Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.54
      1 /*	$NetBSD: kern_mutex.c,v 1.54 2013/04/27 08:12:34 mlelstv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.54 2013/04/27 08:12:34 mlelstv Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/atomic.h>
     47 #include <sys/proc.h>
     48 #include <sys/mutex.h>
     49 #include <sys/sched.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/systm.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/kernel.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 #include <sys/types.h>
     57 
     58 #include <dev/lockstat.h>
     59 
     60 #include <machine/lock.h>
     61 
     62 /*
     63  * When not running a debug kernel, spin mutexes are not much
     64  * more than an splraiseipl() and splx() pair.
     65  */
     66 
     67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     68 #define	FULL
     69 #endif
     70 
     71 /*
     72  * Debugging support.
     73  */
     74 
     75 #define	MUTEX_WANTLOCK(mtx)					\
     76     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     77         (uintptr_t)__builtin_return_address(0), 0)
     78 #define	MUTEX_LOCKED(mtx)					\
     79     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     80         (uintptr_t)__builtin_return_address(0), 0)
     81 #define	MUTEX_UNLOCKED(mtx)					\
     82     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     83         (uintptr_t)__builtin_return_address(0), 0)
     84 #define	MUTEX_ABORT(mtx, msg)					\
     85     mutex_abort(mtx, __func__, msg)
     86 
     87 #if defined(LOCKDEBUG)
     88 
     89 #define	MUTEX_DASSERT(mtx, cond)				\
     90 do {								\
     91 	if (!(cond))						\
     92 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     93 } while (/* CONSTCOND */ 0);
     94 
     95 #else	/* LOCKDEBUG */
     96 
     97 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
     98 
     99 #endif /* LOCKDEBUG */
    100 
    101 #if defined(DIAGNOSTIC)
    102 
    103 #define	MUTEX_ASSERT(mtx, cond)					\
    104 do {								\
    105 	if (!(cond))						\
    106 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    107 } while (/* CONSTCOND */ 0)
    108 
    109 #else	/* DIAGNOSTIC */
    110 
    111 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    112 
    113 #endif	/* DIAGNOSTIC */
    114 
    115 /*
    116  * Spin mutex SPL save / restore.
    117  */
    118 
    119 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    120 do {									\
    121 	struct cpu_info *x__ci;						\
    122 	int x__cnt, s;							\
    123 	s = splraiseipl(mtx->mtx_ipl);					\
    124 	x__ci = curcpu();						\
    125 	x__cnt = x__ci->ci_mtx_count--;					\
    126 	__insn_barrier();						\
    127 	if (x__cnt == 0)						\
    128 		x__ci->ci_mtx_oldspl = (s);				\
    129 } while (/* CONSTCOND */ 0)
    130 
    131 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    132 do {									\
    133 	struct cpu_info *x__ci = curcpu();				\
    134 	int s = x__ci->ci_mtx_oldspl;					\
    135 	__insn_barrier();						\
    136 	if (++(x__ci->ci_mtx_count) == 0)			\
    137 		splx(s);						\
    138 } while (/* CONSTCOND */ 0)
    139 
    140 /*
    141  * For architectures that provide 'simple' mutexes: they provide a
    142  * CAS function that is either MP-safe, or does not need to be MP
    143  * safe.  Adaptive mutexes on these architectures do not require an
    144  * additional interlock.
    145  */
    146 
    147 #ifdef __HAVE_SIMPLE_MUTEXES
    148 
    149 #define	MUTEX_OWNER(owner)						\
    150 	(owner & MUTEX_THREAD)
    151 #define	MUTEX_HAS_WAITERS(mtx)						\
    152 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    153 
    154 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    155 	if (!dodebug)							\
    156 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    157 do {									\
    158 } while (/* CONSTCOND */ 0);
    159 
    160 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    161 do {									\
    162 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    163 	if (!dodebug)							\
    164 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    165 	(mtx)->mtx_ipl = makeiplcookie((ipl));				\
    166 	__cpu_simple_lock_init(&(mtx)->mtx_lock);			\
    167 } while (/* CONSTCOND */ 0)
    168 
    169 #define	MUTEX_DESTROY(mtx)						\
    170 do {									\
    171 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    172 } while (/* CONSTCOND */ 0);
    173 
    174 #define	MUTEX_SPIN_P(mtx)		\
    175     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    176 #define	MUTEX_ADAPTIVE_P(mtx)		\
    177     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    178 
    179 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    180 #if defined(LOCKDEBUG)
    181 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    182 #define	MUTEX_INHERITDEBUG(new, old)	(new) |= (old) & MUTEX_BIT_NODEBUG
    183 #else /* defined(LOCKDEBUG) */
    184 #define	MUTEX_OWNED(owner)		((owner) != 0)
    185 #define	MUTEX_INHERITDEBUG(new, old)	/* nothing */
    186 #endif /* defined(LOCKDEBUG) */
    187 
    188 static inline int
    189 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    190 {
    191 	int rv;
    192 	uintptr_t old = 0;
    193 	uintptr_t new = curthread;
    194 
    195 	MUTEX_INHERITDEBUG(old, mtx->mtx_owner);
    196 	MUTEX_INHERITDEBUG(new, old);
    197 	rv = MUTEX_CAS(&mtx->mtx_owner, old, new);
    198 	MUTEX_RECEIVE(mtx);
    199 	return rv;
    200 }
    201 
    202 static inline int
    203 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    204 {
    205 	int rv;
    206 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    207 	MUTEX_RECEIVE(mtx);
    208 	return rv;
    209 }
    210 
    211 static inline void
    212 MUTEX_RELEASE(kmutex_t *mtx)
    213 {
    214 	uintptr_t new;
    215 
    216 	MUTEX_GIVE(mtx);
    217 	new = 0;
    218 	MUTEX_INHERITDEBUG(new, mtx->mtx_owner);
    219 	mtx->mtx_owner = new;
    220 }
    221 
    222 static inline void
    223 MUTEX_CLEAR_WAITERS(kmutex_t *mtx)
    224 {
    225 	/* nothing */
    226 }
    227 #endif	/* __HAVE_SIMPLE_MUTEXES */
    228 
    229 /*
    230  * Patch in stubs via strong alias where they are not available.
    231  */
    232 
    233 #if defined(LOCKDEBUG)
    234 #undef	__HAVE_MUTEX_STUBS
    235 #undef	__HAVE_SPIN_MUTEX_STUBS
    236 #endif
    237 
    238 #ifndef __HAVE_MUTEX_STUBS
    239 __strong_alias(mutex_enter,mutex_vector_enter);
    240 __strong_alias(mutex_exit,mutex_vector_exit);
    241 #endif
    242 
    243 #ifndef __HAVE_SPIN_MUTEX_STUBS
    244 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    245 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    246 #endif
    247 
    248 static void		mutex_abort(kmutex_t *, const char *, const char *);
    249 static void		mutex_dump(volatile void *);
    250 
    251 lockops_t mutex_spin_lockops = {
    252 	"Mutex",
    253 	LOCKOPS_SPIN,
    254 	mutex_dump
    255 };
    256 
    257 lockops_t mutex_adaptive_lockops = {
    258 	"Mutex",
    259 	LOCKOPS_SLEEP,
    260 	mutex_dump
    261 };
    262 
    263 syncobj_t mutex_syncobj = {
    264 	SOBJ_SLEEPQ_SORTED,
    265 	turnstile_unsleep,
    266 	turnstile_changepri,
    267 	sleepq_lendpri,
    268 	(void *)mutex_owner,
    269 };
    270 
    271 /*
    272  * mutex_dump:
    273  *
    274  *	Dump the contents of a mutex structure.
    275  */
    276 void
    277 mutex_dump(volatile void *cookie)
    278 {
    279 	volatile kmutex_t *mtx = cookie;
    280 
    281 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    282 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    283 	    MUTEX_SPIN_P(mtx));
    284 }
    285 
    286 /*
    287  * mutex_abort:
    288  *
    289  *	Dump information about an error and panic the system.  This
    290  *	generates a lot of machine code in the DIAGNOSTIC case, so
    291  *	we ask the compiler to not inline it.
    292  */
    293 void __noinline
    294 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    295 {
    296 
    297 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    298 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    299 }
    300 
    301 /*
    302  * mutex_init:
    303  *
    304  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    305  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    306  *	CPU time.  We can't easily provide a type of mutex that always
    307  *	sleeps - see comments in mutex_vector_enter() about releasing
    308  *	mutexes unlocked.
    309  */
    310 void
    311 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    312 {
    313 	bool dodebug;
    314 
    315 	memset(mtx, 0, sizeof(*mtx));
    316 
    317 	switch (type) {
    318 	case MUTEX_ADAPTIVE:
    319 		KASSERT(ipl == IPL_NONE);
    320 		break;
    321 	case MUTEX_DEFAULT:
    322 	case MUTEX_DRIVER:
    323 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    324 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    325 		    ipl == IPL_SOFTSERIAL) {
    326 			type = MUTEX_ADAPTIVE;
    327 		} else {
    328 			type = MUTEX_SPIN;
    329 		}
    330 		break;
    331 	default:
    332 		break;
    333 	}
    334 
    335 	switch (type) {
    336 	case MUTEX_NODEBUG:
    337 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    338 		    (uintptr_t)__builtin_return_address(0));
    339 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    340 		break;
    341 	case MUTEX_ADAPTIVE:
    342 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    343 		    (uintptr_t)__builtin_return_address(0));
    344 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    345 		break;
    346 	case MUTEX_SPIN:
    347 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    348 		    (uintptr_t)__builtin_return_address(0));
    349 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    350 		break;
    351 	default:
    352 		panic("mutex_init: impossible type");
    353 		break;
    354 	}
    355 }
    356 
    357 /*
    358  * mutex_destroy:
    359  *
    360  *	Tear down a mutex.
    361  */
    362 void
    363 mutex_destroy(kmutex_t *mtx)
    364 {
    365 
    366 	if (MUTEX_ADAPTIVE_P(mtx)) {
    367 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    368 		    !MUTEX_HAS_WAITERS(mtx));
    369 	} else {
    370 		MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock));
    371 	}
    372 
    373 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    374 	MUTEX_DESTROY(mtx);
    375 }
    376 
    377 #ifdef MULTIPROCESSOR
    378 /*
    379  * mutex_oncpu:
    380  *
    381  *	Return true if an adaptive mutex owner is running on a CPU in the
    382  *	system.  If the target is waiting on the kernel big lock, then we
    383  *	must release it.  This is necessary to avoid deadlock.
    384  */
    385 static bool
    386 mutex_oncpu(uintptr_t owner)
    387 {
    388 	struct cpu_info *ci;
    389 	lwp_t *l;
    390 
    391 	KASSERT(kpreempt_disabled());
    392 
    393 	if (!MUTEX_OWNED(owner)) {
    394 		return false;
    395 	}
    396 
    397 	/*
    398 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    399 	 * We must have kernel preemption disabled for that.
    400 	 */
    401 	l = (lwp_t *)MUTEX_OWNER(owner);
    402 	ci = l->l_cpu;
    403 
    404 	if (ci && ci->ci_curlwp == l) {
    405 		/* Target is running; do we need to block? */
    406 		return (ci->ci_biglock_wanted != l);
    407 	}
    408 
    409 	/* Not running.  It may be safe to block now. */
    410 	return false;
    411 }
    412 #endif	/* MULTIPROCESSOR */
    413 
    414 /*
    415  * mutex_vector_enter:
    416  *
    417  *	Support routine for mutex_enter() that must handle all cases.  In
    418  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    419  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    420  *	not available, then it is also aliased directly here.
    421  */
    422 void
    423 mutex_vector_enter(kmutex_t *mtx)
    424 {
    425 	uintptr_t owner, curthread;
    426 	turnstile_t *ts;
    427 #ifdef MULTIPROCESSOR
    428 	u_int count;
    429 #endif
    430 	LOCKSTAT_COUNTER(spincnt);
    431 	LOCKSTAT_COUNTER(slpcnt);
    432 	LOCKSTAT_TIMER(spintime);
    433 	LOCKSTAT_TIMER(slptime);
    434 	LOCKSTAT_FLAG(lsflag);
    435 
    436 	/*
    437 	 * Handle spin mutexes.
    438 	 */
    439 	if (MUTEX_SPIN_P(mtx)) {
    440 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    441 		u_int spins = 0;
    442 #endif
    443 		MUTEX_SPIN_SPLRAISE(mtx);
    444 		MUTEX_WANTLOCK(mtx);
    445 #ifdef FULL
    446 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    447 			MUTEX_LOCKED(mtx);
    448 			return;
    449 		}
    450 #if !defined(MULTIPROCESSOR)
    451 		MUTEX_ABORT(mtx, "locking against myself");
    452 #else /* !MULTIPROCESSOR */
    453 
    454 		LOCKSTAT_ENTER(lsflag);
    455 		LOCKSTAT_START_TIMER(lsflag, spintime);
    456 		count = SPINLOCK_BACKOFF_MIN;
    457 
    458 		/*
    459 		 * Spin testing the lock word and do exponential backoff
    460 		 * to reduce cache line ping-ponging between CPUs.
    461 		 */
    462 		do {
    463 			if (panicstr != NULL)
    464 				break;
    465 			while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    466 				SPINLOCK_BACKOFF(count);
    467 #ifdef LOCKDEBUG
    468 				if (SPINLOCK_SPINOUT(spins))
    469 					MUTEX_ABORT(mtx, "spinout");
    470 #endif	/* LOCKDEBUG */
    471 			}
    472 		} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    473 
    474 		if (count != SPINLOCK_BACKOFF_MIN) {
    475 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    476 			LOCKSTAT_EVENT(lsflag, mtx,
    477 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    478 		}
    479 		LOCKSTAT_EXIT(lsflag);
    480 #endif	/* !MULTIPROCESSOR */
    481 #endif	/* FULL */
    482 		MUTEX_LOCKED(mtx);
    483 		return;
    484 	}
    485 
    486 	curthread = (uintptr_t)curlwp;
    487 
    488 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    489 	MUTEX_ASSERT(mtx, curthread != 0);
    490 	MUTEX_WANTLOCK(mtx);
    491 
    492 	if (panicstr == NULL) {
    493 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    494 	}
    495 
    496 	LOCKSTAT_ENTER(lsflag);
    497 
    498 	/*
    499 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    500 	 * determine that the owner is not running on a processor,
    501 	 * then we stop spinning, and sleep instead.
    502 	 */
    503 	KPREEMPT_DISABLE(curlwp);
    504 	for (owner = mtx->mtx_owner;;) {
    505 		if (!MUTEX_OWNED(owner)) {
    506 			/*
    507 			 * Mutex owner clear could mean two things:
    508 			 *
    509 			 *	* The mutex has been released.
    510 			 *	* The owner field hasn't been set yet.
    511 			 *
    512 			 * Try to acquire it again.  If that fails,
    513 			 * we'll just loop again.
    514 			 */
    515 			if (MUTEX_ACQUIRE(mtx, curthread))
    516 				break;
    517 			owner = mtx->mtx_owner;
    518 			continue;
    519 		}
    520 		if (__predict_false(panicstr != NULL)) {
    521 			kpreempt_enable();
    522 			return;
    523 		}
    524 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    525 			MUTEX_ABORT(mtx, "locking against myself");
    526 		}
    527 #ifdef MULTIPROCESSOR
    528 		/*
    529 		 * Check to see if the owner is running on a processor.
    530 		 * If so, then we should just spin, as the owner will
    531 		 * likely release the lock very soon.
    532 		 */
    533 		if (mutex_oncpu(owner)) {
    534 			LOCKSTAT_START_TIMER(lsflag, spintime);
    535 			count = SPINLOCK_BACKOFF_MIN;
    536 			do {
    537 				KPREEMPT_ENABLE(curlwp);
    538 				SPINLOCK_BACKOFF(count);
    539 				KPREEMPT_DISABLE(curlwp);
    540 				owner = mtx->mtx_owner;
    541 			} while (mutex_oncpu(owner));
    542 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    543 			LOCKSTAT_COUNT(spincnt, 1);
    544 			if (!MUTEX_OWNED(owner))
    545 				continue;
    546 		}
    547 #endif
    548 
    549 		ts = turnstile_lookup(mtx);
    550 
    551 		/*
    552 		 * Once we have the turnstile chain interlock, mark the
    553 		 * mutex has having waiters.  If that fails, spin again:
    554 		 * chances are that the mutex has been released.
    555 		 */
    556 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    557 			turnstile_exit(mtx);
    558 			owner = mtx->mtx_owner;
    559 			continue;
    560 		}
    561 
    562 #ifdef MULTIPROCESSOR
    563 		/*
    564 		 * mutex_exit() is permitted to release the mutex without
    565 		 * any interlocking instructions, and the following can
    566 		 * occur as a result:
    567 		 *
    568 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    569 		 * ---------------------------- ----------------------------
    570 		 *		..		    acquire cache line
    571 		 *		..                   test for waiters
    572 		 *	acquire cache line    <-      lose cache line
    573 		 *	 lock cache line	           ..
    574 		 *     verify mutex is held                ..
    575 		 *	    set waiters  	           ..
    576 		 *	 unlock cache line		   ..
    577 		 *	  lose cache line     ->    acquire cache line
    578 		 *		..	          clear lock word, waiters
    579 		 *	  return success
    580 		 *
    581 		 * There is another race that can occur: a third CPU could
    582 		 * acquire the mutex as soon as it is released.  Since
    583 		 * adaptive mutexes are primarily spin mutexes, this is not
    584 		 * something that we need to worry about too much.  What we
    585 		 * do need to ensure is that the waiters bit gets set.
    586 		 *
    587 		 * To allow the unlocked release, we need to make some
    588 		 * assumptions here:
    589 		 *
    590 		 * o Release is the only non-atomic/unlocked operation
    591 		 *   that can be performed on the mutex.  (It must still
    592 		 *   be atomic on the local CPU, e.g. in case interrupted
    593 		 *   or preempted).
    594 		 *
    595 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    596 		 *   be in progress on one CPU in the system - guaranteed
    597 		 *   by the turnstile chain lock.
    598 		 *
    599 		 * o No other operations other than MUTEX_SET_WAITERS()
    600 		 *   and release can modify a mutex with a non-zero
    601 		 *   owner field.
    602 		 *
    603 		 * o The result of a successful MUTEX_SET_WAITERS() call
    604 		 *   is an unbuffered write that is immediately visible
    605 		 *   to all other processors in the system.
    606 		 *
    607 		 * o If the holding LWP switches away, it posts a store
    608 		 *   fence before changing curlwp, ensuring that any
    609 		 *   overwrite of the mutex waiters flag by mutex_exit()
    610 		 *   completes before the modification of curlwp becomes
    611 		 *   visible to this CPU.
    612 		 *
    613 		 * o mi_switch() posts a store fence before setting curlwp
    614 		 *   and before resuming execution of an LWP.
    615 		 *
    616 		 * o _kernel_lock() posts a store fence before setting
    617 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    618 		 *   This ensures that any overwrite of the mutex waiters
    619 		 *   flag by mutex_exit() completes before the modification
    620 		 *   of ci_biglock_wanted becomes visible.
    621 		 *
    622 		 * We now post a read memory barrier (after setting the
    623 		 * waiters field) and check the lock holder's status again.
    624 		 * Some of the possible outcomes (not an exhaustive list):
    625 		 *
    626 		 * 1. The on-CPU check returns true: the holding LWP is
    627 		 *    running again.  The lock may be released soon and
    628 		 *    we should spin.  Importantly, we can't trust the
    629 		 *    value of the waiters flag.
    630 		 *
    631 		 * 2. The on-CPU check returns false: the holding LWP is
    632 		 *    not running.  We now have the opportunity to check
    633 		 *    if mutex_exit() has blatted the modifications made
    634 		 *    by MUTEX_SET_WAITERS().
    635 		 *
    636 		 * 3. The on-CPU check returns false: the holding LWP may
    637 		 *    or may not be running.  It has context switched at
    638 		 *    some point during our check.  Again, we have the
    639 		 *    chance to see if the waiters bit is still set or
    640 		 *    has been overwritten.
    641 		 *
    642 		 * 4. The on-CPU check returns false: the holding LWP is
    643 		 *    running on a CPU, but wants the big lock.  It's OK
    644 		 *    to check the waiters field in this case.
    645 		 *
    646 		 * 5. The has-waiters check fails: the mutex has been
    647 		 *    released, the waiters flag cleared and another LWP
    648 		 *    now owns the mutex.
    649 		 *
    650 		 * 6. The has-waiters check fails: the mutex has been
    651 		 *    released.
    652 		 *
    653 		 * If the waiters bit is not set it's unsafe to go asleep,
    654 		 * as we might never be awoken.
    655 		 */
    656 		if ((membar_consumer(), mutex_oncpu(owner)) ||
    657 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    658 			turnstile_exit(mtx);
    659 			owner = mtx->mtx_owner;
    660 			continue;
    661 		}
    662 #endif	/* MULTIPROCESSOR */
    663 
    664 		LOCKSTAT_START_TIMER(lsflag, slptime);
    665 
    666 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    667 
    668 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    669 		LOCKSTAT_COUNT(slpcnt, 1);
    670 
    671 		owner = mtx->mtx_owner;
    672 	}
    673 	KPREEMPT_ENABLE(curlwp);
    674 
    675 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    676 	    slpcnt, slptime);
    677 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    678 	    spincnt, spintime);
    679 	LOCKSTAT_EXIT(lsflag);
    680 
    681 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    682 	MUTEX_LOCKED(mtx);
    683 }
    684 
    685 /*
    686  * mutex_vector_exit:
    687  *
    688  *	Support routine for mutex_exit() that handles all cases.
    689  */
    690 void
    691 mutex_vector_exit(kmutex_t *mtx)
    692 {
    693 	turnstile_t *ts;
    694 	uintptr_t curthread;
    695 
    696 	if (MUTEX_SPIN_P(mtx)) {
    697 #ifdef FULL
    698 		if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) {
    699 			if (panicstr != NULL)
    700 				return;
    701 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    702 		}
    703 		MUTEX_UNLOCKED(mtx);
    704 		__cpu_simple_unlock(&mtx->mtx_lock);
    705 #endif
    706 		MUTEX_SPIN_SPLRESTORE(mtx);
    707 		return;
    708 	}
    709 
    710 	if (__predict_false((uintptr_t)panicstr | cold)) {
    711 		MUTEX_UNLOCKED(mtx);
    712 		MUTEX_RELEASE(mtx);
    713 		return;
    714 	}
    715 
    716 	curthread = (uintptr_t)curlwp;
    717 	MUTEX_DASSERT(mtx, curthread != 0);
    718 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    719 	MUTEX_UNLOCKED(mtx);
    720 
    721 #ifdef LOCKDEBUG
    722 	/*
    723 	 * Avoid having to take the turnstile chain lock every time
    724 	 * around.  Raise the priority level to splhigh() in order
    725 	 * to disable preemption and so make the following atomic.
    726 	 */
    727 	{
    728 		int s = splhigh();
    729 		if (!MUTEX_HAS_WAITERS(mtx)) {
    730 			MUTEX_RELEASE(mtx);
    731 			splx(s);
    732 			return;
    733 		}
    734 		splx(s);
    735 	}
    736 #endif
    737 
    738 	/*
    739 	 * Get this lock's turnstile.  This gets the interlock on
    740 	 * the sleep queue.  Once we have that, we can clear the
    741 	 * lock.  If there was no turnstile for the lock, there
    742 	 * were no waiters remaining.
    743 	 */
    744 	ts = turnstile_lookup(mtx);
    745 
    746 	if (ts == NULL) {
    747 		MUTEX_RELEASE(mtx);
    748 		turnstile_exit(mtx);
    749 	} else {
    750 		MUTEX_RELEASE(mtx);
    751 		turnstile_wakeup(ts, TS_WRITER_Q,
    752 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    753 	}
    754 }
    755 
    756 #ifndef __HAVE_SIMPLE_MUTEXES
    757 /*
    758  * mutex_wakeup:
    759  *
    760  *	Support routine for mutex_exit() that wakes up all waiters.
    761  *	We assume that the mutex has been released, but it need not
    762  *	be.
    763  */
    764 void
    765 mutex_wakeup(kmutex_t *mtx)
    766 {
    767 	turnstile_t *ts;
    768 
    769 	ts = turnstile_lookup(mtx);
    770 	if (ts == NULL) {
    771 		turnstile_exit(mtx);
    772 		return;
    773 	}
    774 	MUTEX_CLEAR_WAITERS(mtx);
    775 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    776 }
    777 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    778 
    779 /*
    780  * mutex_owned:
    781  *
    782  *	Return true if the current LWP (adaptive) or CPU (spin)
    783  *	holds the mutex.
    784  */
    785 int
    786 mutex_owned(kmutex_t *mtx)
    787 {
    788 
    789 	if (mtx == NULL)
    790 		return 0;
    791 	if (MUTEX_ADAPTIVE_P(mtx))
    792 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    793 #ifdef FULL
    794 	return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock);
    795 #else
    796 	return 1;
    797 #endif
    798 }
    799 
    800 /*
    801  * mutex_owner:
    802  *
    803  *	Return the current owner of an adaptive mutex.  Used for
    804  *	priority inheritance.
    805  */
    806 lwp_t *
    807 mutex_owner(kmutex_t *mtx)
    808 {
    809 
    810 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    811 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    812 }
    813 
    814 /*
    815  * mutex_tryenter:
    816  *
    817  *	Try to acquire the mutex; return non-zero if we did.
    818  */
    819 int
    820 mutex_tryenter(kmutex_t *mtx)
    821 {
    822 	uintptr_t curthread;
    823 
    824 	/*
    825 	 * Handle spin mutexes.
    826 	 */
    827 	if (MUTEX_SPIN_P(mtx)) {
    828 		MUTEX_SPIN_SPLRAISE(mtx);
    829 #ifdef FULL
    830 		if (__cpu_simple_lock_try(&mtx->mtx_lock)) {
    831 			MUTEX_WANTLOCK(mtx);
    832 			MUTEX_LOCKED(mtx);
    833 			return 1;
    834 		}
    835 		MUTEX_SPIN_SPLRESTORE(mtx);
    836 #else
    837 		MUTEX_WANTLOCK(mtx);
    838 		MUTEX_LOCKED(mtx);
    839 		return 1;
    840 #endif
    841 	} else {
    842 		curthread = (uintptr_t)curlwp;
    843 		MUTEX_ASSERT(mtx, curthread != 0);
    844 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    845 			MUTEX_WANTLOCK(mtx);
    846 			MUTEX_LOCKED(mtx);
    847 			MUTEX_DASSERT(mtx,
    848 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    849 			return 1;
    850 		}
    851 	}
    852 
    853 	return 0;
    854 }
    855 
    856 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    857 /*
    858  * mutex_spin_retry:
    859  *
    860  *	Support routine for mutex_spin_enter().  Assumes that the caller
    861  *	has already raised the SPL, and adjusted counters.
    862  */
    863 void
    864 mutex_spin_retry(kmutex_t *mtx)
    865 {
    866 #ifdef MULTIPROCESSOR
    867 	u_int count;
    868 	LOCKSTAT_TIMER(spintime);
    869 	LOCKSTAT_FLAG(lsflag);
    870 #ifdef LOCKDEBUG
    871 	u_int spins = 0;
    872 #endif	/* LOCKDEBUG */
    873 
    874 	MUTEX_WANTLOCK(mtx);
    875 
    876 	LOCKSTAT_ENTER(lsflag);
    877 	LOCKSTAT_START_TIMER(lsflag, spintime);
    878 	count = SPINLOCK_BACKOFF_MIN;
    879 
    880 	/*
    881 	 * Spin testing the lock word and do exponential backoff
    882 	 * to reduce cache line ping-ponging between CPUs.
    883 	 */
    884 	do {
    885 		if (panicstr != NULL)
    886 			break;
    887 		while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) {
    888 			SPINLOCK_BACKOFF(count);
    889 #ifdef LOCKDEBUG
    890 			if (SPINLOCK_SPINOUT(spins))
    891 				MUTEX_ABORT(mtx, "spinout");
    892 #endif	/* LOCKDEBUG */
    893 		}
    894 	} while (!__cpu_simple_lock_try(&mtx->mtx_lock));
    895 
    896 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    897 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    898 	LOCKSTAT_EXIT(lsflag);
    899 
    900 	MUTEX_LOCKED(mtx);
    901 #else	/* MULTIPROCESSOR */
    902 	MUTEX_ABORT(mtx, "locking against myself");
    903 #endif	/* MULTIPROCESSOR */
    904 }
    905 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    906