Home | History | Annotate | Line # | Download | only in kern
kern_mutex.c revision 1.78
      1 /*	$NetBSD: kern_mutex.c,v 1.78 2019/05/09 04:52:59 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Kernel mutex implementation, modeled after those found in Solaris,
     34  * a description of which can be found in:
     35  *
     36  *	Solaris Internals: Core Kernel Architecture, Jim Mauro and
     37  *	    Richard McDougall.
     38  */
     39 
     40 #define	__MUTEX_PRIVATE
     41 
     42 #include <sys/cdefs.h>
     43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.78 2019/05/09 04:52:59 ozaki-r Exp $");
     44 
     45 #include <sys/param.h>
     46 #include <sys/atomic.h>
     47 #include <sys/proc.h>
     48 #include <sys/mutex.h>
     49 #include <sys/sched.h>
     50 #include <sys/sleepq.h>
     51 #include <sys/systm.h>
     52 #include <sys/lockdebug.h>
     53 #include <sys/kernel.h>
     54 #include <sys/intr.h>
     55 #include <sys/lock.h>
     56 #include <sys/types.h>
     57 #include <sys/cpu.h>
     58 #include <sys/pserialize.h>
     59 
     60 #include <dev/lockstat.h>
     61 
     62 #include <machine/lock.h>
     63 
     64 #define MUTEX_PANIC_SKIP_SPIN 1
     65 #define MUTEX_PANIC_SKIP_ADAPTIVE 1
     66 
     67 /*
     68  * When not running a debug kernel, spin mutexes are not much
     69  * more than an splraiseipl() and splx() pair.
     70  */
     71 
     72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
     73 #define	FULL
     74 #endif
     75 
     76 /*
     77  * Debugging support.
     78  */
     79 
     80 #define	MUTEX_WANTLOCK(mtx)					\
     81     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     82         (uintptr_t)__builtin_return_address(0), 0)
     83 #define	MUTEX_TESTLOCK(mtx)					\
     84     LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx),		\
     85         (uintptr_t)__builtin_return_address(0), -1)
     86 #define	MUTEX_LOCKED(mtx)					\
     87     LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL,		\
     88         (uintptr_t)__builtin_return_address(0), 0)
     89 #define	MUTEX_UNLOCKED(mtx)					\
     90     LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx),		\
     91         (uintptr_t)__builtin_return_address(0), 0)
     92 #define	MUTEX_ABORT(mtx, msg)					\
     93     mutex_abort(__func__, __LINE__, mtx, msg)
     94 
     95 #if defined(LOCKDEBUG)
     96 
     97 #define	MUTEX_DASSERT(mtx, cond)				\
     98 do {								\
     99 	if (__predict_false(!(cond)))				\
    100 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    101 } while (/* CONSTCOND */ 0)
    102 
    103 #else	/* LOCKDEBUG */
    104 
    105 #define	MUTEX_DASSERT(mtx, cond)	/* nothing */
    106 
    107 #endif /* LOCKDEBUG */
    108 
    109 #if defined(DIAGNOSTIC)
    110 
    111 #define	MUTEX_ASSERT(mtx, cond)					\
    112 do {								\
    113 	if (__predict_false(!(cond)))				\
    114 		MUTEX_ABORT(mtx, "assertion failed: " #cond);	\
    115 } while (/* CONSTCOND */ 0)
    116 
    117 #else	/* DIAGNOSTIC */
    118 
    119 #define	MUTEX_ASSERT(mtx, cond)	/* nothing */
    120 
    121 #endif	/* DIAGNOSTIC */
    122 
    123 /*
    124  * Some architectures can't use __cpu_simple_lock as is so allow a way
    125  * for them to use an alternate definition.
    126  */
    127 #ifndef MUTEX_SPINBIT_LOCK_INIT
    128 #define MUTEX_SPINBIT_LOCK_INIT(mtx)	__cpu_simple_lock_init(&(mtx)->mtx_lock)
    129 #endif
    130 #ifndef MUTEX_SPINBIT_LOCKED_P
    131 #define MUTEX_SPINBIT_LOCKED_P(mtx)	__SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
    132 #endif
    133 #ifndef MUTEX_SPINBIT_LOCK_TRY
    134 #define MUTEX_SPINBIT_LOCK_TRY(mtx)	__cpu_simple_lock_try(&(mtx)->mtx_lock)
    135 #endif
    136 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
    137 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx)	__cpu_simple_unlock(&(mtx)->mtx_lock)
    138 #endif
    139 
    140 #ifndef MUTEX_INITIALIZE_SPIN_IPL
    141 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
    142 					((mtx)->mtx_ipl = makeiplcookie((ipl)))
    143 #endif
    144 
    145 /*
    146  * Spin mutex SPL save / restore.
    147  */
    148 
    149 #define	MUTEX_SPIN_SPLRAISE(mtx)					\
    150 do {									\
    151 	struct cpu_info *x__ci;						\
    152 	int x__cnt, s;							\
    153 	s = splraiseipl(MUTEX_SPIN_IPL(mtx));				\
    154 	x__ci = curcpu();						\
    155 	x__cnt = x__ci->ci_mtx_count--;					\
    156 	__insn_barrier();						\
    157 	if (x__cnt == 0)						\
    158 		x__ci->ci_mtx_oldspl = (s);				\
    159 } while (/* CONSTCOND */ 0)
    160 
    161 #define	MUTEX_SPIN_SPLRESTORE(mtx)					\
    162 do {									\
    163 	struct cpu_info *x__ci = curcpu();				\
    164 	int s = x__ci->ci_mtx_oldspl;					\
    165 	__insn_barrier();						\
    166 	if (++(x__ci->ci_mtx_count) == 0)			\
    167 		splx(s);						\
    168 } while (/* CONSTCOND */ 0)
    169 
    170 /*
    171  * For architectures that provide 'simple' mutexes: they provide a
    172  * CAS function that is either MP-safe, or does not need to be MP
    173  * safe.  Adaptive mutexes on these architectures do not require an
    174  * additional interlock.
    175  */
    176 
    177 #ifdef __HAVE_SIMPLE_MUTEXES
    178 
    179 #define	MUTEX_OWNER(owner)						\
    180 	(owner & MUTEX_THREAD)
    181 #define	MUTEX_HAS_WAITERS(mtx)						\
    182 	(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
    183 
    184 #define	MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug)				\
    185 do {									\
    186 	if (!dodebug)							\
    187 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    188 } while (/* CONSTCOND */ 0)
    189 
    190 #define	MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl)			\
    191 do {									\
    192 	(mtx)->mtx_owner = MUTEX_BIT_SPIN;				\
    193 	if (!dodebug)							\
    194 		(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG;			\
    195 	MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl));			\
    196 	MUTEX_SPINBIT_LOCK_INIT((mtx));					\
    197 } while (/* CONSTCOND */ 0)
    198 
    199 #define	MUTEX_DESTROY(mtx)						\
    200 do {									\
    201 	(mtx)->mtx_owner = MUTEX_THREAD;				\
    202 } while (/* CONSTCOND */ 0)
    203 
    204 #define	MUTEX_SPIN_P(mtx)		\
    205     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
    206 #define	MUTEX_ADAPTIVE_P(mtx)		\
    207     (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
    208 
    209 #define	MUTEX_DEBUG_P(mtx)	(((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
    210 #if defined(LOCKDEBUG)
    211 #define	MUTEX_OWNED(owner)		(((owner) & ~MUTEX_BIT_NODEBUG) != 0)
    212 #define	MUTEX_INHERITDEBUG(n, o)	(n) |= (o) & MUTEX_BIT_NODEBUG
    213 #else /* defined(LOCKDEBUG) */
    214 #define	MUTEX_OWNED(owner)		((owner) != 0)
    215 #define	MUTEX_INHERITDEBUG(n, o)	/* nothing */
    216 #endif /* defined(LOCKDEBUG) */
    217 
    218 static inline int
    219 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
    220 {
    221 	int rv;
    222 	uintptr_t oldown = 0;
    223 	uintptr_t newown = curthread;
    224 
    225 	MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
    226 	MUTEX_INHERITDEBUG(newown, oldown);
    227 	rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
    228 	MUTEX_RECEIVE(mtx);
    229 	return rv;
    230 }
    231 
    232 static inline int
    233 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
    234 {
    235 	int rv;
    236 	rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
    237 	MUTEX_RECEIVE(mtx);
    238 	return rv;
    239 }
    240 
    241 static inline void
    242 MUTEX_RELEASE(kmutex_t *mtx)
    243 {
    244 	uintptr_t newown;
    245 
    246 	MUTEX_GIVE(mtx);
    247 	newown = 0;
    248 	MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
    249 	mtx->mtx_owner = newown;
    250 }
    251 #endif	/* __HAVE_SIMPLE_MUTEXES */
    252 
    253 /*
    254  * Patch in stubs via strong alias where they are not available.
    255  */
    256 
    257 #if defined(LOCKDEBUG)
    258 #undef	__HAVE_MUTEX_STUBS
    259 #undef	__HAVE_SPIN_MUTEX_STUBS
    260 #endif
    261 
    262 #ifndef __HAVE_MUTEX_STUBS
    263 __strong_alias(mutex_enter,mutex_vector_enter);
    264 __strong_alias(mutex_exit,mutex_vector_exit);
    265 #endif
    266 
    267 #ifndef __HAVE_SPIN_MUTEX_STUBS
    268 __strong_alias(mutex_spin_enter,mutex_vector_enter);
    269 __strong_alias(mutex_spin_exit,mutex_vector_exit);
    270 #endif
    271 
    272 static void	mutex_abort(const char *, size_t, const kmutex_t *,
    273     const char *);
    274 static void	mutex_dump(const volatile void *);
    275 
    276 lockops_t mutex_spin_lockops = {
    277 	.lo_name = "Mutex",
    278 	.lo_type = LOCKOPS_SPIN,
    279 	.lo_dump = mutex_dump,
    280 };
    281 
    282 lockops_t mutex_adaptive_lockops = {
    283 	.lo_name = "Mutex",
    284 	.lo_type = LOCKOPS_SLEEP,
    285 	.lo_dump = mutex_dump,
    286 };
    287 
    288 syncobj_t mutex_syncobj = {
    289 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    290 	.sobj_unsleep	= turnstile_unsleep,
    291 	.sobj_changepri	= turnstile_changepri,
    292 	.sobj_lendpri	= sleepq_lendpri,
    293 	.sobj_owner	= (void *)mutex_owner,
    294 };
    295 
    296 /*
    297  * mutex_dump:
    298  *
    299  *	Dump the contents of a mutex structure.
    300  */
    301 static void
    302 mutex_dump(const volatile void *cookie)
    303 {
    304 	const volatile kmutex_t *mtx = cookie;
    305 
    306 	printf_nolog("owner field  : %#018lx wait/spin: %16d/%d\n",
    307 	    (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
    308 	    MUTEX_SPIN_P(mtx));
    309 }
    310 
    311 /*
    312  * mutex_abort:
    313  *
    314  *	Dump information about an error and panic the system.  This
    315  *	generates a lot of machine code in the DIAGNOSTIC case, so
    316  *	we ask the compiler to not inline it.
    317  */
    318 static void __noinline
    319 mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
    320 {
    321 
    322 	LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
    323 	    &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
    324 }
    325 
    326 /*
    327  * mutex_init:
    328  *
    329  *	Initialize a mutex for use.  Note that adaptive mutexes are in
    330  *	essence spin mutexes that can sleep to avoid deadlock and wasting
    331  *	CPU time.  We can't easily provide a type of mutex that always
    332  *	sleeps - see comments in mutex_vector_enter() about releasing
    333  *	mutexes unlocked.
    334  */
    335 void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
    336 void
    337 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
    338     uintptr_t return_address)
    339 {
    340 	bool dodebug;
    341 
    342 	memset(mtx, 0, sizeof(*mtx));
    343 
    344 	switch (type) {
    345 	case MUTEX_ADAPTIVE:
    346 		KASSERT(ipl == IPL_NONE);
    347 		break;
    348 	case MUTEX_DEFAULT:
    349 	case MUTEX_DRIVER:
    350 		if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
    351 		    ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
    352 		    ipl == IPL_SOFTSERIAL) {
    353 			type = MUTEX_ADAPTIVE;
    354 		} else {
    355 			type = MUTEX_SPIN;
    356 		}
    357 		break;
    358 	default:
    359 		break;
    360 	}
    361 
    362 	switch (type) {
    363 	case MUTEX_NODEBUG:
    364 		dodebug = LOCKDEBUG_ALLOC(mtx, NULL, return_address);
    365 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    366 		break;
    367 	case MUTEX_ADAPTIVE:
    368 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
    369 		    return_address);
    370 		MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
    371 		break;
    372 	case MUTEX_SPIN:
    373 		dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
    374 		    return_address);
    375 		MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
    376 		break;
    377 	default:
    378 		panic("mutex_init: impossible type");
    379 		break;
    380 	}
    381 }
    382 
    383 void
    384 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
    385 {
    386 
    387 	_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
    388 }
    389 
    390 /*
    391  * mutex_destroy:
    392  *
    393  *	Tear down a mutex.
    394  */
    395 void
    396 mutex_destroy(kmutex_t *mtx)
    397 {
    398 
    399 	if (MUTEX_ADAPTIVE_P(mtx)) {
    400 		MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
    401 		    !MUTEX_HAS_WAITERS(mtx));
    402 	} else {
    403 		MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
    404 	}
    405 
    406 	LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
    407 	MUTEX_DESTROY(mtx);
    408 }
    409 
    410 #ifdef MULTIPROCESSOR
    411 /*
    412  * mutex_oncpu:
    413  *
    414  *	Return true if an adaptive mutex owner is running on a CPU in the
    415  *	system.  If the target is waiting on the kernel big lock, then we
    416  *	must release it.  This is necessary to avoid deadlock.
    417  */
    418 static bool
    419 mutex_oncpu(uintptr_t owner)
    420 {
    421 	struct cpu_info *ci;
    422 	lwp_t *l;
    423 
    424 	KASSERT(kpreempt_disabled());
    425 
    426 	if (!MUTEX_OWNED(owner)) {
    427 		return false;
    428 	}
    429 
    430 	/*
    431 	 * See lwp_dtor() why dereference of the LWP pointer is safe.
    432 	 * We must have kernel preemption disabled for that.
    433 	 */
    434 	l = (lwp_t *)MUTEX_OWNER(owner);
    435 	ci = l->l_cpu;
    436 
    437 	if (ci && ci->ci_curlwp == l) {
    438 		/* Target is running; do we need to block? */
    439 		return (ci->ci_biglock_wanted != l);
    440 	}
    441 
    442 	/* Not running.  It may be safe to block now. */
    443 	return false;
    444 }
    445 #endif	/* MULTIPROCESSOR */
    446 
    447 /*
    448  * mutex_vector_enter:
    449  *
    450  *	Support routine for mutex_enter() that must handle all cases.  In
    451  *	the LOCKDEBUG case, mutex_enter() is always aliased here, even if
    452  *	fast-path stubs are available.  If a mutex_spin_enter() stub is
    453  *	not available, then it is also aliased directly here.
    454  */
    455 void
    456 mutex_vector_enter(kmutex_t *mtx)
    457 {
    458 	uintptr_t owner, curthread;
    459 	turnstile_t *ts;
    460 #ifdef MULTIPROCESSOR
    461 	u_int count;
    462 #endif
    463 	LOCKSTAT_COUNTER(spincnt);
    464 	LOCKSTAT_COUNTER(slpcnt);
    465 	LOCKSTAT_TIMER(spintime);
    466 	LOCKSTAT_TIMER(slptime);
    467 	LOCKSTAT_FLAG(lsflag);
    468 
    469 	/*
    470 	 * Handle spin mutexes.
    471 	 */
    472 	if (MUTEX_SPIN_P(mtx)) {
    473 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
    474 		u_int spins = 0;
    475 #endif
    476 		MUTEX_SPIN_SPLRAISE(mtx);
    477 		MUTEX_WANTLOCK(mtx);
    478 #ifdef FULL
    479 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    480 			MUTEX_LOCKED(mtx);
    481 			return;
    482 		}
    483 #if !defined(MULTIPROCESSOR)
    484 		MUTEX_ABORT(mtx, "locking against myself");
    485 #else /* !MULTIPROCESSOR */
    486 
    487 		LOCKSTAT_ENTER(lsflag);
    488 		LOCKSTAT_START_TIMER(lsflag, spintime);
    489 		count = SPINLOCK_BACKOFF_MIN;
    490 
    491 		/*
    492 		 * Spin testing the lock word and do exponential backoff
    493 		 * to reduce cache line ping-ponging between CPUs.
    494 		 */
    495 		do {
    496 #if MUTEX_PANIC_SKIP_SPIN
    497 			if (panicstr != NULL)
    498 				break;
    499 #endif
    500 			while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    501 				SPINLOCK_BACKOFF(count);
    502 #ifdef LOCKDEBUG
    503 				if (SPINLOCK_SPINOUT(spins))
    504 					MUTEX_ABORT(mtx, "spinout");
    505 #endif	/* LOCKDEBUG */
    506 			}
    507 		} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    508 
    509 		if (count != SPINLOCK_BACKOFF_MIN) {
    510 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    511 			LOCKSTAT_EVENT(lsflag, mtx,
    512 			    LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    513 		}
    514 		LOCKSTAT_EXIT(lsflag);
    515 #endif	/* !MULTIPROCESSOR */
    516 #endif	/* FULL */
    517 		MUTEX_LOCKED(mtx);
    518 		return;
    519 	}
    520 
    521 	curthread = (uintptr_t)curlwp;
    522 
    523 	MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    524 	MUTEX_ASSERT(mtx, curthread != 0);
    525 	MUTEX_ASSERT(mtx, !cpu_intr_p());
    526 	MUTEX_WANTLOCK(mtx);
    527 
    528 	if (panicstr == NULL) {
    529 		KDASSERT(pserialize_not_in_read_section());
    530 		LOCKDEBUG_BARRIER(&kernel_lock, 1);
    531 	}
    532 
    533 	LOCKSTAT_ENTER(lsflag);
    534 
    535 	/*
    536 	 * Adaptive mutex; spin trying to acquire the mutex.  If we
    537 	 * determine that the owner is not running on a processor,
    538 	 * then we stop spinning, and sleep instead.
    539 	 */
    540 	KPREEMPT_DISABLE(curlwp);
    541 	for (owner = mtx->mtx_owner;;) {
    542 		if (!MUTEX_OWNED(owner)) {
    543 			/*
    544 			 * Mutex owner clear could mean two things:
    545 			 *
    546 			 *	* The mutex has been released.
    547 			 *	* The owner field hasn't been set yet.
    548 			 *
    549 			 * Try to acquire it again.  If that fails,
    550 			 * we'll just loop again.
    551 			 */
    552 			if (MUTEX_ACQUIRE(mtx, curthread))
    553 				break;
    554 			owner = mtx->mtx_owner;
    555 			continue;
    556 		}
    557 #if MUTEX_PANIC_SKIP_ADAPTIVE
    558 		if (__predict_false(panicstr != NULL)) {
    559 			KPREEMPT_ENABLE(curlwp);
    560 			return;
    561 		}
    562 #endif
    563 		if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
    564 			MUTEX_ABORT(mtx, "locking against myself");
    565 		}
    566 #ifdef MULTIPROCESSOR
    567 		/*
    568 		 * Check to see if the owner is running on a processor.
    569 		 * If so, then we should just spin, as the owner will
    570 		 * likely release the lock very soon.
    571 		 */
    572 		if (mutex_oncpu(owner)) {
    573 			LOCKSTAT_START_TIMER(lsflag, spintime);
    574 			count = SPINLOCK_BACKOFF_MIN;
    575 			do {
    576 				KPREEMPT_ENABLE(curlwp);
    577 				SPINLOCK_BACKOFF(count);
    578 				KPREEMPT_DISABLE(curlwp);
    579 				owner = mtx->mtx_owner;
    580 			} while (mutex_oncpu(owner));
    581 			LOCKSTAT_STOP_TIMER(lsflag, spintime);
    582 			LOCKSTAT_COUNT(spincnt, 1);
    583 			if (!MUTEX_OWNED(owner))
    584 				continue;
    585 		}
    586 #endif
    587 
    588 		ts = turnstile_lookup(mtx);
    589 
    590 		/*
    591 		 * Once we have the turnstile chain interlock, mark the
    592 		 * mutex as having waiters.  If that fails, spin again:
    593 		 * chances are that the mutex has been released.
    594 		 */
    595 		if (!MUTEX_SET_WAITERS(mtx, owner)) {
    596 			turnstile_exit(mtx);
    597 			owner = mtx->mtx_owner;
    598 			continue;
    599 		}
    600 
    601 #ifdef MULTIPROCESSOR
    602 		/*
    603 		 * mutex_exit() is permitted to release the mutex without
    604 		 * any interlocking instructions, and the following can
    605 		 * occur as a result:
    606 		 *
    607 		 *  CPU 1: MUTEX_SET_WAITERS()      CPU2: mutex_exit()
    608 		 * ---------------------------- ----------------------------
    609 		 *		..		    acquire cache line
    610 		 *		..                   test for waiters
    611 		 *	acquire cache line    <-      lose cache line
    612 		 *	 lock cache line	           ..
    613 		 *     verify mutex is held                ..
    614 		 *	    set waiters  	           ..
    615 		 *	 unlock cache line		   ..
    616 		 *	  lose cache line     ->    acquire cache line
    617 		 *		..	          clear lock word, waiters
    618 		 *	  return success
    619 		 *
    620 		 * There is another race that can occur: a third CPU could
    621 		 * acquire the mutex as soon as it is released.  Since
    622 		 * adaptive mutexes are primarily spin mutexes, this is not
    623 		 * something that we need to worry about too much.  What we
    624 		 * do need to ensure is that the waiters bit gets set.
    625 		 *
    626 		 * To allow the unlocked release, we need to make some
    627 		 * assumptions here:
    628 		 *
    629 		 * o Release is the only non-atomic/unlocked operation
    630 		 *   that can be performed on the mutex.  (It must still
    631 		 *   be atomic on the local CPU, e.g. in case interrupted
    632 		 *   or preempted).
    633 		 *
    634 		 * o At any given time, MUTEX_SET_WAITERS() can only ever
    635 		 *   be in progress on one CPU in the system - guaranteed
    636 		 *   by the turnstile chain lock.
    637 		 *
    638 		 * o No other operations other than MUTEX_SET_WAITERS()
    639 		 *   and release can modify a mutex with a non-zero
    640 		 *   owner field.
    641 		 *
    642 		 * o The result of a successful MUTEX_SET_WAITERS() call
    643 		 *   is an unbuffered write that is immediately visible
    644 		 *   to all other processors in the system.
    645 		 *
    646 		 * o If the holding LWP switches away, it posts a store
    647 		 *   fence before changing curlwp, ensuring that any
    648 		 *   overwrite of the mutex waiters flag by mutex_exit()
    649 		 *   completes before the modification of curlwp becomes
    650 		 *   visible to this CPU.
    651 		 *
    652 		 * o mi_switch() posts a store fence before setting curlwp
    653 		 *   and before resuming execution of an LWP.
    654 		 *
    655 		 * o _kernel_lock() posts a store fence before setting
    656 		 *   curcpu()->ci_biglock_wanted, and after clearing it.
    657 		 *   This ensures that any overwrite of the mutex waiters
    658 		 *   flag by mutex_exit() completes before the modification
    659 		 *   of ci_biglock_wanted becomes visible.
    660 		 *
    661 		 * We now post a read memory barrier (after setting the
    662 		 * waiters field) and check the lock holder's status again.
    663 		 * Some of the possible outcomes (not an exhaustive list):
    664 		 *
    665 		 * 1. The on-CPU check returns true: the holding LWP is
    666 		 *    running again.  The lock may be released soon and
    667 		 *    we should spin.  Importantly, we can't trust the
    668 		 *    value of the waiters flag.
    669 		 *
    670 		 * 2. The on-CPU check returns false: the holding LWP is
    671 		 *    not running.  We now have the opportunity to check
    672 		 *    if mutex_exit() has blatted the modifications made
    673 		 *    by MUTEX_SET_WAITERS().
    674 		 *
    675 		 * 3. The on-CPU check returns false: the holding LWP may
    676 		 *    or may not be running.  It has context switched at
    677 		 *    some point during our check.  Again, we have the
    678 		 *    chance to see if the waiters bit is still set or
    679 		 *    has been overwritten.
    680 		 *
    681 		 * 4. The on-CPU check returns false: the holding LWP is
    682 		 *    running on a CPU, but wants the big lock.  It's OK
    683 		 *    to check the waiters field in this case.
    684 		 *
    685 		 * 5. The has-waiters check fails: the mutex has been
    686 		 *    released, the waiters flag cleared and another LWP
    687 		 *    now owns the mutex.
    688 		 *
    689 		 * 6. The has-waiters check fails: the mutex has been
    690 		 *    released.
    691 		 *
    692 		 * If the waiters bit is not set it's unsafe to go asleep,
    693 		 * as we might never be awoken.
    694 		 */
    695 		if ((membar_consumer(), mutex_oncpu(owner)) ||
    696 		    (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
    697 			turnstile_exit(mtx);
    698 			owner = mtx->mtx_owner;
    699 			continue;
    700 		}
    701 #endif	/* MULTIPROCESSOR */
    702 
    703 		LOCKSTAT_START_TIMER(lsflag, slptime);
    704 
    705 		turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
    706 
    707 		LOCKSTAT_STOP_TIMER(lsflag, slptime);
    708 		LOCKSTAT_COUNT(slpcnt, 1);
    709 
    710 		owner = mtx->mtx_owner;
    711 	}
    712 	KPREEMPT_ENABLE(curlwp);
    713 
    714 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
    715 	    slpcnt, slptime);
    716 	LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
    717 	    spincnt, spintime);
    718 	LOCKSTAT_EXIT(lsflag);
    719 
    720 	MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    721 	MUTEX_LOCKED(mtx);
    722 }
    723 
    724 /*
    725  * mutex_vector_exit:
    726  *
    727  *	Support routine for mutex_exit() that handles all cases.
    728  */
    729 void
    730 mutex_vector_exit(kmutex_t *mtx)
    731 {
    732 	turnstile_t *ts;
    733 	uintptr_t curthread;
    734 
    735 	if (MUTEX_SPIN_P(mtx)) {
    736 #ifdef FULL
    737 		if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
    738 #if MUTEX_PANIC_SKIP_SPIN
    739 			if (panicstr != NULL)
    740 				return;
    741 #endif
    742 			MUTEX_ABORT(mtx, "exiting unheld spin mutex");
    743 		}
    744 		MUTEX_UNLOCKED(mtx);
    745 		MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
    746 #endif
    747 		MUTEX_SPIN_SPLRESTORE(mtx);
    748 		return;
    749 	}
    750 
    751 #ifdef MUTEX_PANIC_SKIP_ADAPTIVE
    752 	if (__predict_false((uintptr_t)panicstr | cold)) {
    753 		MUTEX_UNLOCKED(mtx);
    754 		MUTEX_RELEASE(mtx);
    755 		return;
    756 	}
    757 #endif
    758 
    759 	curthread = (uintptr_t)curlwp;
    760 	MUTEX_DASSERT(mtx, curthread != 0);
    761 	MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
    762 	MUTEX_UNLOCKED(mtx);
    763 #if !defined(LOCKDEBUG)
    764 	__USE(curthread);
    765 #endif
    766 
    767 #ifdef LOCKDEBUG
    768 	/*
    769 	 * Avoid having to take the turnstile chain lock every time
    770 	 * around.  Raise the priority level to splhigh() in order
    771 	 * to disable preemption and so make the following atomic.
    772 	 */
    773 	{
    774 		int s = splhigh();
    775 		if (!MUTEX_HAS_WAITERS(mtx)) {
    776 			MUTEX_RELEASE(mtx);
    777 			splx(s);
    778 			return;
    779 		}
    780 		splx(s);
    781 	}
    782 #endif
    783 
    784 	/*
    785 	 * Get this lock's turnstile.  This gets the interlock on
    786 	 * the sleep queue.  Once we have that, we can clear the
    787 	 * lock.  If there was no turnstile for the lock, there
    788 	 * were no waiters remaining.
    789 	 */
    790 	ts = turnstile_lookup(mtx);
    791 
    792 	if (ts == NULL) {
    793 		MUTEX_RELEASE(mtx);
    794 		turnstile_exit(mtx);
    795 	} else {
    796 		MUTEX_RELEASE(mtx);
    797 		turnstile_wakeup(ts, TS_WRITER_Q,
    798 		    TS_WAITERS(ts, TS_WRITER_Q), NULL);
    799 	}
    800 }
    801 
    802 #ifndef __HAVE_SIMPLE_MUTEXES
    803 /*
    804  * mutex_wakeup:
    805  *
    806  *	Support routine for mutex_exit() that wakes up all waiters.
    807  *	We assume that the mutex has been released, but it need not
    808  *	be.
    809  */
    810 void
    811 mutex_wakeup(kmutex_t *mtx)
    812 {
    813 	turnstile_t *ts;
    814 
    815 	ts = turnstile_lookup(mtx);
    816 	if (ts == NULL) {
    817 		turnstile_exit(mtx);
    818 		return;
    819 	}
    820 	MUTEX_CLEAR_WAITERS(mtx);
    821 	turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
    822 }
    823 #endif	/* !__HAVE_SIMPLE_MUTEXES */
    824 
    825 /*
    826  * mutex_owned:
    827  *
    828  *	Return true if the current LWP (adaptive) or CPU (spin)
    829  *	holds the mutex.
    830  */
    831 int
    832 mutex_owned(const kmutex_t *mtx)
    833 {
    834 
    835 	if (mtx == NULL)
    836 		return 0;
    837 	if (MUTEX_ADAPTIVE_P(mtx))
    838 		return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
    839 #ifdef FULL
    840 	return MUTEX_SPINBIT_LOCKED_P(mtx);
    841 #else
    842 	return 1;
    843 #endif
    844 }
    845 
    846 /*
    847  * mutex_owner:
    848  *
    849  *	Return the current owner of an adaptive mutex.  Used for
    850  *	priority inheritance.
    851  */
    852 lwp_t *
    853 mutex_owner(const kmutex_t *mtx)
    854 {
    855 
    856 	MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
    857 	return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
    858 }
    859 
    860 /*
    861  * mutex_ownable:
    862  *
    863  *	When compiled with DEBUG and LOCKDEBUG defined, ensure that
    864  *	the mutex is available.  We cannot use !mutex_owned() since
    865  *	that won't work correctly for spin mutexes.
    866  */
    867 int
    868 mutex_ownable(const kmutex_t *mtx)
    869 {
    870 
    871 #ifdef LOCKDEBUG
    872 	MUTEX_TESTLOCK(mtx);
    873 #endif
    874 	return 1;
    875 }
    876 
    877 /*
    878  * mutex_tryenter:
    879  *
    880  *	Try to acquire the mutex; return non-zero if we did.
    881  */
    882 int
    883 mutex_tryenter(kmutex_t *mtx)
    884 {
    885 	uintptr_t curthread;
    886 
    887 	/*
    888 	 * Handle spin mutexes.
    889 	 */
    890 	if (MUTEX_SPIN_P(mtx)) {
    891 		MUTEX_SPIN_SPLRAISE(mtx);
    892 #ifdef FULL
    893 		if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
    894 			MUTEX_WANTLOCK(mtx);
    895 			MUTEX_LOCKED(mtx);
    896 			return 1;
    897 		}
    898 		MUTEX_SPIN_SPLRESTORE(mtx);
    899 #else
    900 		MUTEX_WANTLOCK(mtx);
    901 		MUTEX_LOCKED(mtx);
    902 		return 1;
    903 #endif
    904 	} else {
    905 		curthread = (uintptr_t)curlwp;
    906 		MUTEX_ASSERT(mtx, curthread != 0);
    907 		if (MUTEX_ACQUIRE(mtx, curthread)) {
    908 			MUTEX_WANTLOCK(mtx);
    909 			MUTEX_LOCKED(mtx);
    910 			MUTEX_DASSERT(mtx,
    911 			    MUTEX_OWNER(mtx->mtx_owner) == curthread);
    912 			return 1;
    913 		}
    914 	}
    915 
    916 	return 0;
    917 }
    918 
    919 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
    920 /*
    921  * mutex_spin_retry:
    922  *
    923  *	Support routine for mutex_spin_enter().  Assumes that the caller
    924  *	has already raised the SPL, and adjusted counters.
    925  */
    926 void
    927 mutex_spin_retry(kmutex_t *mtx)
    928 {
    929 #ifdef MULTIPROCESSOR
    930 	u_int count;
    931 	LOCKSTAT_TIMER(spintime);
    932 	LOCKSTAT_FLAG(lsflag);
    933 #ifdef LOCKDEBUG
    934 	u_int spins = 0;
    935 #endif	/* LOCKDEBUG */
    936 
    937 	MUTEX_WANTLOCK(mtx);
    938 
    939 	LOCKSTAT_ENTER(lsflag);
    940 	LOCKSTAT_START_TIMER(lsflag, spintime);
    941 	count = SPINLOCK_BACKOFF_MIN;
    942 
    943 	/*
    944 	 * Spin testing the lock word and do exponential backoff
    945 	 * to reduce cache line ping-ponging between CPUs.
    946 	 */
    947 	do {
    948 #if MUTEX_PANIC_SKIP_SPIN
    949 		if (panicstr != NULL)
    950 			break;
    951 #endif
    952 		while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
    953 			SPINLOCK_BACKOFF(count);
    954 #ifdef LOCKDEBUG
    955 			if (SPINLOCK_SPINOUT(spins))
    956 				MUTEX_ABORT(mtx, "spinout");
    957 #endif	/* LOCKDEBUG */
    958 		}
    959 	} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
    960 
    961 	LOCKSTAT_STOP_TIMER(lsflag, spintime);
    962 	LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
    963 	LOCKSTAT_EXIT(lsflag);
    964 
    965 	MUTEX_LOCKED(mtx);
    966 #else	/* MULTIPROCESSOR */
    967 	MUTEX_ABORT(mtx, "locking against myself");
    968 #endif	/* MULTIPROCESSOR */
    969 }
    970 #endif	/* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
    971