kern_mutex.c revision 1.66 1 /* $NetBSD: kern_mutex.c,v 1.66 2017/09/16 23:25:34 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel mutex implementation, modeled after those found in Solaris,
34 * a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #define __MUTEX_PRIVATE
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.66 2017/09/16 23:25:34 christos Exp $");
44
45 #include <sys/param.h>
46 #include <sys/atomic.h>
47 #include <sys/proc.h>
48 #include <sys/mutex.h>
49 #include <sys/sched.h>
50 #include <sys/sleepq.h>
51 #include <sys/systm.h>
52 #include <sys/lockdebug.h>
53 #include <sys/kernel.h>
54 #include <sys/intr.h>
55 #include <sys/lock.h>
56 #include <sys/types.h>
57
58 #include <dev/lockstat.h>
59
60 #include <machine/lock.h>
61
62 /*
63 * When not running a debug kernel, spin mutexes are not much
64 * more than an splraiseipl() and splx() pair.
65 */
66
67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
68 #define FULL
69 #endif
70
71 /*
72 * Debugging support.
73 */
74
75 #define MUTEX_WANTLOCK(mtx) \
76 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
77 (uintptr_t)__builtin_return_address(0), 0)
78 #define MUTEX_TESTLOCK(mtx) \
79 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
80 (uintptr_t)__builtin_return_address(0), -1)
81 #define MUTEX_LOCKED(mtx) \
82 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
83 (uintptr_t)__builtin_return_address(0), 0)
84 #define MUTEX_UNLOCKED(mtx) \
85 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
86 (uintptr_t)__builtin_return_address(0), 0)
87 #define MUTEX_ABORT(mtx, msg) \
88 mutex_abort(__func__, __LINE__, mtx, msg)
89
90 #if defined(LOCKDEBUG)
91
92 #define MUTEX_DASSERT(mtx, cond) \
93 do { \
94 if (!(cond)) \
95 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
96 } while (/* CONSTCOND */ 0);
97
98 #else /* LOCKDEBUG */
99
100 #define MUTEX_DASSERT(mtx, cond) /* nothing */
101
102 #endif /* LOCKDEBUG */
103
104 #if defined(DIAGNOSTIC)
105
106 #define MUTEX_ASSERT(mtx, cond) \
107 do { \
108 if (!(cond)) \
109 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
110 } while (/* CONSTCOND */ 0)
111
112 #else /* DIAGNOSTIC */
113
114 #define MUTEX_ASSERT(mtx, cond) /* nothing */
115
116 #endif /* DIAGNOSTIC */
117
118 /*
119 * Some architectures can't use __cpu_simple_lock as is so allow a way
120 * for them to use an alternate definition.
121 */
122 #ifndef MUTEX_SPINBIT_LOCK_INIT
123 #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
124 #endif
125 #ifndef MUTEX_SPINBIT_LOCKED_P
126 #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
127 #endif
128 #ifndef MUTEX_SPINBIT_LOCK_TRY
129 #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
130 #endif
131 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
132 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
133 #endif
134
135 #ifndef MUTEX_INITIALIZE_SPIN_IPL
136 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
137 ((mtx)->mtx_ipl = makeiplcookie((ipl)))
138 #endif
139
140 /*
141 * Spin mutex SPL save / restore.
142 */
143
144 #define MUTEX_SPIN_SPLRAISE(mtx) \
145 do { \
146 struct cpu_info *x__ci; \
147 int x__cnt, s; \
148 s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
149 x__ci = curcpu(); \
150 x__cnt = x__ci->ci_mtx_count--; \
151 __insn_barrier(); \
152 if (x__cnt == 0) \
153 x__ci->ci_mtx_oldspl = (s); \
154 } while (/* CONSTCOND */ 0)
155
156 #define MUTEX_SPIN_SPLRESTORE(mtx) \
157 do { \
158 struct cpu_info *x__ci = curcpu(); \
159 int s = x__ci->ci_mtx_oldspl; \
160 __insn_barrier(); \
161 if (++(x__ci->ci_mtx_count) == 0) \
162 splx(s); \
163 } while (/* CONSTCOND */ 0)
164
165 /*
166 * For architectures that provide 'simple' mutexes: they provide a
167 * CAS function that is either MP-safe, or does not need to be MP
168 * safe. Adaptive mutexes on these architectures do not require an
169 * additional interlock.
170 */
171
172 #ifdef __HAVE_SIMPLE_MUTEXES
173
174 #define MUTEX_OWNER(owner) \
175 (owner & MUTEX_THREAD)
176 #define MUTEX_HAS_WAITERS(mtx) \
177 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
178
179 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
180 if (!dodebug) \
181 (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
182 do { \
183 } while (/* CONSTCOND */ 0);
184
185 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
186 do { \
187 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
188 if (!dodebug) \
189 (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
190 MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
191 MUTEX_SPINBIT_LOCK_INIT((mtx)); \
192 } while (/* CONSTCOND */ 0)
193
194 #define MUTEX_DESTROY(mtx) \
195 do { \
196 (mtx)->mtx_owner = MUTEX_THREAD; \
197 } while (/* CONSTCOND */ 0);
198
199 #define MUTEX_SPIN_P(mtx) \
200 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
201 #define MUTEX_ADAPTIVE_P(mtx) \
202 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
203
204 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
205 #if defined(LOCKDEBUG)
206 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
207 #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
208 #else /* defined(LOCKDEBUG) */
209 #define MUTEX_OWNED(owner) ((owner) != 0)
210 #define MUTEX_INHERITDEBUG(n, o) /* nothing */
211 #endif /* defined(LOCKDEBUG) */
212
213 static inline int
214 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
215 {
216 int rv;
217 uintptr_t oldown = 0;
218 uintptr_t newown = curthread;
219
220 MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
221 MUTEX_INHERITDEBUG(newown, oldown);
222 rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
223 MUTEX_RECEIVE(mtx);
224 return rv;
225 }
226
227 static inline int
228 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
229 {
230 int rv;
231 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
232 MUTEX_RECEIVE(mtx);
233 return rv;
234 }
235
236 static inline void
237 MUTEX_RELEASE(kmutex_t *mtx)
238 {
239 uintptr_t newown;
240
241 MUTEX_GIVE(mtx);
242 newown = 0;
243 MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
244 mtx->mtx_owner = newown;
245 }
246 #endif /* __HAVE_SIMPLE_MUTEXES */
247
248 /*
249 * Patch in stubs via strong alias where they are not available.
250 */
251
252 #if defined(LOCKDEBUG)
253 #undef __HAVE_MUTEX_STUBS
254 #undef __HAVE_SPIN_MUTEX_STUBS
255 #endif
256
257 #ifndef __HAVE_MUTEX_STUBS
258 __strong_alias(mutex_enter,mutex_vector_enter);
259 __strong_alias(mutex_exit,mutex_vector_exit);
260 #endif
261
262 #ifndef __HAVE_SPIN_MUTEX_STUBS
263 __strong_alias(mutex_spin_enter,mutex_vector_enter);
264 __strong_alias(mutex_spin_exit,mutex_vector_exit);
265 #endif
266
267 static void mutex_abort(const char *, size_t, kmutex_t *, const char *);
268 static void mutex_dump(volatile void *);
269
270 lockops_t mutex_spin_lockops = {
271 "Mutex",
272 LOCKOPS_SPIN,
273 mutex_dump
274 };
275
276 lockops_t mutex_adaptive_lockops = {
277 "Mutex",
278 LOCKOPS_SLEEP,
279 mutex_dump
280 };
281
282 syncobj_t mutex_syncobj = {
283 SOBJ_SLEEPQ_SORTED,
284 turnstile_unsleep,
285 turnstile_changepri,
286 sleepq_lendpri,
287 (void *)mutex_owner,
288 };
289
290 /*
291 * mutex_dump:
292 *
293 * Dump the contents of a mutex structure.
294 */
295 void
296 mutex_dump(volatile void *cookie)
297 {
298 volatile kmutex_t *mtx = cookie;
299
300 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
301 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
302 MUTEX_SPIN_P(mtx));
303 }
304
305 /*
306 * mutex_abort:
307 *
308 * Dump information about an error and panic the system. This
309 * generates a lot of machine code in the DIAGNOSTIC case, so
310 * we ask the compiler to not inline it.
311 */
312 void __noinline
313 mutex_abort(const char *func, size_t line, kmutex_t *mtx, const char *msg)
314 {
315
316 LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
317 &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
318 }
319
320 /*
321 * mutex_init:
322 *
323 * Initialize a mutex for use. Note that adaptive mutexes are in
324 * essence spin mutexes that can sleep to avoid deadlock and wasting
325 * CPU time. We can't easily provide a type of mutex that always
326 * sleeps - see comments in mutex_vector_enter() about releasing
327 * mutexes unlocked.
328 */
329 void
330 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
331 {
332 bool dodebug;
333
334 memset(mtx, 0, sizeof(*mtx));
335
336 switch (type) {
337 case MUTEX_ADAPTIVE:
338 KASSERT(ipl == IPL_NONE);
339 break;
340 case MUTEX_DEFAULT:
341 case MUTEX_DRIVER:
342 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
343 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
344 ipl == IPL_SOFTSERIAL) {
345 type = MUTEX_ADAPTIVE;
346 } else {
347 type = MUTEX_SPIN;
348 }
349 break;
350 default:
351 break;
352 }
353
354 switch (type) {
355 case MUTEX_NODEBUG:
356 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
357 (uintptr_t)__builtin_return_address(0));
358 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
359 break;
360 case MUTEX_ADAPTIVE:
361 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
362 (uintptr_t)__builtin_return_address(0));
363 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
364 break;
365 case MUTEX_SPIN:
366 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
367 (uintptr_t)__builtin_return_address(0));
368 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
369 break;
370 default:
371 panic("mutex_init: impossible type");
372 break;
373 }
374 }
375
376 /*
377 * mutex_destroy:
378 *
379 * Tear down a mutex.
380 */
381 void
382 mutex_destroy(kmutex_t *mtx)
383 {
384
385 if (MUTEX_ADAPTIVE_P(mtx)) {
386 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
387 !MUTEX_HAS_WAITERS(mtx));
388 } else {
389 MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
390 }
391
392 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
393 MUTEX_DESTROY(mtx);
394 }
395
396 #ifdef MULTIPROCESSOR
397 /*
398 * mutex_oncpu:
399 *
400 * Return true if an adaptive mutex owner is running on a CPU in the
401 * system. If the target is waiting on the kernel big lock, then we
402 * must release it. This is necessary to avoid deadlock.
403 */
404 static bool
405 mutex_oncpu(uintptr_t owner)
406 {
407 struct cpu_info *ci;
408 lwp_t *l;
409
410 KASSERT(kpreempt_disabled());
411
412 if (!MUTEX_OWNED(owner)) {
413 return false;
414 }
415
416 /*
417 * See lwp_dtor() why dereference of the LWP pointer is safe.
418 * We must have kernel preemption disabled for that.
419 */
420 l = (lwp_t *)MUTEX_OWNER(owner);
421 ci = l->l_cpu;
422
423 if (ci && ci->ci_curlwp == l) {
424 /* Target is running; do we need to block? */
425 return (ci->ci_biglock_wanted != l);
426 }
427
428 /* Not running. It may be safe to block now. */
429 return false;
430 }
431 #endif /* MULTIPROCESSOR */
432
433 /*
434 * mutex_vector_enter:
435 *
436 * Support routine for mutex_enter() that must handle all cases. In
437 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
438 * fast-path stubs are available. If a mutex_spin_enter() stub is
439 * not available, then it is also aliased directly here.
440 */
441 void
442 mutex_vector_enter(kmutex_t *mtx)
443 {
444 uintptr_t owner, curthread;
445 turnstile_t *ts;
446 #ifdef MULTIPROCESSOR
447 u_int count;
448 #endif
449 LOCKSTAT_COUNTER(spincnt);
450 LOCKSTAT_COUNTER(slpcnt);
451 LOCKSTAT_TIMER(spintime);
452 LOCKSTAT_TIMER(slptime);
453 LOCKSTAT_FLAG(lsflag);
454
455 /*
456 * Handle spin mutexes.
457 */
458 if (MUTEX_SPIN_P(mtx)) {
459 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
460 u_int spins = 0;
461 #endif
462 MUTEX_SPIN_SPLRAISE(mtx);
463 MUTEX_WANTLOCK(mtx);
464 #ifdef FULL
465 if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
466 MUTEX_LOCKED(mtx);
467 return;
468 }
469 #if !defined(MULTIPROCESSOR)
470 MUTEX_ABORT(mtx, "locking against myself");
471 #else /* !MULTIPROCESSOR */
472
473 LOCKSTAT_ENTER(lsflag);
474 LOCKSTAT_START_TIMER(lsflag, spintime);
475 count = SPINLOCK_BACKOFF_MIN;
476
477 /*
478 * Spin testing the lock word and do exponential backoff
479 * to reduce cache line ping-ponging between CPUs.
480 */
481 do {
482 if (panicstr != NULL)
483 break;
484 while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
485 SPINLOCK_BACKOFF(count);
486 #ifdef LOCKDEBUG
487 if (SPINLOCK_SPINOUT(spins))
488 MUTEX_ABORT(mtx, "spinout");
489 #endif /* LOCKDEBUG */
490 }
491 } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
492
493 if (count != SPINLOCK_BACKOFF_MIN) {
494 LOCKSTAT_STOP_TIMER(lsflag, spintime);
495 LOCKSTAT_EVENT(lsflag, mtx,
496 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
497 }
498 LOCKSTAT_EXIT(lsflag);
499 #endif /* !MULTIPROCESSOR */
500 #endif /* FULL */
501 MUTEX_LOCKED(mtx);
502 return;
503 }
504
505 curthread = (uintptr_t)curlwp;
506
507 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
508 MUTEX_ASSERT(mtx, curthread != 0);
509 MUTEX_WANTLOCK(mtx);
510
511 if (panicstr == NULL) {
512 LOCKDEBUG_BARRIER(&kernel_lock, 1);
513 }
514
515 LOCKSTAT_ENTER(lsflag);
516
517 /*
518 * Adaptive mutex; spin trying to acquire the mutex. If we
519 * determine that the owner is not running on a processor,
520 * then we stop spinning, and sleep instead.
521 */
522 KPREEMPT_DISABLE(curlwp);
523 for (owner = mtx->mtx_owner;;) {
524 if (!MUTEX_OWNED(owner)) {
525 /*
526 * Mutex owner clear could mean two things:
527 *
528 * * The mutex has been released.
529 * * The owner field hasn't been set yet.
530 *
531 * Try to acquire it again. If that fails,
532 * we'll just loop again.
533 */
534 if (MUTEX_ACQUIRE(mtx, curthread))
535 break;
536 owner = mtx->mtx_owner;
537 continue;
538 }
539 if (__predict_false(panicstr != NULL)) {
540 KPREEMPT_ENABLE(curlwp);
541 return;
542 }
543 if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
544 MUTEX_ABORT(mtx, "locking against myself");
545 }
546 #ifdef MULTIPROCESSOR
547 /*
548 * Check to see if the owner is running on a processor.
549 * If so, then we should just spin, as the owner will
550 * likely release the lock very soon.
551 */
552 if (mutex_oncpu(owner)) {
553 LOCKSTAT_START_TIMER(lsflag, spintime);
554 count = SPINLOCK_BACKOFF_MIN;
555 do {
556 KPREEMPT_ENABLE(curlwp);
557 SPINLOCK_BACKOFF(count);
558 KPREEMPT_DISABLE(curlwp);
559 owner = mtx->mtx_owner;
560 } while (mutex_oncpu(owner));
561 LOCKSTAT_STOP_TIMER(lsflag, spintime);
562 LOCKSTAT_COUNT(spincnt, 1);
563 if (!MUTEX_OWNED(owner))
564 continue;
565 }
566 #endif
567
568 ts = turnstile_lookup(mtx);
569
570 /*
571 * Once we have the turnstile chain interlock, mark the
572 * mutex has having waiters. If that fails, spin again:
573 * chances are that the mutex has been released.
574 */
575 if (!MUTEX_SET_WAITERS(mtx, owner)) {
576 turnstile_exit(mtx);
577 owner = mtx->mtx_owner;
578 continue;
579 }
580
581 #ifdef MULTIPROCESSOR
582 /*
583 * mutex_exit() is permitted to release the mutex without
584 * any interlocking instructions, and the following can
585 * occur as a result:
586 *
587 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
588 * ---------------------------- ----------------------------
589 * .. acquire cache line
590 * .. test for waiters
591 * acquire cache line <- lose cache line
592 * lock cache line ..
593 * verify mutex is held ..
594 * set waiters ..
595 * unlock cache line ..
596 * lose cache line -> acquire cache line
597 * .. clear lock word, waiters
598 * return success
599 *
600 * There is another race that can occur: a third CPU could
601 * acquire the mutex as soon as it is released. Since
602 * adaptive mutexes are primarily spin mutexes, this is not
603 * something that we need to worry about too much. What we
604 * do need to ensure is that the waiters bit gets set.
605 *
606 * To allow the unlocked release, we need to make some
607 * assumptions here:
608 *
609 * o Release is the only non-atomic/unlocked operation
610 * that can be performed on the mutex. (It must still
611 * be atomic on the local CPU, e.g. in case interrupted
612 * or preempted).
613 *
614 * o At any given time, MUTEX_SET_WAITERS() can only ever
615 * be in progress on one CPU in the system - guaranteed
616 * by the turnstile chain lock.
617 *
618 * o No other operations other than MUTEX_SET_WAITERS()
619 * and release can modify a mutex with a non-zero
620 * owner field.
621 *
622 * o The result of a successful MUTEX_SET_WAITERS() call
623 * is an unbuffered write that is immediately visible
624 * to all other processors in the system.
625 *
626 * o If the holding LWP switches away, it posts a store
627 * fence before changing curlwp, ensuring that any
628 * overwrite of the mutex waiters flag by mutex_exit()
629 * completes before the modification of curlwp becomes
630 * visible to this CPU.
631 *
632 * o mi_switch() posts a store fence before setting curlwp
633 * and before resuming execution of an LWP.
634 *
635 * o _kernel_lock() posts a store fence before setting
636 * curcpu()->ci_biglock_wanted, and after clearing it.
637 * This ensures that any overwrite of the mutex waiters
638 * flag by mutex_exit() completes before the modification
639 * of ci_biglock_wanted becomes visible.
640 *
641 * We now post a read memory barrier (after setting the
642 * waiters field) and check the lock holder's status again.
643 * Some of the possible outcomes (not an exhaustive list):
644 *
645 * 1. The on-CPU check returns true: the holding LWP is
646 * running again. The lock may be released soon and
647 * we should spin. Importantly, we can't trust the
648 * value of the waiters flag.
649 *
650 * 2. The on-CPU check returns false: the holding LWP is
651 * not running. We now have the opportunity to check
652 * if mutex_exit() has blatted the modifications made
653 * by MUTEX_SET_WAITERS().
654 *
655 * 3. The on-CPU check returns false: the holding LWP may
656 * or may not be running. It has context switched at
657 * some point during our check. Again, we have the
658 * chance to see if the waiters bit is still set or
659 * has been overwritten.
660 *
661 * 4. The on-CPU check returns false: the holding LWP is
662 * running on a CPU, but wants the big lock. It's OK
663 * to check the waiters field in this case.
664 *
665 * 5. The has-waiters check fails: the mutex has been
666 * released, the waiters flag cleared and another LWP
667 * now owns the mutex.
668 *
669 * 6. The has-waiters check fails: the mutex has been
670 * released.
671 *
672 * If the waiters bit is not set it's unsafe to go asleep,
673 * as we might never be awoken.
674 */
675 if ((membar_consumer(), mutex_oncpu(owner)) ||
676 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
677 turnstile_exit(mtx);
678 owner = mtx->mtx_owner;
679 continue;
680 }
681 #endif /* MULTIPROCESSOR */
682
683 LOCKSTAT_START_TIMER(lsflag, slptime);
684
685 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
686
687 LOCKSTAT_STOP_TIMER(lsflag, slptime);
688 LOCKSTAT_COUNT(slpcnt, 1);
689
690 owner = mtx->mtx_owner;
691 }
692 KPREEMPT_ENABLE(curlwp);
693
694 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
695 slpcnt, slptime);
696 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
697 spincnt, spintime);
698 LOCKSTAT_EXIT(lsflag);
699
700 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
701 MUTEX_LOCKED(mtx);
702 }
703
704 /*
705 * mutex_vector_exit:
706 *
707 * Support routine for mutex_exit() that handles all cases.
708 */
709 void
710 mutex_vector_exit(kmutex_t *mtx)
711 {
712 turnstile_t *ts;
713 uintptr_t curthread;
714
715 if (MUTEX_SPIN_P(mtx)) {
716 #ifdef FULL
717 if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
718 if (panicstr != NULL)
719 return;
720 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
721 }
722 MUTEX_UNLOCKED(mtx);
723 MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
724 #endif
725 MUTEX_SPIN_SPLRESTORE(mtx);
726 return;
727 }
728
729 if (__predict_false((uintptr_t)panicstr | cold)) {
730 MUTEX_UNLOCKED(mtx);
731 MUTEX_RELEASE(mtx);
732 return;
733 }
734
735 curthread = (uintptr_t)curlwp;
736 MUTEX_DASSERT(mtx, curthread != 0);
737 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
738 MUTEX_UNLOCKED(mtx);
739 #if !defined(LOCKDEBUG)
740 __USE(curthread);
741 #endif
742
743 #ifdef LOCKDEBUG
744 /*
745 * Avoid having to take the turnstile chain lock every time
746 * around. Raise the priority level to splhigh() in order
747 * to disable preemption and so make the following atomic.
748 */
749 {
750 int s = splhigh();
751 if (!MUTEX_HAS_WAITERS(mtx)) {
752 MUTEX_RELEASE(mtx);
753 splx(s);
754 return;
755 }
756 splx(s);
757 }
758 #endif
759
760 /*
761 * Get this lock's turnstile. This gets the interlock on
762 * the sleep queue. Once we have that, we can clear the
763 * lock. If there was no turnstile for the lock, there
764 * were no waiters remaining.
765 */
766 ts = turnstile_lookup(mtx);
767
768 if (ts == NULL) {
769 MUTEX_RELEASE(mtx);
770 turnstile_exit(mtx);
771 } else {
772 MUTEX_RELEASE(mtx);
773 turnstile_wakeup(ts, TS_WRITER_Q,
774 TS_WAITERS(ts, TS_WRITER_Q), NULL);
775 }
776 }
777
778 #ifndef __HAVE_SIMPLE_MUTEXES
779 /*
780 * mutex_wakeup:
781 *
782 * Support routine for mutex_exit() that wakes up all waiters.
783 * We assume that the mutex has been released, but it need not
784 * be.
785 */
786 void
787 mutex_wakeup(kmutex_t *mtx)
788 {
789 turnstile_t *ts;
790
791 ts = turnstile_lookup(mtx);
792 if (ts == NULL) {
793 turnstile_exit(mtx);
794 return;
795 }
796 MUTEX_CLEAR_WAITERS(mtx);
797 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
798 }
799 #endif /* !__HAVE_SIMPLE_MUTEXES */
800
801 /*
802 * mutex_owned:
803 *
804 * Return true if the current LWP (adaptive) or CPU (spin)
805 * holds the mutex.
806 */
807 int
808 mutex_owned(const kmutex_t *mtx)
809 {
810
811 if (mtx == NULL)
812 return 0;
813 if (MUTEX_ADAPTIVE_P(mtx))
814 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
815 #ifdef FULL
816 return MUTEX_SPINBIT_LOCKED_P(mtx);
817 #else
818 return 1;
819 #endif
820 }
821
822 /*
823 * mutex_owner:
824 *
825 * Return the current owner of an adaptive mutex. Used for
826 * priority inheritance.
827 */
828 lwp_t *
829 mutex_owner(const kmutex_t *mtx)
830 {
831
832 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
833 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
834 }
835
836 /*
837 * mutex_ownable:
838 *
839 * When compiled with DEBUG and LOCKDEBUG defined, ensure that
840 * the mutex is available. We cannot use !mutex_owned() since
841 * that won't work correctly for spin mutexes.
842 */
843 int
844 mutex_ownable(const kmutex_t *mtx)
845 {
846
847 #ifdef LOCKDEBUG
848 MUTEX_TESTLOCK(mtx);
849 #endif
850 return 1;
851 }
852
853 /*
854 * mutex_tryenter:
855 *
856 * Try to acquire the mutex; return non-zero if we did.
857 */
858 int
859 mutex_tryenter(kmutex_t *mtx)
860 {
861 uintptr_t curthread;
862
863 /*
864 * Handle spin mutexes.
865 */
866 if (MUTEX_SPIN_P(mtx)) {
867 MUTEX_SPIN_SPLRAISE(mtx);
868 #ifdef FULL
869 if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
870 MUTEX_WANTLOCK(mtx);
871 MUTEX_LOCKED(mtx);
872 return 1;
873 }
874 MUTEX_SPIN_SPLRESTORE(mtx);
875 #else
876 MUTEX_WANTLOCK(mtx);
877 MUTEX_LOCKED(mtx);
878 return 1;
879 #endif
880 } else {
881 curthread = (uintptr_t)curlwp;
882 MUTEX_ASSERT(mtx, curthread != 0);
883 if (MUTEX_ACQUIRE(mtx, curthread)) {
884 MUTEX_WANTLOCK(mtx);
885 MUTEX_LOCKED(mtx);
886 MUTEX_DASSERT(mtx,
887 MUTEX_OWNER(mtx->mtx_owner) == curthread);
888 return 1;
889 }
890 }
891
892 return 0;
893 }
894
895 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
896 /*
897 * mutex_spin_retry:
898 *
899 * Support routine for mutex_spin_enter(). Assumes that the caller
900 * has already raised the SPL, and adjusted counters.
901 */
902 void
903 mutex_spin_retry(kmutex_t *mtx)
904 {
905 #ifdef MULTIPROCESSOR
906 u_int count;
907 LOCKSTAT_TIMER(spintime);
908 LOCKSTAT_FLAG(lsflag);
909 #ifdef LOCKDEBUG
910 u_int spins = 0;
911 #endif /* LOCKDEBUG */
912
913 MUTEX_WANTLOCK(mtx);
914
915 LOCKSTAT_ENTER(lsflag);
916 LOCKSTAT_START_TIMER(lsflag, spintime);
917 count = SPINLOCK_BACKOFF_MIN;
918
919 /*
920 * Spin testing the lock word and do exponential backoff
921 * to reduce cache line ping-ponging between CPUs.
922 */
923 do {
924 if (panicstr != NULL)
925 break;
926 while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
927 SPINLOCK_BACKOFF(count);
928 #ifdef LOCKDEBUG
929 if (SPINLOCK_SPINOUT(spins))
930 MUTEX_ABORT(mtx, "spinout");
931 #endif /* LOCKDEBUG */
932 }
933 } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
934
935 LOCKSTAT_STOP_TIMER(lsflag, spintime);
936 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
937 LOCKSTAT_EXIT(lsflag);
938
939 MUTEX_LOCKED(mtx);
940 #else /* MULTIPROCESSOR */
941 MUTEX_ABORT(mtx, "locking against myself");
942 #endif /* MULTIPROCESSOR */
943 }
944 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
945