 MUTEX_ASSERT(mtx, curthread != 0);
498 MUTEX_WANTLOCK(mtx);
499
500 if (panicstr == NULL) {
501 LOCKDEBUG_BARRIER(&kernel_lock, 1);
502 }
503
504 LOCKSTAT_ENTER(lsflag);
505
506 /*
507 * Adaptive mutex; spin trying to acquire the mutex. If we
508 * determine that the owner is not running on a processor,
509 * then we stop spinning, and sleep instead.
510 */
511 KPREEMPT_DISABLE(curlwp);
512 for (owner = mtx->mtx_owner;;) {
513 if (!MUTEX_OWNED(owner)) {
514 /*
515 * Mutex owner clear could mean two things:
516 *
517 * * The mutex has been released.
518 * * The owner field hasn't been set yet.
519 *
520 * Try to acquire it again. If that fails,
521 * we'll just loop again.
522 */
523 if (MUTEX_ACQUIRE(mtx, curthread))
524 break;
525 owner = mtx->mtx_owner;
526 continue;
527 }
528 if (__predict_false(panicstr != NULL)) {
529 kpreempt_enable();
530 return;
531 }
532 if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
533 MUTEX_ABORT(mtx, "locking against myself");
534 }
535 #ifdef MULTIPROCESSOR
536 /*
537 * Check to see if the owner is running on a processor.
538 * If so, then we should just spin, as the owner will
539 * likely release the lock very soon.
540 */
541 if (mutex_oncpu(owner)) {
542 LOCKSTAT_START_TIMER(lsflag, spintime);
543 count = SPINLOCK_BACKOFF_MIN;
544 do {
545 kpreempt_enable();
546 SPINLOCK_BACKOFF(count);
547 kpreempt_disable();
548 owner = mtx->mtx_owner;
549 } while (mutex_oncpu(owner));
550 LOCKSTAT_STOP_TIMER(lsflag, spintime);
551 LOCKSTAT_COUNT(spincnt, 1);
552 if (!MUTEX_OWNED(owner))
553 continue;
554 }
555 #endif
556
557 ts = turnstile_lookup(mtx);
558
559 /*
560 * Once we have the turnstile chain interlock, mark the
561 * mutex has having waiters. If that fails, spin again:
562 * chances are that the mutex has been released.
563 */
564 if (!MUTEX_SET_WAITERS(mtx, owner)) {
565 turnstile_exit(mtx);
566 owner = mtx->mtx_owner;
567 continue;
568 }
569
570 #ifdef MULTIPROCESSOR
571 /*
572 * mutex_exit() is permitted to release the mutex without
573 * any interlocking instructions, and the following can
574 * occur as a result:
575 *
576 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
577 * ---------------------------- ----------------------------
578 * .. acquire cache line
579 * .. test for waiters
580 * acquire cache line <- lose cache line
581 * lock cache line ..
582 * verify mutex is held ..
583 * set waiters ..
584 * unlock cache line ..
585 * lose cache line -> acquire cache line
586 * .. clear lock word, waiters
587 * return success
588 *
589 * There is another race that can occur: a third CPU could
590 * acquire the mutex as soon as it is released. Since
591 * adaptive mutexes are primarily spin mutexes, this is not
592 * something that we need to worry about too much. What we
593 * do need to ensure is that the waiters bit gets set.
594 *
595 * To allow the unlocked release, we need to make some
596 * assumptions here:
597 *
598 * o Release is the only non-atomic/unlocked operation
599 * that can be performed on the mutex. (It must still
600 * be atomic on the local CPU, e.g. in case interrupted
601 * or preempted).
602 *
603 * o At any given time, MUTEX_SET_WAITERS() can only ever
604 * be in progress on one CPU in the system - guaranteed
605 * by the turnstile chain lock.
606 *
607 * o No other operations other than MUTEX_SET_WAITERS()
608 * and release can modify a mutex with a non-zero
609 * owner field.
610 *
611 * o The result of a successful MUTEX_SET_WAITERS() call
612 * is an unbuffered write that is immediately visible
613 * to all other processors in the system.
614 *
615 * o If the holding LWP switches away, it posts a store
616 * fence before changing curlwp, ensuring that any
617 * overwrite of the mutex waiters flag by mutex_exit()
618 * completes before the modification of curlwp becomes
619 * visible to this CPU.
620 *
621 * o mi_switch() posts a store fence before setting curlwp
622 * and before resuming execution of an LWP.
623 *
624 * o _kernel_lock() posts a store fence before setting
625 * curcpu()->ci_biglock_wanted, and after clearing it.
626 * This ensures that any overwrite of the mutex waiters
627 * flag by mutex_exit() completes before the modification
628 * of ci_biglock_wanted becomes visible.
629 *
630 * We now post a read memory barrier (after setting the
631 * waiters field) and check the lock holder's status again.
632 * Some of the possible outcomes (not an exhaustive list):
633 *
634 * 1. The on-CPU check returns true: the holding LWP is
635 * running again. The lock may be released soon and
636 * we should spin. Importantly, we can't trust the
637 * value of the waiters flag.
638 *
639 * 2. The on-CPU check returns false: the holding LWP is
640 * not running. We now have the opportunity to check
641 * if mutex_exit() has blatted the modifications made
642 * by MUTEX_SET_WAITERS().
643 *
644 * 3. The on-CPU check returns false: the holding LWP may
645 * or may not be running. It has context switched at
646 * some point during our check. Again, we have the
647 * chance to see if the waiters bit is still set or
648 * has been overwritten.
649 *
650 * 4. The on-CPU check returns false: the holding LWP is
651 * running on a CPU, but wants the big lock. It's OK
652 * to check the waiters field in this case.
653 *
654 * 5. The has-waiters check fails: the mutex has been
655 * released, the waiters flag cleared and another LWP
656 * now owns the mutex.
657 *
658 * 6. The has-waiters check fails: the mutex has been
659 * released.
660 *
661 * If the waiters bit is not set it's unsafe to go asleep,
662 * as we might never be awoken.
663 */
664 if ((membar_consumer(), mutex_oncpu(owner)) ||
665 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
666 turnstile_exit(mtx);
667 owner = mtx->mtx_owner;
668 continue;
669 }
670 #endif /* MULTIPROCESSOR */
671
672 #ifdef KERN_SA
673 /*
674 * Sleeping for a mutex should not generate an upcall.
675 * So set LP_SA_NOBLOCK to indicate this.
676 * f indicates if we should clear LP_SA_NOBLOCK when done.
677 */
678 f = ~curlwp->l_pflag & LP_SA_NOBLOCK;
679 curlwp->l_pflag |= LP_SA_NOBLOCK;
680 #endif /* KERN_SA */
681
682 LOCKSTAT_START_TIMER(lsflag, slptime);
683
684 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
685
686 LOCKSTAT_STOP_TIMER(lsflag, slptime);
687 LOCKSTAT_COUNT(slpcnt, 1);
688
689 #ifdef KERN_SA
690 curlwp->l_pflag ^= f;
691 #endif /* KERN_SA */
692
693 owner = mtx->mtx_owner;
694 }
695 KPREEMPT_ENABLE(curlwp);
696
697 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
698 slpcnt, slptime);
699 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
700 spincnt, spintime);
701 LOCKSTAT_EXIT(lsflag);
702
703 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
704 MUTEX_LOCKED(mtx);
705 }
706
707 /*
708 * mutex_vector_exit:
709 *
710 * Support routine for mutex_exit() that handles all cases.
711 */
712 void
713 mutex_vector_exit(kmutex_t *mtx)
714 {
715 turnstile_t *ts;
716 uintptr_t curthread;
717
718 if (MUTEX_SPIN_P(mtx)) {
719 #ifdef FULL
720 if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
721 if (panicstr != NULL)
722 return;
723 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
724 }
725 MUTEX_UNLOCKED(mtx);
726 __cpu_simple_unlock(&mtx->mtx_lock);
727 #endif
728 MUTEX_SPIN_SPLRESTORE(mtx);
729 return;
730 }
731
732 if (__predict_false((uintptr_t)panicstr | cold)) {
733 MUTEX_UNLOCKED(mtx);
734 MUTEX_RELEASE(mtx);
735 return;
736 }
737
738 curthread = (uintptr_t)curlwp;
739 MUTEX_DASSERT(mtx, curthread != 0);
740 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
741 MUTEX_UNLOCKED(mtx);
742
743 #ifdef LOCKDEBUG
744 /*
745 * Avoid having to take the turnstile chain lock every time
746 * around. Raise the priority level to splhigh() in order
747 * to disable preemption and so make the following atomic.
748 */
749 {
750 int s = splhigh();
751 if (!MUTEX_HAS_WAITERS(mtx)) {
752 MUTEX_RELEASE(mtx);
753 splx(s);
754 return;
755 }
756 splx(s);
757 }
758 #endif
759
760 /*
761 * Get this lock's turnstile. This gets the interlock on
762 * the sleep queue. Once we have that, we can clear the
763 * lock. If there was no turnstile for the lock, there
764 * were no waiters remaining.
765 */
766 ts = turnstile_lookup(mtx);
767
768 if (ts == NULL) {
769 MUTEX_RELEASE(mtx);
770 turnstile_exit(mtx);
771 } else {
772 MUTEX_RELEASE(mtx);
773 turnstile_wakeup(ts, TS_WRITER_Q,
774 TS_WAITERS(ts, TS_WRITER_Q), NULL);
775 }
776 }
777
778 #ifndef __HAVE_SIMPLE_MUTEXES
779 /*
780 * mutex_wakeup:
781 *
782 * Support routine for mutex_exit() that wakes up all waiters.
783 * We assume that the mutex has been released, but it need not
784 * be.
785 */
786 void
787 mutex_wakeup(kmutex_t *mtx)
788 {
789 turnstile_t *ts;
790
791 ts = turnstile_lookup(mtx);
792 if (ts == NULL) {
793 turnstile_exit(mtx);
794 return;
795 }
796 MUTEX_CLEAR_WAITERS(mtx);
797 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
798 }
799 #endif /* !__HAVE_SIMPLE_MUTEXES */
800
801 /*
802 * mutex_owned:
803 *
804 * Return true if the current LWP (adaptive) or CPU (spin)
805 * holds the mutex.
806 */
807 int
808 mutex_owned(kmutex_t *mtx)
809 {
810
811 if (mtx == NULL)
812 return 0;
813 if (MUTEX_ADAPTIVE_P(mtx))
814 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
815 #ifdef FULL
816 return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
817 #else
818 return 1;
819 #endif
820 }
821
822 /*
823 * mutex_owner:
824 *
825 * Return the current owner of an adaptive mutex. Used for
826 * priority inheritance.
827 */
828 lwp_t *
829 mutex_owner(kmutex_t *mtx)
830 {
831
832 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
833 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
834 }
835
836 /*
837 * mutex_tryenter:
838 *
839 * Try to acquire the mutex; return non-zero if we did.
840 */
841 int
842 mutex_tryenter(kmutex_t *mtx)
843 {
844 uintptr_t curthread;
845
846 /*
847 * Handle spin mutexes.
848 */
849 if (MUTEX_SPIN_P(mtx)) {
850 MUTEX_SPIN_SPLRAISE(mtx);
851 #ifdef FULL
852 if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
853 MUTEX_WANTLOCK(mtx);
854 MUTEX_LOCKED(mtx);
855 return 1;
856 }
857 MUTEX_SPIN_SPLRESTORE(mtx);
858 #else
859 MUTEX_WANTLOCK(mtx);
860 MUTEX_LOCKED(mtx);
861 return 1;
862 #endif
863 } else {
864 curthread = (uintptr_t)curlwp;
865 MUTEX_ASSERT(mtx, curthread != 0);
866 if (MUTEX_ACQUIRE(mtx, curthread)) {
867 MUTEX_WANTLOCK(mtx);
868 MUTEX_LOCKED(mtx);
869 MUTEX_DASSERT(mtx,
870 MUTEX_OWNER(mtx->mtx_owner) == curthread);
871 return 1;
872 }
873 }
874
875 return 0;
876 }
877
878 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
879 /*
880 * mutex_spin_retry:
881 *
882 * Support routine for mutex_spin_enter(). Assumes that the caller
883 * has already raised the SPL, and adjusted counters.
884 */
885 void
886 mutex_spin_retry(kmutex_t *mtx)
887 {
888 #ifdef MULTIPROCESSOR
889 u_int count;
890 LOCKSTAT_TIMER(spintime);
891 LOCKSTAT_FLAG(lsflag);
892 #ifdef LOCKDEBUG
893 u_int spins = 0;
894 #endif /* LOCKDEBUG */
895
896 MUTEX_WANTLOCK(mtx);
897
898 LOCKSTAT_ENTER(lsflag);
899 LOCKSTAT_START_TIMER(lsflag, spintime);
900 count = SPINLOCK_BACKOFF_MIN;
901
902 /*
903 * Spin testing the lock word and do exponential backoff
904 * to reduce cache line ping-ponging between CPUs.
905 */
906 do {
907 if (panicstr != NULL)
908 break;
909 while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
910 SPINLOCK_BACKOFF(count);
911 #ifdef LOCKDEBUG
912 if (SPINLOCK_SPINOUT(spins))
913 MUTEX_ABORT(mtx, "spinout");
914 #endif /* LOCKDEBUG */
915 }
916 } while (!__cpu_simple_lock_try(&mtx->mtx_lock));
917
918 LOCKSTAT_STOP_TIMER(lsflag, spintime);
919 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
920 LOCKSTAT_EXIT(lsflag);
921
922 MUTEX_LOCKED(mtx);
923 #else /* MULTIPROCESSOR */
924 MUTEX_ABORT(mtx, "locking against myself");
925 #endif /* MULTIPROCESSOR */
926 }
927 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
928