kern_mutex.c revision 1.80 1 /* $NetBSD: kern_mutex.c,v 1.80 2019/11/29 19:44:59 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Kernel mutex implementation, modeled after those found in Solaris,
34 * a description of which can be found in:
35 *
36 * Solaris Internals: Core Kernel Architecture, Jim Mauro and
37 * Richard McDougall.
38 */
39
40 #define __MUTEX_PRIVATE
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.80 2019/11/29 19:44:59 ad Exp $");
44
45 #include <sys/param.h>
46 #include <sys/atomic.h>
47 #include <sys/proc.h>
48 #include <sys/mutex.h>
49 #include <sys/sched.h>
50 #include <sys/sleepq.h>
51 #include <sys/systm.h>
52 #include <sys/lockdebug.h>
53 #include <sys/kernel.h>
54 #include <sys/intr.h>
55 #include <sys/lock.h>
56 #include <sys/types.h>
57 #include <sys/cpu.h>
58 #include <sys/pserialize.h>
59
60 #include <dev/lockstat.h>
61
62 #include <machine/lock.h>
63
64 #define MUTEX_PANIC_SKIP_SPIN 1
65 #define MUTEX_PANIC_SKIP_ADAPTIVE 1
66
67 /*
68 * When not running a debug kernel, spin mutexes are not much
69 * more than an splraiseipl() and splx() pair.
70 */
71
72 #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
73 #define FULL
74 #endif
75
76 /*
77 * Debugging support.
78 */
79
80 #define MUTEX_WANTLOCK(mtx) \
81 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
82 (uintptr_t)__builtin_return_address(0), 0)
83 #define MUTEX_TESTLOCK(mtx) \
84 LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
85 (uintptr_t)__builtin_return_address(0), -1)
86 #define MUTEX_LOCKED(mtx) \
87 LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
88 (uintptr_t)__builtin_return_address(0), 0)
89 #define MUTEX_UNLOCKED(mtx) \
90 LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
91 (uintptr_t)__builtin_return_address(0), 0)
92 #define MUTEX_ABORT(mtx, msg) \
93 mutex_abort(__func__, __LINE__, mtx, msg)
94
95 #if defined(LOCKDEBUG)
96
97 #define MUTEX_DASSERT(mtx, cond) \
98 do { \
99 if (__predict_false(!(cond))) \
100 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
101 } while (/* CONSTCOND */ 0)
102
103 #else /* LOCKDEBUG */
104
105 #define MUTEX_DASSERT(mtx, cond) /* nothing */
106
107 #endif /* LOCKDEBUG */
108
109 #if defined(DIAGNOSTIC)
110
111 #define MUTEX_ASSERT(mtx, cond) \
112 do { \
113 if (__predict_false(!(cond))) \
114 MUTEX_ABORT(mtx, "assertion failed: " #cond); \
115 } while (/* CONSTCOND */ 0)
116
117 #else /* DIAGNOSTIC */
118
119 #define MUTEX_ASSERT(mtx, cond) /* nothing */
120
121 #endif /* DIAGNOSTIC */
122
123 /*
124 * Some architectures can't use __cpu_simple_lock as is so allow a way
125 * for them to use an alternate definition.
126 */
127 #ifndef MUTEX_SPINBIT_LOCK_INIT
128 #define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
129 #endif
130 #ifndef MUTEX_SPINBIT_LOCKED_P
131 #define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
132 #endif
133 #ifndef MUTEX_SPINBIT_LOCK_TRY
134 #define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
135 #endif
136 #ifndef MUTEX_SPINBIT_LOCK_UNLOCK
137 #define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
138 #endif
139
140 #ifndef MUTEX_INITIALIZE_SPIN_IPL
141 #define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
142 ((mtx)->mtx_ipl = makeiplcookie((ipl)))
143 #endif
144
145 /*
146 * Spin mutex SPL save / restore.
147 */
148
149 #define MUTEX_SPIN_SPLRAISE(mtx) \
150 do { \
151 struct cpu_info *x__ci; \
152 int x__cnt, s; \
153 s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
154 x__ci = curcpu(); \
155 x__cnt = x__ci->ci_mtx_count--; \
156 __insn_barrier(); \
157 if (x__cnt == 0) \
158 x__ci->ci_mtx_oldspl = (s); \
159 } while (/* CONSTCOND */ 0)
160
161 #define MUTEX_SPIN_SPLRESTORE(mtx) \
162 do { \
163 struct cpu_info *x__ci = curcpu(); \
164 int s = x__ci->ci_mtx_oldspl; \
165 __insn_barrier(); \
166 if (++(x__ci->ci_mtx_count) == 0) \
167 splx(s); \
168 } while (/* CONSTCOND */ 0)
169
170 /*
171 * Memory barriers.
172 */
173 #ifdef __HAVE_ATOMIC_AS_MEMBAR
174 #define MUTEX_MEMBAR_ENTER()
175 #define MUTEX_MEMBAR_EXIT()
176 #else
177 #define MUTEX_MEMBAR_ENTER() membar_enter()
178 #define MUTEX_MEMBAR_EXIT() membar_exit()
179 #endif
180
181 /*
182 * For architectures that provide 'simple' mutexes: they provide a
183 * CAS function that is either MP-safe, or does not need to be MP
184 * safe. Adaptive mutexes on these architectures do not require an
185 * additional interlock.
186 */
187
188 #ifdef __HAVE_SIMPLE_MUTEXES
189
190 #define MUTEX_OWNER(owner) \
191 (owner & MUTEX_THREAD)
192 #define MUTEX_HAS_WAITERS(mtx) \
193 (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
194
195 #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
196 do { \
197 if (!dodebug) \
198 (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
199 } while (/* CONSTCOND */ 0)
200
201 #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
202 do { \
203 (mtx)->mtx_owner = MUTEX_BIT_SPIN; \
204 if (!dodebug) \
205 (mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
206 MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
207 MUTEX_SPINBIT_LOCK_INIT((mtx)); \
208 } while (/* CONSTCOND */ 0)
209
210 #define MUTEX_DESTROY(mtx) \
211 do { \
212 (mtx)->mtx_owner = MUTEX_THREAD; \
213 } while (/* CONSTCOND */ 0)
214
215 #define MUTEX_SPIN_P(mtx) \
216 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0)
217 #define MUTEX_ADAPTIVE_P(mtx) \
218 (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0)
219
220 #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
221 #if defined(LOCKDEBUG)
222 #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
223 #define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
224 #else /* defined(LOCKDEBUG) */
225 #define MUTEX_OWNED(owner) ((owner) != 0)
226 #define MUTEX_INHERITDEBUG(n, o) /* nothing */
227 #endif /* defined(LOCKDEBUG) */
228
229 static inline int
230 MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
231 {
232 int rv;
233 uintptr_t oldown = 0;
234 uintptr_t newown = curthread;
235
236 MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
237 MUTEX_INHERITDEBUG(newown, oldown);
238 rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
239 MUTEX_MEMBAR_ENTER();
240 return rv;
241 }
242
243 static inline int
244 MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
245 {
246 int rv;
247 rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
248 MUTEX_MEMBAR_ENTER();
249 return rv;
250 }
251
252 static inline void
253 MUTEX_RELEASE(kmutex_t *mtx)
254 {
255 uintptr_t newown;
256
257 MUTEX_MEMBAR_EXIT();
258 newown = 0;
259 MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
260 mtx->mtx_owner = newown;
261 }
262 #endif /* __HAVE_SIMPLE_MUTEXES */
263
264 /*
265 * Patch in stubs via strong alias where they are not available.
266 */
267
268 #if defined(LOCKDEBUG)
269 #undef __HAVE_MUTEX_STUBS
270 #undef __HAVE_SPIN_MUTEX_STUBS
271 #endif
272
273 #ifndef __HAVE_MUTEX_STUBS
274 __strong_alias(mutex_enter,mutex_vector_enter);
275 __strong_alias(mutex_exit,mutex_vector_exit);
276 #endif
277
278 #ifndef __HAVE_SPIN_MUTEX_STUBS
279 __strong_alias(mutex_spin_enter,mutex_vector_enter);
280 __strong_alias(mutex_spin_exit,mutex_vector_exit);
281 #endif
282
283 static void mutex_abort(const char *, size_t, const kmutex_t *,
284 const char *);
285 static void mutex_dump(const volatile void *, lockop_printer_t);
286
287 lockops_t mutex_spin_lockops = {
288 .lo_name = "Mutex",
289 .lo_type = LOCKOPS_SPIN,
290 .lo_dump = mutex_dump,
291 };
292
293 lockops_t mutex_adaptive_lockops = {
294 .lo_name = "Mutex",
295 .lo_type = LOCKOPS_SLEEP,
296 .lo_dump = mutex_dump,
297 };
298
299 syncobj_t mutex_syncobj = {
300 .sobj_flag = SOBJ_SLEEPQ_SORTED,
301 .sobj_unsleep = turnstile_unsleep,
302 .sobj_changepri = turnstile_changepri,
303 .sobj_lendpri = sleepq_lendpri,
304 .sobj_owner = (void *)mutex_owner,
305 };
306
307 /*
308 * mutex_dump:
309 *
310 * Dump the contents of a mutex structure.
311 */
312 static void
313 mutex_dump(const volatile void *cookie, lockop_printer_t pr)
314 {
315 const volatile kmutex_t *mtx = cookie;
316
317 pr("owner field : %#018lx wait/spin: %16d/%d\n",
318 (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx),
319 MUTEX_SPIN_P(mtx));
320 }
321
322 /*
323 * mutex_abort:
324 *
325 * Dump information about an error and panic the system. This
326 * generates a lot of machine code in the DIAGNOSTIC case, so
327 * we ask the compiler to not inline it.
328 */
329 static void __noinline
330 mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
331 {
332
333 LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx) ?
334 &mutex_spin_lockops : &mutex_adaptive_lockops), msg);
335 }
336
337 /*
338 * mutex_init:
339 *
340 * Initialize a mutex for use. Note that adaptive mutexes are in
341 * essence spin mutexes that can sleep to avoid deadlock and wasting
342 * CPU time. We can't easily provide a type of mutex that always
343 * sleeps - see comments in mutex_vector_enter() about releasing
344 * mutexes unlocked.
345 */
346 void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
347 void
348 _mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
349 uintptr_t return_address)
350 {
351 bool dodebug;
352
353 memset(mtx, 0, sizeof(*mtx));
354
355 switch (type) {
356 case MUTEX_ADAPTIVE:
357 KASSERT(ipl == IPL_NONE);
358 break;
359 case MUTEX_DEFAULT:
360 case MUTEX_DRIVER:
361 if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
362 ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
363 ipl == IPL_SOFTSERIAL) {
364 type = MUTEX_ADAPTIVE;
365 } else {
366 type = MUTEX_SPIN;
367 }
368 break;
369 default:
370 break;
371 }
372
373 switch (type) {
374 case MUTEX_NODEBUG:
375 dodebug = LOCKDEBUG_ALLOC(mtx, NULL, return_address);
376 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
377 break;
378 case MUTEX_ADAPTIVE:
379 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops,
380 return_address);
381 MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
382 break;
383 case MUTEX_SPIN:
384 dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops,
385 return_address);
386 MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
387 break;
388 default:
389 panic("mutex_init: impossible type");
390 break;
391 }
392 }
393
394 void
395 mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
396 {
397
398 _mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
399 }
400
401 /*
402 * mutex_destroy:
403 *
404 * Tear down a mutex.
405 */
406 void
407 mutex_destroy(kmutex_t *mtx)
408 {
409
410 if (MUTEX_ADAPTIVE_P(mtx)) {
411 MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) &&
412 !MUTEX_HAS_WAITERS(mtx));
413 } else {
414 MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
415 }
416
417 LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
418 MUTEX_DESTROY(mtx);
419 }
420
421 #ifdef MULTIPROCESSOR
422 /*
423 * mutex_oncpu:
424 *
425 * Return true if an adaptive mutex owner is running on a CPU in the
426 * system. If the target is waiting on the kernel big lock, then we
427 * must release it. This is necessary to avoid deadlock.
428 */
429 static bool
430 mutex_oncpu(uintptr_t owner)
431 {
432 struct cpu_info *ci;
433 lwp_t *l;
434
435 KASSERT(kpreempt_disabled());
436
437 if (!MUTEX_OWNED(owner)) {
438 return false;
439 }
440
441 /*
442 * See lwp_dtor() why dereference of the LWP pointer is safe.
443 * We must have kernel preemption disabled for that.
444 */
445 l = (lwp_t *)MUTEX_OWNER(owner);
446 ci = l->l_cpu;
447
448 if (ci && ci->ci_curlwp == l) {
449 /* Target is running; do we need to block? */
450 return (ci->ci_biglock_wanted != l);
451 }
452
453 /* Not running. It may be safe to block now. */
454 return false;
455 }
456 #endif /* MULTIPROCESSOR */
457
458 /*
459 * mutex_vector_enter:
460 *
461 * Support routine for mutex_enter() that must handle all cases. In
462 * the LOCKDEBUG case, mutex_enter() is always aliased here, even if
463 * fast-path stubs are available. If a mutex_spin_enter() stub is
464 * not available, then it is also aliased directly here.
465 */
466 void
467 mutex_vector_enter(kmutex_t *mtx)
468 {
469 uintptr_t owner, curthread;
470 turnstile_t *ts;
471 #ifdef MULTIPROCESSOR
472 u_int count;
473 #endif
474 LOCKSTAT_COUNTER(spincnt);
475 LOCKSTAT_COUNTER(slpcnt);
476 LOCKSTAT_TIMER(spintime);
477 LOCKSTAT_TIMER(slptime);
478 LOCKSTAT_FLAG(lsflag);
479
480 /*
481 * Handle spin mutexes.
482 */
483 if (MUTEX_SPIN_P(mtx)) {
484 #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
485 u_int spins = 0;
486 #endif
487 MUTEX_SPIN_SPLRAISE(mtx);
488 MUTEX_WANTLOCK(mtx);
489 #ifdef FULL
490 if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
491 MUTEX_LOCKED(mtx);
492 return;
493 }
494 #if !defined(MULTIPROCESSOR)
495 MUTEX_ABORT(mtx, "locking against myself");
496 #else /* !MULTIPROCESSOR */
497
498 LOCKSTAT_ENTER(lsflag);
499 LOCKSTAT_START_TIMER(lsflag, spintime);
500 count = SPINLOCK_BACKOFF_MIN;
501
502 /*
503 * Spin testing the lock word and do exponential backoff
504 * to reduce cache line ping-ponging between CPUs.
505 */
506 do {
507 #if MUTEX_PANIC_SKIP_SPIN
508 if (panicstr != NULL)
509 break;
510 #endif
511 while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
512 SPINLOCK_BACKOFF(count);
513 #ifdef LOCKDEBUG
514 if (SPINLOCK_SPINOUT(spins))
515 MUTEX_ABORT(mtx, "spinout");
516 #endif /* LOCKDEBUG */
517 }
518 } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
519
520 if (count != SPINLOCK_BACKOFF_MIN) {
521 LOCKSTAT_STOP_TIMER(lsflag, spintime);
522 LOCKSTAT_EVENT(lsflag, mtx,
523 LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
524 }
525 LOCKSTAT_EXIT(lsflag);
526 #endif /* !MULTIPROCESSOR */
527 #endif /* FULL */
528 MUTEX_LOCKED(mtx);
529 return;
530 }
531
532 curthread = (uintptr_t)curlwp;
533
534 MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
535 MUTEX_ASSERT(mtx, curthread != 0);
536 MUTEX_ASSERT(mtx, !cpu_intr_p());
537 MUTEX_WANTLOCK(mtx);
538
539 if (panicstr == NULL) {
540 KDASSERT(pserialize_not_in_read_section());
541 LOCKDEBUG_BARRIER(&kernel_lock, 1);
542 }
543
544 LOCKSTAT_ENTER(lsflag);
545
546 /*
547 * Adaptive mutex; spin trying to acquire the mutex. If we
548 * determine that the owner is not running on a processor,
549 * then we stop spinning, and sleep instead.
550 */
551 KPREEMPT_DISABLE(curlwp);
552 for (owner = mtx->mtx_owner;;) {
553 if (!MUTEX_OWNED(owner)) {
554 /*
555 * Mutex owner clear could mean two things:
556 *
557 * * The mutex has been released.
558 * * The owner field hasn't been set yet.
559 *
560 * Try to acquire it again. If that fails,
561 * we'll just loop again.
562 */
563 if (MUTEX_ACQUIRE(mtx, curthread))
564 break;
565 owner = mtx->mtx_owner;
566 continue;
567 }
568 #if MUTEX_PANIC_SKIP_ADAPTIVE
569 if (__predict_false(panicstr != NULL)) {
570 KPREEMPT_ENABLE(curlwp);
571 return;
572 }
573 #endif
574 if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
575 MUTEX_ABORT(mtx, "locking against myself");
576 }
577 #ifdef MULTIPROCESSOR
578 /*
579 * Check to see if the owner is running on a processor.
580 * If so, then we should just spin, as the owner will
581 * likely release the lock very soon.
582 */
583 if (mutex_oncpu(owner)) {
584 LOCKSTAT_START_TIMER(lsflag, spintime);
585 count = SPINLOCK_BACKOFF_MIN;
586 do {
587 KPREEMPT_ENABLE(curlwp);
588 SPINLOCK_BACKOFF(count);
589 KPREEMPT_DISABLE(curlwp);
590 owner = mtx->mtx_owner;
591 } while (mutex_oncpu(owner));
592 LOCKSTAT_STOP_TIMER(lsflag, spintime);
593 LOCKSTAT_COUNT(spincnt, 1);
594 if (!MUTEX_OWNED(owner))
595 continue;
596 }
597 #endif
598
599 ts = turnstile_lookup(mtx);
600
601 /*
602 * Once we have the turnstile chain interlock, mark the
603 * mutex as having waiters. If that fails, spin again:
604 * chances are that the mutex has been released.
605 */
606 if (!MUTEX_SET_WAITERS(mtx, owner)) {
607 turnstile_exit(mtx);
608 owner = mtx->mtx_owner;
609 continue;
610 }
611
612 #ifdef MULTIPROCESSOR
613 /*
614 * mutex_exit() is permitted to release the mutex without
615 * any interlocking instructions, and the following can
616 * occur as a result:
617 *
618 * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
619 * ---------------------------- ----------------------------
620 * .. acquire cache line
621 * .. test for waiters
622 * acquire cache line <- lose cache line
623 * lock cache line ..
624 * verify mutex is held ..
625 * set waiters ..
626 * unlock cache line ..
627 * lose cache line -> acquire cache line
628 * .. clear lock word, waiters
629 * return success
630 *
631 * There is another race that can occur: a third CPU could
632 * acquire the mutex as soon as it is released. Since
633 * adaptive mutexes are primarily spin mutexes, this is not
634 * something that we need to worry about too much. What we
635 * do need to ensure is that the waiters bit gets set.
636 *
637 * To allow the unlocked release, we need to make some
638 * assumptions here:
639 *
640 * o Release is the only non-atomic/unlocked operation
641 * that can be performed on the mutex. (It must still
642 * be atomic on the local CPU, e.g. in case interrupted
643 * or preempted).
644 *
645 * o At any given time, MUTEX_SET_WAITERS() can only ever
646 * be in progress on one CPU in the system - guaranteed
647 * by the turnstile chain lock.
648 *
649 * o No other operations other than MUTEX_SET_WAITERS()
650 * and release can modify a mutex with a non-zero
651 * owner field.
652 *
653 * o The result of a successful MUTEX_SET_WAITERS() call
654 * is an unbuffered write that is immediately visible
655 * to all other processors in the system.
656 *
657 * o If the holding LWP switches away, it posts a store
658 * fence before changing curlwp, ensuring that any
659 * overwrite of the mutex waiters flag by mutex_exit()
660 * completes before the modification of curlwp becomes
661 * visible to this CPU.
662 *
663 * o mi_switch() posts a store fence before setting curlwp
664 * and before resuming execution of an LWP.
665 *
666 * o _kernel_lock() posts a store fence before setting
667 * curcpu()->ci_biglock_wanted, and after clearing it.
668 * This ensures that any overwrite of the mutex waiters
669 * flag by mutex_exit() completes before the modification
670 * of ci_biglock_wanted becomes visible.
671 *
672 * We now post a read memory barrier (after setting the
673 * waiters field) and check the lock holder's status again.
674 * Some of the possible outcomes (not an exhaustive list):
675 *
676 * 1. The on-CPU check returns true: the holding LWP is
677 * running again. The lock may be released soon and
678 * we should spin. Importantly, we can't trust the
679 * value of the waiters flag.
680 *
681 * 2. The on-CPU check returns false: the holding LWP is
682 * not running. We now have the opportunity to check
683 * if mutex_exit() has blatted the modifications made
684 * by MUTEX_SET_WAITERS().
685 *
686 * 3. The on-CPU check returns false: the holding LWP may
687 * or may not be running. It has context switched at
688 * some point during our check. Again, we have the
689 * chance to see if the waiters bit is still set or
690 * has been overwritten.
691 *
692 * 4. The on-CPU check returns false: the holding LWP is
693 * running on a CPU, but wants the big lock. It's OK
694 * to check the waiters field in this case.
695 *
696 * 5. The has-waiters check fails: the mutex has been
697 * released, the waiters flag cleared and another LWP
698 * now owns the mutex.
699 *
700 * 6. The has-waiters check fails: the mutex has been
701 * released.
702 *
703 * If the waiters bit is not set it's unsafe to go asleep,
704 * as we might never be awoken.
705 */
706 if ((membar_consumer(), mutex_oncpu(owner)) ||
707 (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) {
708 turnstile_exit(mtx);
709 owner = mtx->mtx_owner;
710 continue;
711 }
712 #endif /* MULTIPROCESSOR */
713
714 LOCKSTAT_START_TIMER(lsflag, slptime);
715
716 turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
717
718 LOCKSTAT_STOP_TIMER(lsflag, slptime);
719 LOCKSTAT_COUNT(slpcnt, 1);
720
721 owner = mtx->mtx_owner;
722 }
723 KPREEMPT_ENABLE(curlwp);
724
725 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
726 slpcnt, slptime);
727 LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
728 spincnt, spintime);
729 LOCKSTAT_EXIT(lsflag);
730
731 MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
732 MUTEX_LOCKED(mtx);
733 }
734
735 /*
736 * mutex_vector_exit:
737 *
738 * Support routine for mutex_exit() that handles all cases.
739 */
740 void
741 mutex_vector_exit(kmutex_t *mtx)
742 {
743 turnstile_t *ts;
744 uintptr_t curthread;
745
746 if (MUTEX_SPIN_P(mtx)) {
747 #ifdef FULL
748 if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
749 #if MUTEX_PANIC_SKIP_SPIN
750 if (panicstr != NULL)
751 return;
752 #endif
753 MUTEX_ABORT(mtx, "exiting unheld spin mutex");
754 }
755 MUTEX_UNLOCKED(mtx);
756 MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
757 #endif
758 MUTEX_SPIN_SPLRESTORE(mtx);
759 return;
760 }
761
762 #ifdef MUTEX_PANIC_SKIP_ADAPTIVE
763 if (__predict_false((uintptr_t)panicstr | cold)) {
764 MUTEX_UNLOCKED(mtx);
765 MUTEX_RELEASE(mtx);
766 return;
767 }
768 #endif
769
770 curthread = (uintptr_t)curlwp;
771 MUTEX_DASSERT(mtx, curthread != 0);
772 MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
773 MUTEX_UNLOCKED(mtx);
774 #if !defined(LOCKDEBUG)
775 __USE(curthread);
776 #endif
777
778 #ifdef LOCKDEBUG
779 /*
780 * Avoid having to take the turnstile chain lock every time
781 * around. Raise the priority level to splhigh() in order
782 * to disable preemption and so make the following atomic.
783 */
784 {
785 int s = splhigh();
786 if (!MUTEX_HAS_WAITERS(mtx)) {
787 MUTEX_RELEASE(mtx);
788 splx(s);
789 return;
790 }
791 splx(s);
792 }
793 #endif
794
795 /*
796 * Get this lock's turnstile. This gets the interlock on
797 * the sleep queue. Once we have that, we can clear the
798 * lock. If there was no turnstile for the lock, there
799 * were no waiters remaining.
800 */
801 ts = turnstile_lookup(mtx);
802
803 if (ts == NULL) {
804 MUTEX_RELEASE(mtx);
805 turnstile_exit(mtx);
806 } else {
807 MUTEX_RELEASE(mtx);
808 turnstile_wakeup(ts, TS_WRITER_Q,
809 TS_WAITERS(ts, TS_WRITER_Q), NULL);
810 }
811 }
812
813 #ifndef __HAVE_SIMPLE_MUTEXES
814 /*
815 * mutex_wakeup:
816 *
817 * Support routine for mutex_exit() that wakes up all waiters.
818 * We assume that the mutex has been released, but it need not
819 * be.
820 */
821 void
822 mutex_wakeup(kmutex_t *mtx)
823 {
824 turnstile_t *ts;
825
826 ts = turnstile_lookup(mtx);
827 if (ts == NULL) {
828 turnstile_exit(mtx);
829 return;
830 }
831 MUTEX_CLEAR_WAITERS(mtx);
832 turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
833 }
834 #endif /* !__HAVE_SIMPLE_MUTEXES */
835
836 /*
837 * mutex_owned:
838 *
839 * Return true if the current LWP (adaptive) or CPU (spin)
840 * holds the mutex.
841 */
842 int
843 mutex_owned(const kmutex_t *mtx)
844 {
845
846 if (mtx == NULL)
847 return 0;
848 if (MUTEX_ADAPTIVE_P(mtx))
849 return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
850 #ifdef FULL
851 return MUTEX_SPINBIT_LOCKED_P(mtx);
852 #else
853 return 1;
854 #endif
855 }
856
857 /*
858 * mutex_owner:
859 *
860 * Return the current owner of an adaptive mutex. Used for
861 * priority inheritance.
862 */
863 lwp_t *
864 mutex_owner(const kmutex_t *mtx)
865 {
866
867 MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx));
868 return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
869 }
870
871 /*
872 * mutex_ownable:
873 *
874 * When compiled with DEBUG and LOCKDEBUG defined, ensure that
875 * the mutex is available. We cannot use !mutex_owned() since
876 * that won't work correctly for spin mutexes.
877 */
878 int
879 mutex_ownable(const kmutex_t *mtx)
880 {
881
882 #ifdef LOCKDEBUG
883 MUTEX_TESTLOCK(mtx);
884 #endif
885 return 1;
886 }
887
888 /*
889 * mutex_tryenter:
890 *
891 * Try to acquire the mutex; return non-zero if we did.
892 */
893 int
894 mutex_tryenter(kmutex_t *mtx)
895 {
896 uintptr_t curthread;
897
898 /*
899 * Handle spin mutexes.
900 */
901 if (MUTEX_SPIN_P(mtx)) {
902 MUTEX_SPIN_SPLRAISE(mtx);
903 #ifdef FULL
904 if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
905 MUTEX_WANTLOCK(mtx);
906 MUTEX_LOCKED(mtx);
907 return 1;
908 }
909 MUTEX_SPIN_SPLRESTORE(mtx);
910 #else
911 MUTEX_WANTLOCK(mtx);
912 MUTEX_LOCKED(mtx);
913 return 1;
914 #endif
915 } else {
916 curthread = (uintptr_t)curlwp;
917 MUTEX_ASSERT(mtx, curthread != 0);
918 if (MUTEX_ACQUIRE(mtx, curthread)) {
919 MUTEX_WANTLOCK(mtx);
920 MUTEX_LOCKED(mtx);
921 MUTEX_DASSERT(mtx,
922 MUTEX_OWNER(mtx->mtx_owner) == curthread);
923 return 1;
924 }
925 }
926
927 return 0;
928 }
929
930 #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
931 /*
932 * mutex_spin_retry:
933 *
934 * Support routine for mutex_spin_enter(). Assumes that the caller
935 * has already raised the SPL, and adjusted counters.
936 */
937 void
938 mutex_spin_retry(kmutex_t *mtx)
939 {
940 #ifdef MULTIPROCESSOR
941 u_int count;
942 LOCKSTAT_TIMER(spintime);
943 LOCKSTAT_FLAG(lsflag);
944 #ifdef LOCKDEBUG
945 u_int spins = 0;
946 #endif /* LOCKDEBUG */
947
948 MUTEX_WANTLOCK(mtx);
949
950 LOCKSTAT_ENTER(lsflag);
951 LOCKSTAT_START_TIMER(lsflag, spintime);
952 count = SPINLOCK_BACKOFF_MIN;
953
954 /*
955 * Spin testing the lock word and do exponential backoff
956 * to reduce cache line ping-ponging between CPUs.
957 */
958 do {
959 #if MUTEX_PANIC_SKIP_SPIN
960 if (panicstr != NULL)
961 break;
962 #endif
963 while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
964 SPINLOCK_BACKOFF(count);
965 #ifdef LOCKDEBUG
966 if (SPINLOCK_SPINOUT(spins))
967 MUTEX_ABORT(mtx, "spinout");
968 #endif /* LOCKDEBUG */
969 }
970 } while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
971
972 LOCKSTAT_STOP_TIMER(lsflag, spintime);
973 LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
974 LOCKSTAT_EXIT(lsflag);
975
976 MUTEX_LOCKED(mtx);
977 #else /* MULTIPROCESSOR */
978 MUTEX_ABORT(mtx, "locking against myself");
979 #endif /* MULTIPROCESSOR */
980 }
981 #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
982