kern_mutex.c revision 1.70 1 /* $NetBSD: kern_mutex.c,v 1.70 2018/01/30 07:52:22 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel mutex implementation, modeled after those found in Solaris,
34 * a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #define __MUTEX_PRIVATE
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.70 2018/01/30 07:52:22 ozaki-r Exp $");
44
45 #include <sys/param.h>
46 #include <sys/atomic.h>
47 #include <sys/proc.h>
48 #include <sys/mutex.h>
49 #include <sys/sched.h>
50 #include <sys/sleepq.h>
51 #include <sys/systm.h>
52 #include <sys/lockdebug.h>
53 #include <sys/kernel.h>
54 #include <sys/intr.h>
55 #include <sys/lock.h>
56 #include <sys/types.h>
57
58 #include <dev/lockstat.h>
59
60 #include <machine/lock.h>
61
62 /*
63 * When not running a debug kernel, spin mutexes are not much
64 * more than an splraiseipl() and splx() pair.
65 */
66
67 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
68 #define FULL
69 #endif
70
71 /*
72 * Debugging support.
73 */
74
75 #define MUTEX_WANTLOCK(mtx) \
76 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
77 (uintptr_t)__builtin_return_address(0), 0)
78 #define MUTEX_TESTLOCK(mtx) \
79 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
80 (uintptr_t)__builtin_return_address(0), -1)
81 #define MUTEX_LOCKED(mtx) \
82 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
83 (uintptr_t)__builtin_return_address(0), 0)
84 #define MUTEX_UNLOCKED(mtx) \
85 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
86 (uintptr_t)__builtin_return_address(0), 0)
87 #define MUTEX_ABORT(mtx, msg) \
88 mutex_abort(__func__, __LINE__, mtx, msg)
89
90 #if defined(LOCKDEBUG)
91
92 #define MUTEX_DASSERT(mtx, cond) \
93 do { \
94 if (!(cond)) \
95 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
96 } while (/* CONSTCOND */ 0);
97
98 #else /* LOCKDEBUG */
99
100 #define MUTEX_DASSERT(mtx, cond) /* nothing */
101
102 #endif /* LOCKDEBUG */
103
104 #if defined(DIAGNOSTIC)
105
106 #define MUTEX_ASSERT(mtx, cond) \
107 do { \
108 if (!(cond)) \
109 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
110 } while (/* CONSTCOND */ 0)
111
112 #else /* DIAGNOSTIC */
113
114 #define MUTEX_ASSERT(mtx, cond) /* nothing */
115
116 #endif /* DIAGNOSTIC */
117
118 /*
119 * Some architectures can't use __cpu_simple_lock as is so allow a way
120 * for them to use an alternate definition.
121 */
122 #ifndef MUTEX_SPINBIT_LOCK_INIT
123 #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
124 #endif
125 #ifndef MUTEX_SPINBIT_LOCKED_P
126 #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
127 #endif
128 #ifndef MUTEX_SPINBIT_LOCK_TRY
129 #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
130 #endif
131 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
132 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
133 #endif
134
135 #ifndef MUTEX_INITIALIZE_SPIN_IPL
136 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
137 ((mtx)->mtx_ipl = makeiplcookie((ipl)))
138 #endif
139
140 /*
141 * Spin mutex SPL save / restore.
142 */
143
144 #define MUTEX_SPIN_SPLRAISE(mtx) \
145 do { \
146 struct cpu_info *x__ci; \
147 int x__cnt, s; \
148 s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
149 x__ci = curcpu(); \
150 x__cnt = x__ci->ci_mtx_count--; \
151 __insn_barrier(); \
152 if (x__cnt == 0) \
153 x__ci->ci_mtx_oldspl = (s); \
154 } while (/* CONSTCOND */ 0)
155
156 #define MUTEX_SPIN_SPLRESTORE(mtx) \
157 do { \
158 struct cpu_info *x__ci = curcpu(); \
159 int s = x__ci->ci_mtx_oldspl; \
160 __insn_barrier(); \
161 if (++(x__ci->ci_mtx_count) == 0) \
162 splx(s); \
163 } while (/* CONSTCOND */ 0)
164
165 /*
166 * For architectures that provide 'simple' mutexes: they provide a
167 * CAS function that is either MP-safe, or does not need to be MP
168 * safe. Adaptive mutexes on these architectures do not require an
169 * additional interlock.
170 */
171
172 #ifdef __HAVE_SIMPLE_MUTEXES
173
174 #define MUTEX_OWNER(owner) \
175 (owner & MUTEX_THREAD)
176 #define MUTEX_HAS_WAITERS(mtx) \
177 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
178
179 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
180 if (!dodebug) \
181 (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
182 do { \
183 } while (/* CONSTCOND */ 0);
184
185 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
186 do { \
187 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
188 if (!dodebug) \
189 (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
190 MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
191 MUTEX_SPINBIT_LOCK_INIT((mtx)); \
192 } while (/* CONSTCOND */ 0)
193
194 #define MUTEX_DESTROY(mtx) \
195 do { \
196 (mtx)->mtx_owner = MUTEX_THREAD; \
197 } while (/* CONSTCOND */ 0);
198
199 #define MUTEX_SPIN_P(mtx) \
200 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
201 #define MUTEX_ADAPTIVE_P(mtx) \
202 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
203
204 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
205 #if defined(LOCKDEBUG)
206 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
207 #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
208 #else /* defined(LOCKDEBUG) */
209 #define MUTEX_OWNED(owner) ((owner) != 0)
210 #define MUTEX_INHERITDEBUG(n, o) /* nothing */
211 #endif /* defined(LOCKDEBUG) */
212
213 static inline int
214 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
215 {
216 int rv;
217 uintptr_t oldown = 0;
218 uintptr_t newown = curthread;
219
220 MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
221 MUTEX_INHERITDEBUG(newown, oldown);
222 rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
223 MUTEX_RECEIVE(mtx);
224 return rv;
225 }
226
227 static inline int
228 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
229 {
230 int rv;
231 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
232 MUTEX_RECEIVE(mtx);
233 return rv;
234 }
235
236 static inline void
237 MUTEX_RELEASE(kmutex_t *mtx)
238 {
239 uintptr_t newown;
240
241 MUTEX_GIVE(mtx);
242 newown = 0;
243 MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
244 mtx->mtx_owner = newown;
245 }
246 #endif /* __HAVE_SIMPLE_MUTEXES */
247
248 /*
249 * Patch in stubs via strong alias where they are not available.
250 */
251
252 #if defined(LOCKDEBUG)
253 #undef __HAVE_MUTEX_STUBS
254 #undef __HAVE_SPIN_MUTEX_STUBS
255 #endif
256
257 #ifndef __HAVE_MUTEX_STUBS
258 __strong_alias(mutex_enter,mutex_vector_enter);
259 __strong_alias(mutex_exit,mutex_vector_exit);
260 #endif
261
262 #ifndef __HAVE_SPIN_MUTEX_STUBS
263 __strong_alias(mutex_spin_enter,mutex_vector_enter);
264 __strong_alias(mutex_spin_exit,mutex_vector_exit);
265 #endif
266
267 static void mutex_abort(const char *, size_t, const kmutex_t *,
268 const char *);
269 static void mutex_dump(const volatile void *);
270
271 lockops_t mutex_spin_lockops = {
272 .lo_name = "Mutex",
273 .lo_type = LOCKOPS_SPIN,
274 .lo_dump = mutex_dump,
275 };
276
277 lockops_t mutex_adaptive_lockops = {
278 .lo_name = "Mutex",
279 .lo_type = LOCKOPS_SLEEP,
280 .lo_dump = mutex_dump,
281 };
282
283 syncobj_t mutex_syncobj = {
284 .sobj_flag = SOBJ_SLEEPQ_SORTED,
285 .sobj_unsleep = turnstile_unsleep,
286 .sobj_changepri = turnstile_changepri,
287 .sobj_lendpri = sleepq_lendpri,
288 .sobj_owner = (void *)mutex_owner,
289 };
290
291 /*
292 * mutex_dump:
293 *
294 * Dump the contents of a mutex structure.
295 */
296 void
297 mutex_dump(const volatile void *cookie)
298 {
299 const volatile kmutex_t *mtx = cookie;
300
301 printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n",
302 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
303 MUTEX_SPIN_P(mtx));
304 }
305
306 /*
307 * mutex_abort:
308 *
309 * Dump information about an error and panic the system. This
310 * generates a lot of machine code in the DIAGNOSTIC case, so
311 * we ask the compiler to not inline it.
312 */
313 void __noinline
314 mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
315 {
316
317 LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
318 &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
319 }
320
321 /*
322 * mutex_init:
323 *
324 * Initialize a mutex for use. Note that adaptive mutexes are in
325 * essence spin mutexes that can sleep to avoid deadlock and wasting
326 * CPU time. We can't easily provide a type of mutex that always
327 * sleeps - see comments in mutex_vector_enter() about releasing
328 * mutexes unlocked.
329 */
330 void
331 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
332 {
333 bool dodebug;
334
335 memset(mtx, 0, sizeof(*mtx));
336
337 switch (type) {
338 case MUTEX_ADAPTIVE:
339 KASSERT(ipl == IPL_NONE);
340 break;
341 case MUTEX_DEFAULT:
342 case MUTEX_DRIVER:
343 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
344 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
345 ipl == IPL_SOFTSERIAL) {
346 type = MUTEX_ADAPTIVE;
347 } else {
348 type = MUTEX_SPIN;
349 }
350 break;
351 default:
352 break;
353 }
354
355 switch (type) {
356 case MUTEX_NODEBUG:
357 dodebug = LOCKDEBUG_ALLOC(mtx, NULL,
358 (uintptr_t)__builtin_return_address(0));
359 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
360 break;
361 case MUTEX_ADAPTIVE:
362 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
363 (uintptr_t)__builtin_return_address(0));
364 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
365 break;
366 case MUTEX_SPIN:
367 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
368 (uintptr_t)__builtin_return_address(0));
369 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
370 break;
371 default:
372 panic("mutex_init: impossible type");
373 break;
374 }
375 }
376
377 /*
378 * mutex_destroy:
379 *
380 * Tear down a mutex.
381 */
382 void
383 mutex_destroy(kmutex_t *mtx)
384 {
385
386 if (MUTEX_ADAPTIVE_P(mtx)) {
387 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
388 !MUTEX_HAS_WAITERS(mtx));
389 } else {
390 MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
391 }
392
393 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
394 MUTEX_DESTROY(mtx);
395 }
396
397 #ifdef MULTIPROCESSOR
398 /*
399 * mutex_oncpu:
400 *
401 * Return true if an adaptive mutex owner is running on a CPU in the
402 * system. If the target is waiting on the kernel big lock, then we
403 * must release it. This is necessary to avoid deadlock.
404 */
405 static bool
406 mutex_oncpu(uintptr_t owner)
407 {
408 struct cpu_info *ci;
409 lwp_t *l;
410
411 KASSERT(kpreempt_disabled());
412
413 if (!MUTEX_OWNED(owner)) {
414 return false;
415 }
416
417 /*
418 * See lwp_dtor() why dereference of the LWP pointer is safe.
419 * We must have kernel preemption disabled for that.
420 */
421 l = (lwp_t *)MUTEX_OWNER(owner);
422 ci = l->l_cpu;
423
424 if (ci && ci->ci_curlwp == l) {
425 /* Target is running; do we need to block? */
426 return (ci->ci_biglock_wanted != l);
427 }
428
429 /* Not running. It may be safe to block now. */
430 return false;
431 }
432 #endif /* MULTIPROCESSOR */
433
434 /*
435 * mutex_vector_enter:
436 *
437 * Support routine for mutex_enter() that must handle all cases. In
438 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
439 * fast-path stubs are available. If a mutex_spin_enter() stub is
440 * not available, then it is also aliased directly here.
441 */
442 void
443 mutex_vector_enter(kmutex_t *mtx)
444 {
445 uintptr_t owner, curthread;
446 turnstile_t *ts;
447 #ifdef MULTIPROCESSOR
448 u_int count;
449 #endif
450 LOCKSTAT_COUNTER(spincnt);
451 LOCKSTAT_COUNTER(slpcnt);
452 LOCKSTAT_TIMER(spintime);
453 LOCKSTAT_TIMER(slptime);
454 LOCKSTAT_FLAG(lsflag);
455
456 /*
457 * Handle spin mutexes.
458 */
459 if (MUTEX_SPIN_P(mtx)) {
460 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
461 u_int spins = 0;
462 #endif
463 MUTEX_SPIN_SPLRAISE(mtx);
464 MUTEX_WANTLOCK(mtx);
465 #ifdef FULL
466 if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
467 MUTEX_LOCKED(mtx);
468 return;
469 }
470 #if !defined(MULTIPROCESSOR)
471 MUTEX_ABORT(mtx, "locking against myself");
472 #else /* !MULTIPROCESSOR */
473
474 LOCKSTAT_ENTER(lsflag);
475 LOCKSTAT_START_TIMER(lsflag, spintime);
476 count = SPINLOCK_BACKOFF_MIN;
477
478 /*
479 * Spin testing the lock word and do exponential backoff
480 * to reduce cache line ping-ponging between CPUs.
481 */
482 do {
483 if (panicstr != NULL)
484 break;
485 while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
486 SPINLOCK_BACKOFF(count);
487 #ifdef LOCKDEBUG
488 if (SPINLOCK_SPINOUT(spins))
489 MUTEX_ABORT(mtx, "spinout");
490 #endif /* LOCKDEBUG */
491 }
492 } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
493
494 if (count != SPINLOCK_BACKOFF_MIN) {
495 LOCKSTAT_STOP_TIMER(lsflag, spintime);
496 LOCKSTAT_EVENT(lsflag, mtx,
497 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
498 }
499 LOCKSTAT_EXIT(lsflag);
500 #endif /* !MULTIPROCESSOR */
501 #endif /* FULL */
502 MUTEX_LOCKED(mtx);
503 return;
504 }
505
506 curthread = (uintptr_t)curlwp;
507
508 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
509 MUTEX_ASSERT(mtx, curthread != 0);
510 MUTEX_WANTLOCK(mtx);
511
512 if (panicstr == NULL) {
513 LOCKDEBUG_BARRIER(&kernel_lock, 1);
514 }
515
516 LOCKSTAT_ENTER(lsflag);
517
518 /*
519 * Adaptive mutex; spin trying to acquire the mutex. If we
520 * determine that the owner is not running on a processor,
521 * then we stop spinning, and sleep instead.
522 */
523 KPREEMPT_DISABLE(curlwp);
524 for (owner = mtx->mtx_owner;;) {
525 if (!MUTEX_OWNED(owner)) {
526 /*
527 * Mutex owner clear could mean two things:
528 *
529 * * The mutex has been released.
530 * * The owner field hasn't been set yet.
531 *
532 * Try to acquire it again. If that fails,
533 * we'll just loop again.
534 */
535 if (MUTEX_ACQUIRE(mtx, curthread))
536 break;
537 owner = mtx->mtx_owner;
538 continue;
539 }
540 if (__predict_false(panicstr != NULL)) {
541 KPREEMPT_ENABLE(curlwp);
542 return;
543 }
544 if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
545 MUTEX_ABORT(mtx, "locking against myself");
546 }
547 #ifdef MULTIPROCESSOR
548 /*
549 * Check to see if the owner is running on a processor.
550 * If so, then we should just spin, as the owner will
551 * likely release the lock very soon.
552 */
553 if (mutex_oncpu(owner)) {
554 LOCKSTAT_START_TIMER(lsflag, spintime);
555 count = SPINLOCK_BACKOFF_MIN;
556 do {
557 KPREEMPT_ENABLE(curlwp);
558 SPINLOCK_BACKOFF(count);
559 KPREEMPT_DISABLE(curlwp);
560 owner = mtx->mtx_owner;
561 } while (mutex_oncpu(owner));
562 LOCKSTAT_STOP_TIMER(lsflag, spintime);
563 LOCKSTAT_COUNT(spincnt, 1);
564 if (!MUTEX_OWNED(owner))
565 continue;
566 }
567 #endif
568
569 ts = turnstile_lookup(mtx);
570
571 /*
572 * Once we have the turnstile chain interlock, mark the
573 * mutex as having waiters. If that fails, spin again:
574 * chances are that the mutex has been released.
575 */
576 if (!MUTEX_SET_WAITERS(mtx, owner)) {
577 turnstile_exit(mtx);
578 owner = mtx->mtx_owner;
579 continue;
580 }
581
582 #ifdef MULTIPROCESSOR
583 /*
584 * mutex_exit() is permitted to release the mutex without
585 * any interlocking instructions, and the following can
586 * occur as a result:
587 *
588 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
589 * ---------------------------- ----------------------------
590 * .. acquire cache line
591 * .. test for waiters
592 * acquire cache line <- lose cache line
593 * lock cache line ..
594 * verify mutex is held ..
595 * set waiters ..
596 * unlock cache line ..
597 * lose cache line -> acquire cache line
598 * .. clear lock word, waiters
599 * return success
600 *
601 * There is another race that can occur: a third CPU could
602 * acquire the mutex as soon as it is released. Since
603 * adaptive mutexes are primarily spin mutexes, this is not
604 * something that we need to worry about too much. What we
605 * do need to ensure is that the waiters bit gets set.
606 *
607 * To allow the unlocked release, we need to make some
608 * assumptions here:
609 *
610 * o Release is the only non-atomic/unlocked operation
611 * that can be performed on the mutex. (It must still
612 * be atomic on the local CPU, e.g. in case interrupted
613 * or preempted).
614 *
615 * o At any given time, MUTEX_SET_WAITERS() can only ever
616 * be in progress on one CPU in the system - guaranteed
617 * by the turnstile chain lock.
618 *
619 * o No other operations other than MUTEX_SET_WAITERS()
620 * and release can modify a mutex with a non-zero
621 * owner field.
622 *
623 * o The result of a successful MUTEX_SET_WAITERS() call
624 * is an unbuffered write that is immediately visible
625 * to all other processors in the system.
626 *
627 * o If the holding LWP switches away, it posts a store
628 * fence before changing curlwp, ensuring that any
629 * overwrite of the mutex waiters flag by mutex_exit()
630 * completes before the modification of curlwp becomes
631 * visible to this CPU.
632 *
633 * o mi_switch() posts a store fence before setting curlwp
634 * and before resuming execution of an LWP.
635 *
636 * o _kernel_lock() posts a store fence before setting
637 * curcpu()->ci_biglock_wanted, and after clearing it.
638 * This ensures that any overwrite of the mutex waiters
639 * flag by mutex_exit() completes before the modification
640 * of ci_biglock_wanted becomes visible.
641 *
642 * We now post a read memory barrier (after setting the
643 * waiters field) and check the lock holder's status again.
644 * Some of the possible outcomes (not an exhaustive list):
645 *
646 * 1. The on-CPU check returns true: the holding LWP is
647 * running again. The lock may be released soon and
648 * we should spin. Importantly, we can't trust the
649 * value of the waiters flag.
650 *
651 * 2. The on-CPU check returns false: the holding LWP is
652 * not running. We now have the opportunity to check
653 * if mutex_exit() has blatted the modifications made
654 * by MUTEX_SET_WAITERS().
655 *
656 * 3. The on-CPU check returns false: the holding LWP may
657 * or may not be running. It has context switched at
658 * some point during our check. Again, we have the
659 * chance to see if the waiters bit is still set or
660 * has been overwritten.
661 *
662 * 4. The on-CPU check returns false: the holding LWP is
663 * running on a CPU, but wants the big lock. It's OK
664 * to check the waiters field in this case.
665 *
666 * 5. The has-waiters check fails: the mutex has been
667 * released, the waiters flag cleared and another LWP
668 * now owns the mutex.
669 *
670 * 6. The has-waiters check fails: the mutex has been
671 * released.
672 *
673 * If the waiters bit is not set it's unsafe to go asleep,
674 * as we might never be awoken.
675 */
676 if ((membar_consumer(), mutex_oncpu(owner)) ||
677 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
678 turnstile_exit(mtx);
679 owner = mtx->mtx_owner;
680 continue;
681 }
682 #endif /* MULTIPROCESSOR */
683
684 LOCKSTAT_START_TIMER(lsflag, slptime);
685
686 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
687
688 LOCKSTAT_STOP_TIMER(lsflag, slptime);
689 LOCKSTAT_COUNT(slpcnt, 1);
690
691 owner = mtx->mtx_owner;
692 }
693 KPREEMPT_ENABLE(curlwp);
694
695 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
696 slpcnt, slptime);
697 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
698 spincnt, spintime);
699 LOCKSTAT_EXIT(lsflag);
700
701 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
702 MUTEX_LOCKED(mtx);
703 }
704
705 /*
706 * mutex_vector_exit:
707 *
708 * Support routine for mutex_exit() that handles all cases.
709 */
710 void
711 mutex_vector_exit(kmutex_t *mtx)
712 {
713 turnstile_t *ts;
714 uintptr_t curthread;
715
716 if (MUTEX_SPIN_P(mtx)) {
717 #ifdef FULL
718 if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
719 if (panicstr != NULL)
720 return;
721 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
722 }
723 MUTEX_UNLOCKED(mtx);
724 MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
725 #endif
726 MUTEX_SPIN_SPLRESTORE(mtx);
727 return;
728 }
729
730 if (__predict_false((uintptr_t)panicstr | cold)) {
731 MUTEX_UNLOCKED(mtx);
732 MUTEX_RELEASE(mtx);
733 return;
734 }
735
736 curthread = (uintptr_t)curlwp;
737 MUTEX_DASSERT(mtx, curthread != 0);
738 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
739 MUTEX_UNLOCKED(mtx);
740 #if !defined(LOCKDEBUG)
741 __USE(curthread);
742 #endif
743
744 #ifdef LOCKDEBUG
745 /*
746 * Avoid having to take the turnstile chain lock every time
747 * around. Raise the priority level to splhigh() in order
748 * to disable preemption and so make the following atomic.
749 */
750 {
751 int s = splhigh();
752 if (!MUTEX_HAS_WAITERS(mtx)) {
753 MUTEX_RELEASE(mtx);
754 splx(s);
755 return;
756 }
757 splx(s);
758 }
759 #endif
760
761 /*
762 * Get this lock's turnstile. This gets the interlock on
763 * the sleep queue. Once we have that, we can clear the
764 * lock. If there was no turnstile for the lock, there
765 * were no waiters remaining.
766 */
767 ts = turnstile_lookup(mtx);
768
769 if (ts == NULL) {
770 MUTEX_RELEASE(mtx);
771 turnstile_exit(mtx);
772 } else {
773 MUTEX_RELEASE(mtx);
774 turnstile_wakeup(ts, TS_WRITER_Q,
775 TS_WAITERS(ts, TS_WRITER_Q), NULL);
776 }
777 }
778
779 #ifndef __HAVE_SIMPLE_MUTEXES
780 /*
781 * mutex_wakeup:
782 *
783 * Support routine for mutex_exit() that wakes up all waiters.
784 * We assume that the mutex has been released, but it need not
785 * be.
786 */
787 void
788 mutex_wakeup(kmutex_t *mtx)
789 {
790 turnstile_t *ts;
791
792 ts = turnstile_lookup(mtx);
793 if (ts == NULL) {
794 turnstile_exit(mtx);
795 return;
796 }
797 MUTEX_CLEAR_WAITERS(mtx);
798 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
799 }
800 #endif /* !__HAVE_SIMPLE_MUTEXES */
801
802 /*
803 * mutex_owned:
804 *
805 * Return true if the current LWP (adaptive) or CPU (spin)
806 * holds the mutex.
807 */
808 int
809 mutex_owned(const kmutex_t *mtx)
810 {
811
812 if (mtx == NULL)
813 return 0;
814 if (MUTEX_ADAPTIVE_P(mtx))
815 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
816 #ifdef FULL
817 return MUTEX_SPINBIT_LOCKED_P(mtx);
818 #else
819 return 1;
820 #endif
821 }
822
823 /*
824 * mutex_owner:
825 *
826 * Return the current owner of an adaptive mutex. Used for
827 * priority inheritance.
828 */
829 lwp_t *
830 mutex_owner(const kmutex_t *mtx)
831 {
832
833 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
834 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
835 }
836
837 /*
838 * mutex_ownable:
839 *
840 * When compiled with DEBUG and LOCKDEBUG defined, ensure that
841 * the mutex is available. We cannot use !mutex_owned() since
842 * that won't work correctly for spin mutexes.
843 */
844 int
845 mutex_ownable(const kmutex_t *mtx)
846 {
847
848 #ifdef LOCKDEBUG
849 MUTEX_TESTLOCK(mtx);
850 #endif
851 return 1;
852 }
853
854 /*
855 * mutex_tryenter:
856 *
857 * Try to acquire the mutex; return non-zero if we did.
858 */
859 int
860 mutex_tryenter(kmutex_t *mtx)
861 {
862 uintptr_t curthread;
863
864 /*
865 * Handle spin mutexes.
866 */
867 if (MUTEX_SPIN_P(mtx)) {
868 MUTEX_SPIN_SPLRAISE(mtx);
869 #ifdef FULL
870 if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
871 MUTEX_WANTLOCK(mtx);
872 MUTEX_LOCKED(mtx);
873 return 1;
874 }
875 MUTEX_SPIN_SPLRESTORE(mtx);
876 #else
877 MUTEX_WANTLOCK(mtx);
878 MUTEX_LOCKED(mtx);
879 return 1;
880 #endif
881 } else {
882 curthread = (uintptr_t)curlwp;
883 MUTEX_ASSERT(mtx, curthread != 0);
884 if (MUTEX_ACQUIRE(mtx, curthread)) {
885 MUTEX_WANTLOCK(mtx);
886 MUTEX_LOCKED(mtx);
887 MUTEX_DASSERT(mtx,
888 MUTEX_OWNER(mtx->mtx_owner) == curthread);
889 return 1;
890 }
891 }
892
893 return 0;
894 }
895
896 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
897 /*
898 * mutex_spin_retry:
899 *
900 * Support routine for mutex_spin_enter(). Assumes that the caller
901 * has already raised the SPL, and adjusted counters.
902 */
903 void
904 mutex_spin_retry(kmutex_t *mtx)
905 {
906 #ifdef MULTIPROCESSOR
907 u_int count;
908 LOCKSTAT_TIMER(spintime);
909 LOCKSTAT_FLAG(lsflag);
910 #ifdef LOCKDEBUG
911 u_int spins = 0;
912 #endif /* LOCKDEBUG */
913
914 MUTEX_WANTLOCK(mtx);
915
916 LOCKSTAT_ENTER(lsflag);
917 LOCKSTAT_START_TIMER(lsflag, spintime);
918 count = SPINLOCK_BACKOFF_MIN;
919
920 /*
921 * Spin testing the lock word and do exponential backoff
922 * to reduce cache line ping-ponging between CPUs.
923 */
924 do {
925 if (panicstr != NULL)
926 break;
927 while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
928 SPINLOCK_BACKOFF(count);
929 #ifdef LOCKDEBUG
930 if (SPINLOCK_SPINOUT(spins))
931 MUTEX_ABORT(mtx, "spinout");
932 #endif /* LOCKDEBUG */
933 }
934 } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
935
936 LOCKSTAT_STOP_TIMER(lsflag, spintime);
937 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
938 LOCKSTAT_EXIT(lsflag);
939
940 MUTEX_LOCKED(mtx);
941 #else /* MULTIPROCESSOR */
942 MUTEX_ABORT(mtx, "locking against myself");
943 #endif /* MULTIPROCESSOR */
944 }
945 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
946