Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.61
      1 /*	$NetBSD: kern_mutex.c,v 1.61 2014/11/28 08:27:27 uebayasi Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.61 2014/11/28 08:27:27 uebayasi Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/atomic.h>
     47 #include <sys/proc.h>
     48 #include <sys/mutex.h>
     49 #include <sys/sched.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/systm.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/kernel.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 #include <sys/types.h>
     57 
     58 #include <dev/lockstat.h>
     59 
     60 #include <machine/lock.h>
     61 
     62 /*
     63  * When not running a debug kernel, spin mutexes are not much
     64  * more than an splraiseipl() and splx() pair.
     65  */
     66 
     67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     68 #define	FULL
     69 #endif
     70 
     71 /*
     72  * Debugging support.
     73  */
     74 
     75 #define	MUTEX_WANTLOCK(mtx)					\
     76     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     77         (uintptr_t)__builtin_return_address(0), 0)
     78 #define	MUTEX_LOCKED(mtx)					\
     79     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     80         (uintptr_t)__builtin_return_address(0), 0)
     81 #define	MUTEX_UNLOCKED(mtx)					\
     82     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     83         (uintptr_t)__builtin_return_address(0), 0)
     84 #define	MUTEX_ABORT(mtx, msg)					\
     85     mutex_abort(mtx, __func__, msg)
     86 
     87 #if defined(LOCKDEBUG)
     88 
     89 #define	MUTEX_DASSERT(mtx, cond)				\
     90 do {								\
     91 	if (!(cond))						\
     92 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
     93 } while (/* CONSTCOND */ 0);
     94 
     95 #else	/* LOCKDEBUG */
     96 
     97 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
     98 
     99 #endif /* LOCKDEBUG */
    100 
    101 #if defined(DIAGNOSTIC)
    102 
    103 #define	MUTEX_ASSERT(mtx, cond)					\
    104 do {								\
    105 	if (!(cond))						\
    106 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    107 } while (/* CONSTCOND */ 0)
    108 
    109 #else	/* DIAGNOSTIC */
    110 
    111 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    112 
    113 #endif	/* DIAGNOSTIC */
    114 
    115 /*
    116  * Some architectures can't use __cpu_simple_lock as is so allow a way
    117  * for them to use an alternate definition.
    118  */
    119 #ifndef MUTEX_SPINBIT_LOCK_INIT
    120 #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    121 #endif
    122 #ifndef MUTEX_SPINBIT_LOCKED_P
    123 #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    124 #endif
    125 #ifndef MUTEX_SPINBIT_LOCK_TRY
    126 #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    127 #endif
    128 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    129 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    130 #endif
    131 
    132 #ifndef MUTEX_INITIALIZE_SPIN_IPL
    133 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    134 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    135 #endif
    136 
    137 /*
    138  * Spin mutex SPL save / restore.
    139  */
    140 
    141 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    142 do {									\
    143 	struct cpu_info *x__ci;						\
    144 	int x__cnt, s;							\
    145 	s = splraiseipl(MUTEX_SPIN_IPL(mtx));				\
    146 	x__ci = curcpu();						\
    147 	x__cnt = x__ci->ci_mtx_count--;					\
    148 	__insn_barrier();						\
    149 	if (x__cnt == 0)						\
    150 		x__ci->ci_mtx_oldspl = (s);				\
    151 } while (/* CONSTCOND */ 0)
    152 
    153 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    154 do {									\
    155 	struct cpu_info *x__ci = curcpu();				\
    156 	int s = x__ci->ci_mtx_oldspl;					\
    157 	__insn_barrier();						\
    158 	if (++(x__ci->ci_mtx_count) == 0)			\
    159 		splx(s);						\
    160 } while (/* CONSTCOND */ 0)
    161 
    162 /*
    163  * For architectures that provide 'simple' mutexes: they provide a
    164  * CAS function that is either MP-safe, or does not need to be MP
    165  * safe.  Adaptive mutexes on these architectures do not require an
    166  * additional interlock.
    167  */
    168 
    169 #ifdef __HAVE_SIMPLE_MUTEXES
    170 
    171 #define	MUTEX_OWNER(owner)						\
    172 	(owner & MUTEX_THREAD)
    173 #define	MUTEX_HAS_WAITERS(mtx)						\
    174 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    175 
    176 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    177 	if (!dodebug)							\
    178 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    179 do {									\
    180 } while (/* CONSTCOND */ 0);
    181 
    182 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    183 do {									\
    184 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    185 	if (!dodebug)							\
    186 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    187 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    188 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    189 } while (/* CONSTCOND */ 0)
    190 
    191 #define	MUTEX_DESTROY(mtx)						\
    192 do {									\
    193 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    194 } while (/* CONSTCOND */ 0);
    195 
    196 #define	MUTEX_SPIN_P(mtx)		\
    197     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    198 #define	MUTEX_ADAPTIVE_P(mtx)		\
    199     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    200 
    201 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    202 #if defined(LOCKDEBUG)
    203 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    204 #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    205 #else /* defined(LOCKDEBUG) */
    206 #define	MUTEX_OWNED(owner)		((owner) != 0)
    207 #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    208 #endif /* defined(LOCKDEBUG) */
    209 
    210 static inline int
    211 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    212 {
    213 	int rv;
    214 	uintptr_t oldown = 0;
    215 	uintptr_t newown = curthread;
    216 
    217 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    218 	MUTEX_INHERITDEBUG(newown, oldown);
    219 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    220 	MUTEX_RECEIVE(mtx);
    221 	return rv;
    222 }
    223 
    224 static inline int
    225 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    226 {
    227 	int rv;
    228 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    229 	MUTEX_RECEIVE(mtx);
    230 	return rv;
    231 }
    232 
    233 static inline void
    234 MUTEX_RELEASE(kmutex_t *mtx)
    235 {
    236 	uintptr_t newown;
    237 
    238 	MUTEX_GIVE(mtx);
    239 	newown = 0;
    240 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    241 	mtx->mtx_owner = newown;
    242 }
    243 #endif	/* __HAVE_SIMPLE_MUTEXES */
    244 
    245 /*
    246  * Patch in stubs via strong alias where they are not available.
    247  */
    248 
    249 #if defined(LOCKDEBUG)
    250 #undef	__HAVE_MUTEX_STUBS
    251 #undef	__HAVE_SPIN_MUTEX_STUBS
    252 #endif
    253 
    254 #ifndef __HAVE_MUTEX_STUBS
    255 __strong_alias(mutex_enter,mutex_vector_enter);
    256 __strong_alias(mutex_exit,mutex_vector_exit);
    257 #endif
    258 
    259 #ifndef __HAVE_SPIN_MUTEX_STUBS
    260 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    261 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    262 #endif
    263 
    264 static void		mutex_abort(kmutex_t *, const char *, const char *);
    265 static void		mutex_dump(volatile void *);
    266 
    267 lockops_t mutex_spin_lockops = {
    268 	"Mutex",
    269 	LOCKOPS_SPIN,
    270 	mutex_dump
    271 };
    272 
    273 lockops_t mutex_adaptive_lockops = {
    274 	"Mutex",
    275 	LOCKOPS_SLEEP,
    276 	mutex_dump
    277 };
    278 
    279 syncobj_t mutex_syncobj = {
    280 	SOBJ_SLEEPQ_SORTED,
    281 	turnstile_unsleep,
    282 	turnstile_changepri,
    283 	sleepq_lendpri,
    284 	(void *)mutex_owner,
    285 };
    286 
    287 /*
    288  * mutex_dump:
    289  *
    290  *	Dump the contents of a mutex structure.
    291  */
    292 void
    293 mutex_dump(volatile void *cookie)
    294 {
    295 	volatile kmutex_t *mtx = cookie;
    296 
    297 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    298 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    299 	    MUTEX_SPIN_P(mtx));
    300 }
    301 
    302 /*
    303  * mutex_abort:
    304  *
    305  *	Dump information about an error and panic the system.  This
    306  *	generates a lot of machine code in the DIAGNOSTIC case, so
    307  *	we ask the compiler to not inline it.
    308  */
    309 void __noinline
    310 mutex_abort(kmutex_t *mtx, const char *func, const char *msg)
    311 {
    312 
    313 	LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ?
    314 	    &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg);
    315 }
    316 
    317 /*
    318  * mutex_init:
    319  *
    320  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    321  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    322  *	CPU time.  We can't easily provide a type of mutex that always
    323  *	sleeps - see comments in mutex_vector_enter() about releasing
    324  *	mutexes unlocked.
    325  */
    326 void
    327 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    328 {
    329 	bool dodebug;
    330 
    331 	memset(mtx, 0, sizeof(*mtx));
    332 
    333 	switch (type) {
    334 	case MUTEX_ADAPTIVE:
    335 		KASSERT(ipl == IPL_NONE);
    336 		break;
    337 	case MUTEX_DEFAULT:
    338 	case MUTEX_DRIVER:
    339 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    340 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    341 		    ipl == IPL_SOFTSERIAL) {
    342 			type = MUTEX_ADAPTIVE;
    343 		} else {
    344 			type = MUTEX_SPIN;
    345 		}
    346 		break;
    347 	default:
    348 		break;
    349 	}
    350 
    351 	switch (type) {
    352 	case MUTEX_NODEBUG:
    353 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
    354 		    (uintptr_t)__builtin_return_address(0));
    355 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    356 		break;
    357 	case MUTEX_ADAPTIVE:
    358 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    359 		    (uintptr_t)__builtin_return_address(0));
    360 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    361 		break;
    362 	case MUTEX_SPIN:
    363 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    364 		    (uintptr_t)__builtin_return_address(0));
    365 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    366 		break;
    367 	default:
    368 		panic("mutex_init: impossible type");
    369 		break;
    370 	}
    371 }
    372 
    373 /*
    374  * mutex_destroy:
    375  *
    376  *	Tear down a mutex.
    377  */
    378 void
    379 mutex_destroy(kmutex_t *mtx)
    380 {
    381 
    382 	if (MUTEX_ADAPTIVE_P(mtx)) {
    383 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    384 		    !MUTEX_HAS_WAITERS(mtx));
    385 	} else {
    386 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    387 	}
    388 
    389 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    390 	MUTEX_DESTROY(mtx);
    391 }
    392 
    393 #ifdef MULTIPROCESSOR
    394 /*
    395  * mutex_oncpu:
    396  *
    397  *	Return true if an adaptive mutex owner is running on a CPU in the
    398  *	system.  If the target is waiting on the kernel big lock, then we
    399  *	must release it.  This is necessary to avoid deadlock.
    400  */
    401 static bool
    402 mutex_oncpu(uintptr_t owner)
    403 {
    404 	struct cpu_info *ci;
    405 	lwp_t *l;
    406 
    407 	KASSERT(kpreempt_disabled());
    408 
    409 	if (!MUTEX_OWNED(owner)) {
    410 		return false;
    411 	}
    412 
    413 	/*
    414 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    415 	 * We must have kernel preemption disabled for that.
    416 	 */
    417 	l = (lwp_t *)MUTEX_OWNER(owner);
    418 	ci = l->l_cpu;
    419 
    420 	if (ci && ci->ci_curlwp == l) {
    421 		/* Target is running; do we need to block? */
    422 		return (ci->ci_biglock_wanted != l);
    423 	}
    424 
    425 	/* Not running.  It may be safe to block now. */
    426 	return false;
    427 }
    428 #endif	/* MULTIPROCESSOR */
    429 
    430 /*
    431  * mutex_vector_enter:
    432  *
    433  *	Support routine for mutex_enter() that must handle all cases.  In
    434  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    435  *	fast-path stubs are available.  If an mutex_spin_enter() stub is
    436  *	not available, then it is also aliased directly here.
    437  */
    438 void
    439 mutex_vector_enter(kmutex_t *mtx)
    440 {
    441 	uintptr_t owner, curthread;
    442 	turnstile_t *ts;
    443 #ifdef MULTIPROCESSOR
    444 	u_int count;
    445 #endif
    446 	LOCKSTAT_COUNTER(spincnt);
    447 	LOCKSTAT_COUNTER(slpcnt);
    448 	LOCKSTAT_TIMER(spintime);
    449 	LOCKSTAT_TIMER(slptime);
    450 	LOCKSTAT_FLAG(lsflag);
    451 
    452 	/*
    453 	 * Handle spin mutexes.
    454 	 */
    455 	if (MUTEX_SPIN_P(mtx)) {
    456 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    457 		u_int spins = 0;
    458 #endif
    459 		MUTEX_SPIN_SPLRAISE(mtx);
    460 		MUTEX_WANTLOCK(mtx);
    461 #ifdef FULL
    462 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    463 			MUTEX_LOCKED(mtx);
    464 			return;
    465 		}
    466 #if !defined(MULTIPROCESSOR)
    467 		MUTEX_ABORT(mtx, "locking against myself");
    468 #else /* !MULTIPROCESSOR */
    469 
    470 		LOCKSTAT_ENTER(lsflag);
    471 		LOCKSTAT_START_TIMER(lsflag, spintime);
    472 		count = SPINLOCK_BACKOFF_MIN;
    473 
    474 		/*
    475 		 * Spin testing the lock word and do exponential backoff
    476 		 * to reduce cache line ping-ponging between CPUs.
    477 		 */
    478 		do {
    479 			if (panicstr != NULL)
    480 				break;
    481 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    482 				SPINLOCK_BACKOFF(count);
    483 #ifdef LOCKDEBUG
    484 				if (SPINLOCK_SPINOUT(spins))
    485 					MUTEX_ABORT(mtx, "spinout");
    486 #endif	/* LOCKDEBUG */
    487 			}
    488 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    489 
    490 		if (count != SPINLOCK_BACKOFF_MIN) {
    491 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    492 			LOCKSTAT_EVENT(lsflag, mtx,
    493 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    494 		}
    495 		LOCKSTAT_EXIT(lsflag);
    496 #endif	/* !MULTIPROCESSOR */
    497 #endif	/* FULL */
    498 		MUTEX_LOCKED(mtx);
    499 		return;
    500 	}
    501 
    502 	curthread = (uintptr_t)curlwp;
    503 
    504 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    505 	MUTEX_ASSERT(mtx, curthread != 0);
    506 	MUTEX_WANTLOCK(mtx);
    507 
    508 	if (panicstr == NULL) {
    509 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    510 	}
    511 
    512 	LOCKSTAT_ENTER(lsflag);
    513 
    514 	/*
    515 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    516 	 * determine that the owner is not running on a processor,
    517 	 * then we stop spinning, and sleep instead.
    518 	 */
    519 	KPREEMPT_DISABLE(curlwp);
    520 	for (owner = mtx->mtx_owner;;) {
    521 		if (!MUTEX_OWNED(owner)) {
    522 			/*
    523 			 * Mutex owner clear could mean two things:
    524 			 *
    525 			 *	* The mutex has been released.
    526 			 *	* The owner field hasn't been set yet.
    527 			 *
    528 			 * Try to acquire it again.  If that fails,
    529 			 * we'll just loop again.
    530 			 */
    531 			if (MUTEX_ACQUIRE(mtx, curthread))
    532 				break;
    533 			owner = mtx->mtx_owner;
    534 			continue;
    535 		}
    536 		if (__predict_false(panicstr != NULL)) {
    537 			KPREEMPT_ENABLE(curlwp);
    538 			return;
    539 		}
    540 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    541 			MUTEX_ABORT(mtx, "locking against myself");
    542 		}
    543 #ifdef MULTIPROCESSOR
    544 		/*
    545 		 * Check to see if the owner is running on a processor.
    546 		 * If so, then we should just spin, as the owner will
    547 		 * likely release the lock very soon.
    548 		 */
    549 		if (mutex_oncpu(owner)) {
    550 			LOCKSTAT_START_TIMER(lsflag, spintime);
    551 			count = SPINLOCK_BACKOFF_MIN;
    552 			do {
    553 				KPREEMPT_ENABLE(curlwp);
    554 				SPINLOCK_BACKOFF(count);
    555 				KPREEMPT_DISABLE(curlwp);
    556 				owner = mtx->mtx_owner;
    557 			} while (mutex_oncpu(owner));
    558 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    559 			LOCKSTAT_COUNT(spincnt, 1);
    560 			if (!MUTEX_OWNED(owner))
    561 				continue;
    562 		}
    563 #endif
    564 
    565 		ts = turnstile_lookup(mtx);
    566 
    567 		/*
    568 		 * Once we have the turnstile chain interlock, mark the
    569 		 * mutex has having waiters.  If that fails, spin again:
    570 		 * chances are that the mutex has been released.
    571 		 */
    572 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    573 			turnstile_exit(mtx);
    574 			owner = mtx->mtx_owner;
    575 			continue;
    576 		}
    577 
    578 #ifdef MULTIPROCESSOR
    579 		/*
    580 		 * mutex_exit() is permitted to release the mutex without
    581 		 * any interlocking instructions, and the following can
    582 		 * occur as a result:
    583 		 *
    584 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    585 		 * ---------------------------- ----------------------------
    586 		 *		..		    acquire cache line
    587 		 *		..                   test for waiters
    588 		 *	acquire cache line    <-      lose cache line
    589 		 *	 lock cache line	           ..
    590 		 *     verify mutex is held                ..
    591 		 *	    set waiters  	           ..
    592 		 *	 unlock cache line		   ..
    593 		 *	  lose cache line     ->    acquire cache line
    594 		 *		..	          clear lock word, waiters
    595 		 *	  return success
    596 		 *
    597 		 * There is another race that can occur: a third CPU could
    598 		 * acquire the mutex as soon as it is released.  Since
    599 		 * adaptive mutexes are primarily spin mutexes, this is not
    600 		 * something that we need to worry about too much.  What we
    601 		 * do need to ensure is that the waiters bit gets set.
    602 		 *
    603 		 * To allow the unlocked release, we need to make some
    604 		 * assumptions here:
    605 		 *
    606 		 * o Release is the only non-atomic/unlocked operation
    607 		 *   that can be performed on the mutex.  (It must still
    608 		 *   be atomic on the local CPU, e.g. in case interrupted
    609 		 *   or preempted).
    610 		 *
    611 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    612 		 *   be in progress on one CPU in the system - guaranteed
    613 		 *   by the turnstile chain lock.
    614 		 *
    615 		 * o No other operations other than MUTEX_SET_WAITERS()
    616 		 *   and release can modify a mutex with a non-zero
    617 		 *   owner field.
    618 		 *
    619 		 * o The result of a successful MUTEX_SET_WAITERS() call
    620 		 *   is an unbuffered write that is immediately visible
    621 		 *   to all other processors in the system.
    622 		 *
    623 		 * o If the holding LWP switches away, it posts a store
    624 		 *   fence before changing curlwp, ensuring that any
    625 		 *   overwrite of the mutex waiters flag by mutex_exit()
    626 		 *   completes before the modification of curlwp becomes
    627 		 *   visible to this CPU.
    628 		 *
    629 		 * o mi_switch() posts a store fence before setting curlwp
    630 		 *   and before resuming execution of an LWP.
    631 		 *
    632 		 * o _kernel_lock() posts a store fence before setting
    633 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    634 		 *   This ensures that any overwrite of the mutex waiters
    635 		 *   flag by mutex_exit() completes before the modification
    636 		 *   of ci_biglock_wanted becomes visible.
    637 		 *
    638 		 * We now post a read memory barrier (after setting the
    639 		 * waiters field) and check the lock holder's status again.
    640 		 * Some of the possible outcomes (not an exhaustive list):
    641 		 *
    642 		 * 1. The on-CPU check returns true: the holding LWP is
    643 		 *    running again.  The lock may be released soon and
    644 		 *    we should spin.  Importantly, we can't trust the
    645 		 *    value of the waiters flag.
    646 		 *
    647 		 * 2. The on-CPU check returns false: the holding LWP is
    648 		 *    not running.  We now have the opportunity to check
    649 		 *    if mutex_exit() has blatted the modifications made
    650 		 *    by MUTEX_SET_WAITERS().
    651 		 *
    652 		 * 3. The on-CPU check returns false: the holding LWP may
    653 		 *    or may not be running.  It has context switched at
    654 		 *    some point during our check.  Again, we have the
    655 		 *    chance to see if the waiters bit is still set or
    656 		 *    has been overwritten.
    657 		 *
    658 		 * 4. The on-CPU check returns false: the holding LWP is
    659 		 *    running on a CPU, but wants the big lock.  It's OK
    660 		 *    to check the waiters field in this case.
    661 		 *
    662 		 * 5. The has-waiters check fails: the mutex has been
    663 		 *    released, the waiters flag cleared and another LWP
    664 		 *    now owns the mutex.
    665 		 *
    666 		 * 6. The has-waiters check fails: the mutex has been
    667 		 *    released.
    668 		 *
    669 		 * If the waiters bit is not set it's unsafe to go asleep,
    670 		 * as we might never be awoken.
    671 		 */
    672 		if ((membar_consumer(), mutex_oncpu(owner)) ||
    673 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    674 			turnstile_exit(mtx);
    675 			owner = mtx->mtx_owner;
    676 			continue;
    677 		}
    678 #endif	/* MULTIPROCESSOR */
    679 
    680 		LOCKSTAT_START_TIMER(lsflag, slptime);
    681 
    682 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    683 
    684 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    685 		LOCKSTAT_COUNT(slpcnt, 1);
    686 
    687 		owner = mtx->mtx_owner;
    688 	}
    689 	KPREEMPT_ENABLE(curlwp);
    690 
    691 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    692 	    slpcnt, slptime);
    693 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    694 	    spincnt, spintime);
    695 	LOCKSTAT_EXIT(lsflag);
    696 
    697 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    698 	MUTEX_LOCKED(mtx);
    699 }
    700 
    701 /*
    702  * mutex_vector_exit:
    703  *
    704  *	Support routine for mutex_exit() that handles all cases.
    705  */
    706 void
    707 mutex_vector_exit(kmutex_t *mtx)
    708 {
    709 	turnstile_t *ts;
    710 	uintptr_t curthread;
    711 
    712 	if (MUTEX_SPIN_P(mtx)) {
    713 #ifdef FULL
    714 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    715 			if (panicstr != NULL)
    716 				return;
    717 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    718 		}
    719 		MUTEX_UNLOCKED(mtx);
    720 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    721 #endif
    722 		MUTEX_SPIN_SPLRESTORE(mtx);
    723 		return;
    724 	}
    725 
    726 	if (__predict_false((uintptr_t)panicstr | cold)) {
    727 		MUTEX_UNLOCKED(mtx);
    728 		MUTEX_RELEASE(mtx);
    729 		return;
    730 	}
    731 
    732 	curthread = (uintptr_t)curlwp;
    733 	MUTEX_DASSERT(mtx, curthread != 0);
    734 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    735 	MUTEX_UNLOCKED(mtx);
    736 #if !defined(LOCKDEBUG)
    737 	__USE(curthread);
    738 #endif
    739 
    740 #ifdef LOCKDEBUG
    741 	/*
    742 	 * Avoid having to take the turnstile chain lock every time
    743 	 * around.  Raise the priority level to splhigh() in order
    744 	 * to disable preemption and so make the following atomic.
    745 	 */
    746 	{
    747 		int s = splhigh();
    748 		if (!MUTEX_HAS_WAITERS(mtx)) {
    749 			MUTEX_RELEASE(mtx);
    750 			splx(s);
    751 			return;
    752 		}
    753 		splx(s);
    754 	}
    755 #endif
    756 
    757 	/*
    758 	 * Get this lock's turnstile.  This gets the interlock on
    759 	 * the sleep queue.  Once we have that, we can clear the
    760 	 * lock.  If there was no turnstile for the lock, there
    761 	 * were no waiters remaining.
    762 	 */
    763 	ts = turnstile_lookup(mtx);
    764 
    765 	if (ts == NULL) {
    766 		MUTEX_RELEASE(mtx);
    767 		turnstile_exit(mtx);
    768 	} else {
    769 		MUTEX_RELEASE(mtx);
    770 		turnstile_wakeup(ts, TS_WRITER_Q,
    771 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    772 	}
    773 }
    774 
    775 #ifndef __HAVE_SIMPLE_MUTEXES
    776 /*
    777  * mutex_wakeup:
    778  *
    779  *	Support routine for mutex_exit() that wakes up all waiters.
    780  *	We assume that the mutex has been released, but it need not
    781  *	be.
    782  */
    783 void
    784 mutex_wakeup(kmutex_t *mtx)
    785 {
    786 	turnstile_t *ts;
    787 
    788 	ts = turnstile_lookup(mtx);
    789 	if (ts == NULL) {
    790 		turnstile_exit(mtx);
    791 		return;
    792 	}
    793 	MUTEX_CLEAR_WAITERS(mtx);
    794 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    795 }
    796 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    797 
    798 /*
    799  * mutex_owned:
    800  *
    801  *	Return true if the current LWP (adaptive) or CPU (spin)
    802  *	holds the mutex.
    803  */
    804 int
    805 mutex_owned(kmutex_t *mtx)
    806 {
    807 
    808 	if (mtx == NULL)
    809 		return 0;
    810 	if (MUTEX_ADAPTIVE_P(mtx))
    811 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    812 #ifdef FULL
    813 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    814 #else
    815 	return 1;
    816 #endif
    817 }
    818 
    819 /*
    820  * mutex_owner:
    821  *
    822  *	Return the current owner of an adaptive mutex.  Used for
    823  *	priority inheritance.
    824  */
    825 lwp_t *
    826 mutex_owner(kmutex_t *mtx)
    827 {
    828 
    829 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    830 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    831 }
    832 
    833 /*
    834  * mutex_tryenter:
    835  *
    836  *	Try to acquire the mutex; return non-zero if we did.
    837  */
    838 int
    839 mutex_tryenter(kmutex_t *mtx)
    840 {
    841 	uintptr_t curthread;
    842 
    843 	/*
    844 	 * Handle spin mutexes.
    845 	 */
    846 	if (MUTEX_SPIN_P(mtx)) {
    847 		MUTEX_SPIN_SPLRAISE(mtx);
    848 #ifdef FULL
    849 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    850 			MUTEX_WANTLOCK(mtx);
    851 			MUTEX_LOCKED(mtx);
    852 			return 1;
    853 		}
    854 		MUTEX_SPIN_SPLRESTORE(mtx);
    855 #else
    856 		MUTEX_WANTLOCK(mtx);
    857 		MUTEX_LOCKED(mtx);
    858 		return 1;
    859 #endif
    860 	} else {
    861 		curthread = (uintptr_t)curlwp;
    862 		MUTEX_ASSERT(mtx, curthread != 0);
    863 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    864 			MUTEX_WANTLOCK(mtx);
    865 			MUTEX_LOCKED(mtx);
    866 			MUTEX_DASSERT(mtx,
    867 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    868 			return 1;
    869 		}
    870 	}
    871 
    872 	return 0;
    873 }
    874 
    875 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    876 /*
    877  * mutex_spin_retry:
    878  *
    879  *	Support routine for mutex_spin_enter().  Assumes that the caller
    880  *	has already raised the SPL, and adjusted counters.
    881  */
    882 void
    883 mutex_spin_retry(kmutex_t *mtx)
    884 {
    885 #ifdef MULTIPROCESSOR
    886 	u_int count;
    887 	LOCKSTAT_TIMER(spintime);
    888 	LOCKSTAT_FLAG(lsflag);
    889 #ifdef LOCKDEBUG
    890 	u_int spins = 0;
    891 #endif	/* LOCKDEBUG */
    892 
    893 	MUTEX_WANTLOCK(mtx);
    894 
    895 	LOCKSTAT_ENTER(lsflag);
    896 	LOCKSTAT_START_TIMER(lsflag, spintime);
    897 	count = SPINLOCK_BACKOFF_MIN;
    898 
    899 	/*
    900 	 * Spin testing the lock word and do exponential backoff
    901 	 * to reduce cache line ping-ponging between CPUs.
    902 	 */
    903 	do {
    904 		if (panicstr != NULL)
    905 			break;
    906 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    907 			SPINLOCK_BACKOFF(count);
    908 #ifdef LOCKDEBUG
    909 			if (SPINLOCK_SPINOUT(spins))
    910 				MUTEX_ABORT(mtx, "spinout");
    911 #endif	/* LOCKDEBUG */
    912 		}
    913 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    914 
    915 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    916 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    917 	LOCKSTAT_EXIT(lsflag);
    918 
    919 	MUTEX_LOCKED(mtx);
    920 #else	/* MULTIPROCESSOR */
    921 	MUTEX_ABORT(mtx, "locking against myself");
    922 #endif	/* MULTIPROCESSOR */
    923 }
    924 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    925