Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.73
      1 /*	$NetBSD: kern_mutex.c,v 1.73 2018/02/25 18:54:29 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.73 2018/02/25 18:54:29 chs Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/atomic.h>
     47 #include <sys/proc.h>
     48 #include <sys/mutex.h>
     49 #include <sys/sched.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/systm.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/kernel.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 #include <sys/types.h>
     57 #include <sys/cpu.h>
     58 
     59 #include <dev/lockstat.h>
     60 
     61 #include <machine/lock.h>
     62 
     63 #define MUTEX_PANIC_SKIP_SPIN 1
     64 #define MUTEX_PANIC_SKIP_ADAPTIVE 1
     65 
     66 /*
     67  * When not running a debug kernel, spin mutexes are not much
     68  * more than an splraiseipl() and splx() pair.
     69  */
     70 
     71 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     72 #define	FULL
     73 #endif
     74 
     75 /*
     76  * Debugging support.
     77  */
     78 
     79 #define	MUTEX_WANTLOCK(mtx)					\
     80     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     81         (uintptr_t)__builtin_return_address(0), 0)
     82 #define	MUTEX_TESTLOCK(mtx)					\
     83     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     84         (uintptr_t)__builtin_return_address(0), -1)
     85 #define	MUTEX_LOCKED(mtx)					\
     86     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     87         (uintptr_t)__builtin_return_address(0), 0)
     88 #define	MUTEX_UNLOCKED(mtx)					\
     89     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     90         (uintptr_t)__builtin_return_address(0), 0)
     91 #define	MUTEX_ABORT(mtx, msg)					\
     92     mutex_abort(__func__, __LINE__, mtx, msg)
     93 
     94 #if defined(LOCKDEBUG)
     95 
     96 #define	MUTEX_DASSERT(mtx, cond)				\
     97 do {								\
     98 	if (!(cond))						\
     99 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    100 } while (/* CONSTCOND */ 0);
    101 
    102 #else	/* LOCKDEBUG */
    103 
    104 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    105 
    106 #endif /* LOCKDEBUG */
    107 
    108 #if defined(DIAGNOSTIC)
    109 
    110 #define	MUTEX_ASSERT(mtx, cond)					\
    111 do {								\
    112 	if (!(cond))						\
    113 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    114 } while (/* CONSTCOND */ 0)
    115 
    116 #else	/* DIAGNOSTIC */
    117 
    118 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    119 
    120 #endif	/* DIAGNOSTIC */
    121 
    122 /*
    123  * Some architectures can't use __cpu_simple_lock as is so allow a way
    124  * for them to use an alternate definition.
    125  */
    126 #ifndef MUTEX_SPINBIT_LOCK_INIT
    127 #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    128 #endif
    129 #ifndef MUTEX_SPINBIT_LOCKED_P
    130 #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    131 #endif
    132 #ifndef MUTEX_SPINBIT_LOCK_TRY
    133 #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    134 #endif
    135 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    136 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    137 #endif
    138 
    139 #ifndef MUTEX_INITIALIZE_SPIN_IPL
    140 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    141 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    142 #endif
    143 
    144 /*
    145  * Spin mutex SPL save / restore.
    146  */
    147 
    148 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    149 do {									\
    150 	struct cpu_info *x__ci;						\
    151 	int x__cnt, s;							\
    152 	s = splraiseipl(MUTEX_SPIN_IPL(mtx));				\
    153 	x__ci = curcpu();						\
    154 	x__cnt = x__ci->ci_mtx_count--;					\
    155 	__insn_barrier();						\
    156 	if (x__cnt == 0)						\
    157 		x__ci->ci_mtx_oldspl = (s);				\
    158 } while (/* CONSTCOND */ 0)
    159 
    160 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    161 do {									\
    162 	struct cpu_info *x__ci = curcpu();				\
    163 	int s = x__ci->ci_mtx_oldspl;					\
    164 	__insn_barrier();						\
    165 	if (++(x__ci->ci_mtx_count) == 0)			\
    166 		splx(s);						\
    167 } while (/* CONSTCOND */ 0)
    168 
    169 /*
    170  * For architectures that provide 'simple' mutexes: they provide a
    171  * CAS function that is either MP-safe, or does not need to be MP
    172  * safe.  Adaptive mutexes on these architectures do not require an
    173  * additional interlock.
    174  */
    175 
    176 #ifdef __HAVE_SIMPLE_MUTEXES
    177 
    178 #define	MUTEX_OWNER(owner)						\
    179 	(owner & MUTEX_THREAD)
    180 #define	MUTEX_HAS_WAITERS(mtx)						\
    181 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    182 
    183 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    184 	if (!dodebug)							\
    185 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    186 do {									\
    187 } while (/* CONSTCOND */ 0);
    188 
    189 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    190 do {									\
    191 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    192 	if (!dodebug)							\
    193 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    194 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    195 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    196 } while (/* CONSTCOND */ 0)
    197 
    198 #define	MUTEX_DESTROY(mtx)						\
    199 do {									\
    200 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    201 } while (/* CONSTCOND */ 0);
    202 
    203 #define	MUTEX_SPIN_P(mtx)		\
    204     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    205 #define	MUTEX_ADAPTIVE_P(mtx)		\
    206     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    207 
    208 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    209 #if defined(LOCKDEBUG)
    210 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    211 #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    212 #else /* defined(LOCKDEBUG) */
    213 #define	MUTEX_OWNED(owner)		((owner) != 0)
    214 #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    215 #endif /* defined(LOCKDEBUG) */
    216 
    217 static inline int
    218 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    219 {
    220 	int rv;
    221 	uintptr_t oldown = 0;
    222 	uintptr_t newown = curthread;
    223 
    224 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    225 	MUTEX_INHERITDEBUG(newown, oldown);
    226 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    227 	MUTEX_RECEIVE(mtx);
    228 	return rv;
    229 }
    230 
    231 static inline int
    232 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    233 {
    234 	int rv;
    235 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    236 	MUTEX_RECEIVE(mtx);
    237 	return rv;
    238 }
    239 
    240 static inline void
    241 MUTEX_RELEASE(kmutex_t *mtx)
    242 {
    243 	uintptr_t newown;
    244 
    245 	MUTEX_GIVE(mtx);
    246 	newown = 0;
    247 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    248 	mtx->mtx_owner = newown;
    249 }
    250 #endif	/* __HAVE_SIMPLE_MUTEXES */
    251 
    252 /*
    253  * Patch in stubs via strong alias where they are not available.
    254  */
    255 
    256 #if defined(LOCKDEBUG)
    257 #undef	__HAVE_MUTEX_STUBS
    258 #undef	__HAVE_SPIN_MUTEX_STUBS
    259 #endif
    260 
    261 #ifndef __HAVE_MUTEX_STUBS
    262 __strong_alias(mutex_enter,mutex_vector_enter);
    263 __strong_alias(mutex_exit,mutex_vector_exit);
    264 #endif
    265 
    266 #ifndef __HAVE_SPIN_MUTEX_STUBS
    267 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    268 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    269 #endif
    270 
    271 static void	mutex_abort(const char *, size_t, const kmutex_t *,
    272     const char *);
    273 static void	mutex_dump(const volatile void *);
    274 
    275 lockops_t mutex_spin_lockops = {
    276 	.lo_name = "Mutex",
    277 	.lo_type = LOCKOPS_SPIN,
    278 	.lo_dump = mutex_dump,
    279 };
    280 
    281 lockops_t mutex_adaptive_lockops = {
    282 	.lo_name = "Mutex",
    283 	.lo_type = LOCKOPS_SLEEP,
    284 	.lo_dump = mutex_dump,
    285 };
    286 
    287 syncobj_t mutex_syncobj = {
    288 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    289 	.sobj_unsleep	= turnstile_unsleep,
    290 	.sobj_changepri	= turnstile_changepri,
    291 	.sobj_lendpri	= sleepq_lendpri,
    292 	.sobj_owner	= (void *)mutex_owner,
    293 };
    294 
    295 /*
    296  * mutex_dump:
    297  *
    298  *	Dump the contents of a mutex structure.
    299  */
    300 void
    301 mutex_dump(const volatile void *cookie)
    302 {
    303 	const volatile kmutex_t *mtx = cookie;
    304 
    305 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    306 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    307 	    MUTEX_SPIN_P(mtx));
    308 }
    309 
    310 /*
    311  * mutex_abort:
    312  *
    313  *	Dump information about an error and panic the system.  This
    314  *	generates a lot of machine code in the DIAGNOSTIC case, so
    315  *	we ask the compiler to not inline it.
    316  */
    317 void __noinline
    318 mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
    319 {
    320 
    321 	LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
    322 	    &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
    323 }
    324 
    325 /*
    326  * mutex_init:
    327  *
    328  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    329  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    330  *	CPU time.  We can't easily provide a type of mutex that always
    331  *	sleeps - see comments in mutex_vector_enter() about releasing
    332  *	mutexes unlocked.
    333  */
    334 void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
    335 void
    336 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
    337     uintptr_t return_address)
    338 {
    339 	bool dodebug;
    340 
    341 	memset(mtx, 0, sizeof(*mtx));
    342 
    343 	switch (type) {
    344 	case MUTEX_ADAPTIVE:
    345 		KASSERT(ipl == IPL_NONE);
    346 		break;
    347 	case MUTEX_DEFAULT:
    348 	case MUTEX_DRIVER:
    349 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    350 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    351 		    ipl == IPL_SOFTSERIAL) {
    352 			type = MUTEX_ADAPTIVE;
    353 		} else {
    354 			type = MUTEX_SPIN;
    355 		}
    356 		break;
    357 	default:
    358 		break;
    359 	}
    360 
    361 	switch (type) {
    362 	case MUTEX_NODEBUG:
    363 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL, return_address);
    364 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    365 		break;
    366 	case MUTEX_ADAPTIVE:
    367 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    368 		    return_address);
    369 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    370 		break;
    371 	case MUTEX_SPIN:
    372 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    373 		    return_address);
    374 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    375 		break;
    376 	default:
    377 		panic("mutex_init: impossible type");
    378 		break;
    379 	}
    380 }
    381 
    382 void
    383 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    384 {
    385 
    386 	_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
    387 }
    388 
    389 /*
    390  * mutex_destroy:
    391  *
    392  *	Tear down a mutex.
    393  */
    394 void
    395 mutex_destroy(kmutex_t *mtx)
    396 {
    397 
    398 	if (MUTEX_ADAPTIVE_P(mtx)) {
    399 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    400 		    !MUTEX_HAS_WAITERS(mtx));
    401 	} else {
    402 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    403 	}
    404 
    405 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    406 	MUTEX_DESTROY(mtx);
    407 }
    408 
    409 #ifdef MULTIPROCESSOR
    410 /*
    411  * mutex_oncpu:
    412  *
    413  *	Return true if an adaptive mutex owner is running on a CPU in the
    414  *	system.  If the target is waiting on the kernel big lock, then we
    415  *	must release it.  This is necessary to avoid deadlock.
    416  */
    417 static bool
    418 mutex_oncpu(uintptr_t owner)
    419 {
    420 	struct cpu_info *ci;
    421 	lwp_t *l;
    422 
    423 	KASSERT(kpreempt_disabled());
    424 
    425 	if (!MUTEX_OWNED(owner)) {
    426 		return false;
    427 	}
    428 
    429 	/*
    430 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    431 	 * We must have kernel preemption disabled for that.
    432 	 */
    433 	l = (lwp_t *)MUTEX_OWNER(owner);
    434 	ci = l->l_cpu;
    435 
    436 	if (ci && ci->ci_curlwp == l) {
    437 		/* Target is running; do we need to block? */
    438 		return (ci->ci_biglock_wanted != l);
    439 	}
    440 
    441 	/* Not running.  It may be safe to block now. */
    442 	return false;
    443 }
    444 #endif	/* MULTIPROCESSOR */
    445 
    446 /*
    447  * mutex_vector_enter:
    448  *
    449  *	Support routine for mutex_enter() that must handle all cases.  In
    450  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    451  *	fast-path stubs are available.  If a mutex_spin_enter() stub is
    452  *	not available, then it is also aliased directly here.
    453  */
    454 void
    455 mutex_vector_enter(kmutex_t *mtx)
    456 {
    457 	uintptr_t owner, curthread;
    458 	turnstile_t *ts;
    459 #ifdef MULTIPROCESSOR
    460 	u_int count;
    461 #endif
    462 	LOCKSTAT_COUNTER(spincnt);
    463 	LOCKSTAT_COUNTER(slpcnt);
    464 	LOCKSTAT_TIMER(spintime);
    465 	LOCKSTAT_TIMER(slptime);
    466 	LOCKSTAT_FLAG(lsflag);
    467 
    468 	/*
    469 	 * Handle spin mutexes.
    470 	 */
    471 	if (MUTEX_SPIN_P(mtx)) {
    472 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    473 		u_int spins = 0;
    474 #endif
    475 		MUTEX_SPIN_SPLRAISE(mtx);
    476 		MUTEX_WANTLOCK(mtx);
    477 #ifdef FULL
    478 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    479 			MUTEX_LOCKED(mtx);
    480 			return;
    481 		}
    482 #if !defined(MULTIPROCESSOR)
    483 		MUTEX_ABORT(mtx, "locking against myself");
    484 #else /* !MULTIPROCESSOR */
    485 
    486 		LOCKSTAT_ENTER(lsflag);
    487 		LOCKSTAT_START_TIMER(lsflag, spintime);
    488 		count = SPINLOCK_BACKOFF_MIN;
    489 
    490 		/*
    491 		 * Spin testing the lock word and do exponential backoff
    492 		 * to reduce cache line ping-ponging between CPUs.
    493 		 */
    494 		do {
    495 #if MUTEX_PANIC_SKIP_SPIN
    496 			if (panicstr != NULL)
    497 				break;
    498 #endif
    499 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    500 				SPINLOCK_BACKOFF(count);
    501 #ifdef LOCKDEBUG
    502 				if (SPINLOCK_SPINOUT(spins))
    503 					MUTEX_ABORT(mtx, "spinout");
    504 #endif	/* LOCKDEBUG */
    505 			}
    506 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    507 
    508 		if (count != SPINLOCK_BACKOFF_MIN) {
    509 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    510 			LOCKSTAT_EVENT(lsflag, mtx,
    511 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    512 		}
    513 		LOCKSTAT_EXIT(lsflag);
    514 #endif	/* !MULTIPROCESSOR */
    515 #endif	/* FULL */
    516 		MUTEX_LOCKED(mtx);
    517 		return;
    518 	}
    519 
    520 	curthread = (uintptr_t)curlwp;
    521 
    522 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    523 	MUTEX_ASSERT(mtx, curthread != 0);
    524 	MUTEX_ASSERT(mtx, !cpu_intr_p());
    525 	MUTEX_WANTLOCK(mtx);
    526 
    527 	if (panicstr == NULL) {
    528 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    529 	}
    530 
    531 	LOCKSTAT_ENTER(lsflag);
    532 
    533 	/*
    534 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    535 	 * determine that the owner is not running on a processor,
    536 	 * then we stop spinning, and sleep instead.
    537 	 */
    538 	KPREEMPT_DISABLE(curlwp);
    539 	for (owner = mtx->mtx_owner;;) {
    540 		if (!MUTEX_OWNED(owner)) {
    541 			/*
    542 			 * Mutex owner clear could mean two things:
    543 			 *
    544 			 *	* The mutex has been released.
    545 			 *	* The owner field hasn't been set yet.
    546 			 *
    547 			 * Try to acquire it again.  If that fails,
    548 			 * we'll just loop again.
    549 			 */
    550 			if (MUTEX_ACQUIRE(mtx, curthread))
    551 				break;
    552 			owner = mtx->mtx_owner;
    553 			continue;
    554 		}
    555 #if MUTEX_PANIC_SKIP_ADAPTIVE
    556 		if (__predict_false(panicstr != NULL)) {
    557 			KPREEMPT_ENABLE(curlwp);
    558 			return;
    559 		}
    560 #endif
    561 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    562 			MUTEX_ABORT(mtx, "locking against myself");
    563 		}
    564 #ifdef MULTIPROCESSOR
    565 		/*
    566 		 * Check to see if the owner is running on a processor.
    567 		 * If so, then we should just spin, as the owner will
    568 		 * likely release the lock very soon.
    569 		 */
    570 		if (mutex_oncpu(owner)) {
    571 			LOCKSTAT_START_TIMER(lsflag, spintime);
    572 			count = SPINLOCK_BACKOFF_MIN;
    573 			do {
    574 				KPREEMPT_ENABLE(curlwp);
    575 				SPINLOCK_BACKOFF(count);
    576 				KPREEMPT_DISABLE(curlwp);
    577 				owner = mtx->mtx_owner;
    578 			} while (mutex_oncpu(owner));
    579 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    580 			LOCKSTAT_COUNT(spincnt, 1);
    581 			if (!MUTEX_OWNED(owner))
    582 				continue;
    583 		}
    584 #endif
    585 
    586 		ts = turnstile_lookup(mtx);
    587 
    588 		/*
    589 		 * Once we have the turnstile chain interlock, mark the
    590 		 * mutex as having waiters.  If that fails, spin again:
    591 		 * chances are that the mutex has been released.
    592 		 */
    593 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    594 			turnstile_exit(mtx);
    595 			owner = mtx->mtx_owner;
    596 			continue;
    597 		}
    598 
    599 #ifdef MULTIPROCESSOR
    600 		/*
    601 		 * mutex_exit() is permitted to release the mutex without
    602 		 * any interlocking instructions, and the following can
    603 		 * occur as a result:
    604 		 *
    605 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    606 		 * ---------------------------- ----------------------------
    607 		 *		..		    acquire cache line
    608 		 *		..                   test for waiters
    609 		 *	acquire cache line    <-      lose cache line
    610 		 *	 lock cache line	           ..
    611 		 *     verify mutex is held                ..
    612 		 *	    set waiters  	           ..
    613 		 *	 unlock cache line		   ..
    614 		 *	  lose cache line     ->    acquire cache line
    615 		 *		..	          clear lock word, waiters
    616 		 *	  return success
    617 		 *
    618 		 * There is another race that can occur: a third CPU could
    619 		 * acquire the mutex as soon as it is released.  Since
    620 		 * adaptive mutexes are primarily spin mutexes, this is not
    621 		 * something that we need to worry about too much.  What we
    622 		 * do need to ensure is that the waiters bit gets set.
    623 		 *
    624 		 * To allow the unlocked release, we need to make some
    625 		 * assumptions here:
    626 		 *
    627 		 * o Release is the only non-atomic/unlocked operation
    628 		 *   that can be performed on the mutex.  (It must still
    629 		 *   be atomic on the local CPU, e.g. in case interrupted
    630 		 *   or preempted).
    631 		 *
    632 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    633 		 *   be in progress on one CPU in the system - guaranteed
    634 		 *   by the turnstile chain lock.
    635 		 *
    636 		 * o No other operations other than MUTEX_SET_WAITERS()
    637 		 *   and release can modify a mutex with a non-zero
    638 		 *   owner field.
    639 		 *
    640 		 * o The result of a successful MUTEX_SET_WAITERS() call
    641 		 *   is an unbuffered write that is immediately visible
    642 		 *   to all other processors in the system.
    643 		 *
    644 		 * o If the holding LWP switches away, it posts a store
    645 		 *   fence before changing curlwp, ensuring that any
    646 		 *   overwrite of the mutex waiters flag by mutex_exit()
    647 		 *   completes before the modification of curlwp becomes
    648 		 *   visible to this CPU.
    649 		 *
    650 		 * o mi_switch() posts a store fence before setting curlwp
    651 		 *   and before resuming execution of an LWP.
    652 		 *
    653 		 * o _kernel_lock() posts a store fence before setting
    654 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    655 		 *   This ensures that any overwrite of the mutex waiters
    656 		 *   flag by mutex_exit() completes before the modification
    657 		 *   of ci_biglock_wanted becomes visible.
    658 		 *
    659 		 * We now post a read memory barrier (after setting the
    660 		 * waiters field) and check the lock holder's status again.
    661 		 * Some of the possible outcomes (not an exhaustive list):
    662 		 *
    663 		 * 1. The on-CPU check returns true: the holding LWP is
    664 		 *    running again.  The lock may be released soon and
    665 		 *    we should spin.  Importantly, we can't trust the
    666 		 *    value of the waiters flag.
    667 		 *
    668 		 * 2. The on-CPU check returns false: the holding LWP is
    669 		 *    not running.  We now have the opportunity to check
    670 		 *    if mutex_exit() has blatted the modifications made
    671 		 *    by MUTEX_SET_WAITERS().
    672 		 *
    673 		 * 3. The on-CPU check returns false: the holding LWP may
    674 		 *    or may not be running.  It has context switched at
    675 		 *    some point during our check.  Again, we have the
    676 		 *    chance to see if the waiters bit is still set or
    677 		 *    has been overwritten.
    678 		 *
    679 		 * 4. The on-CPU check returns false: the holding LWP is
    680 		 *    running on a CPU, but wants the big lock.  It's OK
    681 		 *    to check the waiters field in this case.
    682 		 *
    683 		 * 5. The has-waiters check fails: the mutex has been
    684 		 *    released, the waiters flag cleared and another LWP
    685 		 *    now owns the mutex.
    686 		 *
    687 		 * 6. The has-waiters check fails: the mutex has been
    688 		 *    released.
    689 		 *
    690 		 * If the waiters bit is not set it's unsafe to go asleep,
    691 		 * as we might never be awoken.
    692 		 */
    693 		if ((membar_consumer(), mutex_oncpu(owner)) ||
    694 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    695 			turnstile_exit(mtx);
    696 			owner = mtx->mtx_owner;
    697 			continue;
    698 		}
    699 #endif	/* MULTIPROCESSOR */
    700 
    701 		LOCKSTAT_START_TIMER(lsflag, slptime);
    702 
    703 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    704 
    705 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    706 		LOCKSTAT_COUNT(slpcnt, 1);
    707 
    708 		owner = mtx->mtx_owner;
    709 	}
    710 	KPREEMPT_ENABLE(curlwp);
    711 
    712 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    713 	    slpcnt, slptime);
    714 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    715 	    spincnt, spintime);
    716 	LOCKSTAT_EXIT(lsflag);
    717 
    718 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    719 	MUTEX_LOCKED(mtx);
    720 }
    721 
    722 /*
    723  * mutex_vector_exit:
    724  *
    725  *	Support routine for mutex_exit() that handles all cases.
    726  */
    727 void
    728 mutex_vector_exit(kmutex_t *mtx)
    729 {
    730 	turnstile_t *ts;
    731 	uintptr_t curthread;
    732 
    733 	if (MUTEX_SPIN_P(mtx)) {
    734 #ifdef FULL
    735 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    736 #if MUTEX_PANIC_SKIP_SPIN
    737 			if (panicstr != NULL)
    738 				return;
    739 #endif
    740 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    741 		}
    742 		MUTEX_UNLOCKED(mtx);
    743 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    744 #endif
    745 		MUTEX_SPIN_SPLRESTORE(mtx);
    746 		return;
    747 	}
    748 
    749 #ifdef MUTEX_PANIC_SKIP_ADAPTIVE
    750 	if (__predict_false((uintptr_t)panicstr | cold)) {
    751 		MUTEX_UNLOCKED(mtx);
    752 		MUTEX_RELEASE(mtx);
    753 		return;
    754 	}
    755 #endif
    756 
    757 	curthread = (uintptr_t)curlwp;
    758 	MUTEX_DASSERT(mtx, curthread != 0);
    759 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    760 	MUTEX_UNLOCKED(mtx);
    761 #if !defined(LOCKDEBUG)
    762 	__USE(curthread);
    763 #endif
    764 
    765 #ifdef LOCKDEBUG
    766 	/*
    767 	 * Avoid having to take the turnstile chain lock every time
    768 	 * around.  Raise the priority level to splhigh() in order
    769 	 * to disable preemption and so make the following atomic.
    770 	 */
    771 	{
    772 		int s = splhigh();
    773 		if (!MUTEX_HAS_WAITERS(mtx)) {
    774 			MUTEX_RELEASE(mtx);
    775 			splx(s);
    776 			return;
    777 		}
    778 		splx(s);
    779 	}
    780 #endif
    781 
    782 	/*
    783 	 * Get this lock's turnstile.  This gets the interlock on
    784 	 * the sleep queue.  Once we have that, we can clear the
    785 	 * lock.  If there was no turnstile for the lock, there
    786 	 * were no waiters remaining.
    787 	 */
    788 	ts = turnstile_lookup(mtx);
    789 
    790 	if (ts == NULL) {
    791 		MUTEX_RELEASE(mtx);
    792 		turnstile_exit(mtx);
    793 	} else {
    794 		MUTEX_RELEASE(mtx);
    795 		turnstile_wakeup(ts, TS_WRITER_Q,
    796 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    797 	}
    798 }
    799 
    800 #ifndef __HAVE_SIMPLE_MUTEXES
    801 /*
    802  * mutex_wakeup:
    803  *
    804  *	Support routine for mutex_exit() that wakes up all waiters.
    805  *	We assume that the mutex has been released, but it need not
    806  *	be.
    807  */
    808 void
    809 mutex_wakeup(kmutex_t *mtx)
    810 {
    811 	turnstile_t *ts;
    812 
    813 	ts = turnstile_lookup(mtx);
    814 	if (ts == NULL) {
    815 		turnstile_exit(mtx);
    816 		return;
    817 	}
    818 	MUTEX_CLEAR_WAITERS(mtx);
    819 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    820 }
    821 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    822 
    823 /*
    824  * mutex_owned:
    825  *
    826  *	Return true if the current LWP (adaptive) or CPU (spin)
    827  *	holds the mutex.
    828  */
    829 int
    830 mutex_owned(const kmutex_t *mtx)
    831 {
    832 
    833 	if (mtx == NULL)
    834 		return 0;
    835 	if (MUTEX_ADAPTIVE_P(mtx))
    836 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    837 #ifdef FULL
    838 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    839 #else
    840 	return 1;
    841 #endif
    842 }
    843 
    844 /*
    845  * mutex_owner:
    846  *
    847  *	Return the current owner of an adaptive mutex.  Used for
    848  *	priority inheritance.
    849  */
    850 lwp_t *
    851 mutex_owner(const kmutex_t *mtx)
    852 {
    853 
    854 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    855 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    856 }
    857 
    858 /*
    859  * mutex_ownable:
    860  *
    861  *	When compiled with DEBUG and LOCKDEBUG defined, ensure that
    862  *	the mutex is available.  We cannot use !mutex_owned() since
    863  *	that won't work correctly for spin mutexes.
    864  */
    865 int
    866 mutex_ownable(const kmutex_t *mtx)
    867 {
    868 
    869 #ifdef LOCKDEBUG
    870 	MUTEX_TESTLOCK(mtx);
    871 #endif
    872 	return 1;
    873 }
    874 
    875 /*
    876  * mutex_tryenter:
    877  *
    878  *	Try to acquire the mutex; return non-zero if we did.
    879  */
    880 int
    881 mutex_tryenter(kmutex_t *mtx)
    882 {
    883 	uintptr_t curthread;
    884 
    885 	/*
    886 	 * Handle spin mutexes.
    887 	 */
    888 	if (MUTEX_SPIN_P(mtx)) {
    889 		MUTEX_SPIN_SPLRAISE(mtx);
    890 #ifdef FULL
    891 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    892 			MUTEX_WANTLOCK(mtx);
    893 			MUTEX_LOCKED(mtx);
    894 			return 1;
    895 		}
    896 		MUTEX_SPIN_SPLRESTORE(mtx);
    897 #else
    898 		MUTEX_WANTLOCK(mtx);
    899 		MUTEX_LOCKED(mtx);
    900 		return 1;
    901 #endif
    902 	} else {
    903 		curthread = (uintptr_t)curlwp;
    904 		MUTEX_ASSERT(mtx, curthread != 0);
    905 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    906 			MUTEX_WANTLOCK(mtx);
    907 			MUTEX_LOCKED(mtx);
    908 			MUTEX_DASSERT(mtx,
    909 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    910 			return 1;
    911 		}
    912 	}
    913 
    914 	return 0;
    915 }
    916 
    917 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    918 /*
    919  * mutex_spin_retry:
    920  *
    921  *	Support routine for mutex_spin_enter().  Assumes that the caller
    922  *	has already raised the SPL, and adjusted counters.
    923  */
    924 void
    925 mutex_spin_retry(kmutex_t *mtx)
    926 {
    927 #ifdef MULTIPROCESSOR
    928 	u_int count;
    929 	LOCKSTAT_TIMER(spintime);
    930 	LOCKSTAT_FLAG(lsflag);
    931 #ifdef LOCKDEBUG
    932 	u_int spins = 0;
    933 #endif	/* LOCKDEBUG */
    934 
    935 	MUTEX_WANTLOCK(mtx);
    936 
    937 	LOCKSTAT_ENTER(lsflag);
    938 	LOCKSTAT_START_TIMER(lsflag, spintime);
    939 	count = SPINLOCK_BACKOFF_MIN;
    940 
    941 	/*
    942 	 * Spin testing the lock word and do exponential backoff
    943 	 * to reduce cache line ping-ponging between CPUs.
    944 	 */
    945 	do {
    946 #if MUTEX_PANIC_SKIP_SPIN
    947 		if (panicstr != NULL)
    948 			break;
    949 #endif
    950 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    951 			SPINLOCK_BACKOFF(count);
    952 #ifdef LOCKDEBUG
    953 			if (SPINLOCK_SPINOUT(spins))
    954 				MUTEX_ABORT(mtx, "spinout");
    955 #endif	/* LOCKDEBUG */
    956 		}
    957 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    958 
    959 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    960 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    961 	LOCKSTAT_EXIT(lsflag);
    962 
    963 	MUTEX_LOCKED(mtx);
    964 #else	/* MULTIPROCESSOR */
    965 	MUTEX_ABORT(mtx, "locking against myself");
    966 #endif	/* MULTIPROCESSOR */
    967 }
    968 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    969