Home | History | Annotate | Line # | Download | only in kern
      1  1.64  riastrad /*	$NetBSD: kern_ntptime.c,v 1.64 2022/10/26 23:23:52 riastradh Exp $	*/
      2  1.48        ad 
      3  1.48        ad /*-
      4  1.48        ad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.48        ad  * All rights reserved.
      6  1.48        ad  *
      7  1.48        ad  * Redistribution and use in source and binary forms, with or without
      8  1.48        ad  * modification, are permitted provided that the following conditions
      9  1.48        ad  * are met:
     10  1.48        ad  * 1. Redistributions of source code must retain the above copyright
     11  1.48        ad  *    notice, this list of conditions and the following disclaimer.
     12  1.48        ad  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.48        ad  *    notice, this list of conditions and the following disclaimer in the
     14  1.48        ad  *    documentation and/or other materials provided with the distribution.
     15  1.48        ad  *
     16  1.48        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  1.48        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  1.48        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  1.48        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  1.48        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  1.48        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  1.48        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  1.48        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  1.48        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  1.48        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  1.48        ad  * POSSIBILITY OF SUCH DAMAGE.
     27  1.48        ad  */
     28  1.33    kardel 
     29  1.33    kardel /*-
     30  1.33    kardel  ***********************************************************************
     31  1.33    kardel  *								       *
     32  1.33    kardel  * Copyright (c) David L. Mills 1993-2001			       *
     33  1.33    kardel  *								       *
     34  1.33    kardel  * Permission to use, copy, modify, and distribute this software and   *
     35  1.33    kardel  * its documentation for any purpose and without fee is hereby	       *
     36  1.33    kardel  * granted, provided that the above copyright notice appears in all    *
     37  1.33    kardel  * copies and that both the copyright notice and this permission       *
     38  1.33    kardel  * notice appear in supporting documentation, and that the name	       *
     39  1.33    kardel  * University of Delaware not be used in advertising or publicity      *
     40  1.33    kardel  * pertaining to distribution of the software without specific,	       *
     41  1.33    kardel  * written prior permission. The University of Delaware makes no       *
     42  1.33    kardel  * representations about the suitability this software for any	       *
     43  1.33    kardel  * purpose. It is provided "as is" without express or implied	       *
     44  1.33    kardel  * warranty.							       *
     45  1.33    kardel  *								       *
     46  1.33    kardel  **********************************************************************/
     47   1.1  jonathan 
     48  1.33    kardel /*
     49  1.33    kardel  * Adapted from the original sources for FreeBSD and timecounters by:
     50  1.33    kardel  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     51  1.33    kardel  *
     52  1.33    kardel  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     53  1.33    kardel  * date so I have retained only the 64bit version and included it directly
     54  1.33    kardel  * in this file.
     55  1.33    kardel  *
     56  1.33    kardel  * Only minor changes done to interface with the timecounters over in
     57  1.33    kardel  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     58  1.33    kardel  * confusing and/or plain wrong in that context.
     59  1.33    kardel  */
     60  1.33    kardel 
     61  1.33    kardel #include <sys/cdefs.h>
     62  1.33    kardel /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     63  1.64  riastrad __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.64 2022/10/26 23:23:52 riastradh Exp $");
     64  1.33    kardel 
     65  1.54     pooka #ifdef _KERNEL_OPT
     66  1.33    kardel #include "opt_ntp.h"
     67  1.54     pooka #endif
     68  1.33    kardel 
     69  1.33    kardel #include <sys/param.h>
     70  1.33    kardel #include <sys/resourcevar.h>
     71  1.33    kardel #include <sys/systm.h>
     72  1.33    kardel #include <sys/kernel.h>
     73  1.33    kardel #include <sys/proc.h>
     74  1.33    kardel #include <sys/sysctl.h>
     75  1.33    kardel #include <sys/timex.h>
     76  1.33    kardel #include <sys/vnode.h>
     77  1.33    kardel #include <sys/kauth.h>
     78  1.33    kardel #include <sys/mount.h>
     79  1.33    kardel #include <sys/syscallargs.h>
     80  1.48        ad #include <sys/cpu.h>
     81  1.33    kardel 
     82  1.48        ad #include <compat/sys/timex.h>
     83  1.33    kardel 
     84  1.33    kardel /*
     85  1.33    kardel  * Single-precision macros for 64-bit machines
     86  1.33    kardel  */
     87  1.33    kardel typedef int64_t l_fp;
     88  1.33    kardel #define L_ADD(v, u)	((v) += (u))
     89  1.33    kardel #define L_SUB(v, u)	((v) -= (u))
     90  1.33    kardel #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     91  1.33    kardel #define L_NEG(v)	((v) = -(v))
     92  1.33    kardel #define L_RSHIFT(v, n) \
     93  1.33    kardel 	do { \
     94  1.33    kardel 		if ((v) < 0) \
     95  1.33    kardel 			(v) = -(-(v) >> (n)); \
     96  1.33    kardel 		else \
     97  1.33    kardel 			(v) = (v) >> (n); \
     98  1.33    kardel 	} while (0)
     99  1.33    kardel #define L_MPY(v, a)	((v) *= (a))
    100  1.33    kardel #define L_CLR(v)	((v) = 0)
    101  1.33    kardel #define L_ISNEG(v)	((v) < 0)
    102  1.57     joerg #define L_LINT(v, a)	((v) = (int64_t)((uint64_t)(a) << 32))
    103  1.33    kardel #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
    104  1.33    kardel 
    105  1.33    kardel #ifdef NTP
    106  1.33    kardel /*
    107  1.33    kardel  * Generic NTP kernel interface
    108  1.33    kardel  *
    109  1.33    kardel  * These routines constitute the Network Time Protocol (NTP) interfaces
    110  1.33    kardel  * for user and daemon application programs. The ntp_gettime() routine
    111  1.33    kardel  * provides the time, maximum error (synch distance) and estimated error
    112  1.33    kardel  * (dispersion) to client user application programs. The ntp_adjtime()
    113  1.33    kardel  * routine is used by the NTP daemon to adjust the system clock to an
    114  1.33    kardel  * externally derived time. The time offset and related variables set by
    115  1.33    kardel  * this routine are used by other routines in this module to adjust the
    116  1.33    kardel  * phase and frequency of the clock discipline loop which controls the
    117  1.33    kardel  * system clock.
    118  1.33    kardel  *
    119  1.33    kardel  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
    120  1.33    kardel  * defined), the time at each tick interrupt is derived directly from
    121  1.33    kardel  * the kernel time variable. When the kernel time is reckoned in
    122  1.33    kardel  * microseconds, (NTP_NANO undefined), the time is derived from the
    123  1.33    kardel  * kernel time variable together with a variable representing the
    124  1.33    kardel  * leftover nanoseconds at the last tick interrupt. In either case, the
    125  1.33    kardel  * current nanosecond time is reckoned from these values plus an
    126  1.33    kardel  * interpolated value derived by the clock routines in another
    127  1.33    kardel  * architecture-specific module. The interpolation can use either a
    128  1.33    kardel  * dedicated counter or a processor cycle counter (PCC) implemented in
    129  1.33    kardel  * some architectures.
    130  1.33    kardel  *
    131  1.33    kardel  * Note that all routines must run at priority splclock or higher.
    132  1.33    kardel  */
    133  1.33    kardel /*
    134  1.33    kardel  * Phase/frequency-lock loop (PLL/FLL) definitions
    135  1.33    kardel  *
    136  1.33    kardel  * The nanosecond clock discipline uses two variable types, time
    137  1.33    kardel  * variables and frequency variables. Both types are represented as 64-
    138  1.33    kardel  * bit fixed-point quantities with the decimal point between two 32-bit
    139  1.33    kardel  * halves. On a 32-bit machine, each half is represented as a single
    140  1.33    kardel  * word and mathematical operations are done using multiple-precision
    141  1.33    kardel  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    142  1.33    kardel  * used.
    143  1.33    kardel  *
    144  1.33    kardel  * A time variable is a signed 64-bit fixed-point number in ns and
    145  1.33    kardel  * fraction. It represents the remaining time offset to be amortized
    146  1.33    kardel  * over succeeding tick interrupts. The maximum time offset is about
    147  1.33    kardel  * 0.5 s and the resolution is about 2.3e-10 ns.
    148  1.33    kardel  *
    149  1.33    kardel  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    150  1.33    kardel  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    151  1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    152  1.33    kardel  * |s s s|			 ns				   |
    153  1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    154  1.33    kardel  * |			    fraction				   |
    155  1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    156  1.33    kardel  *
    157  1.33    kardel  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    158  1.33    kardel  * and fraction. It represents the ns and fraction to be added to the
    159  1.33    kardel  * kernel time variable at each second. The maximum frequency offset is
    160  1.33    kardel  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    161  1.33    kardel  *
    162  1.33    kardel  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    163  1.33    kardel  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    164  1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    165  1.33    kardel  * |s s s s s s s s s s s s s|	          ns/s			   |
    166  1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    167  1.33    kardel  * |			    fraction				   |
    168  1.33    kardel  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    169  1.33    kardel  */
    170  1.33    kardel /*
    171  1.33    kardel  * The following variables establish the state of the PLL/FLL and the
    172  1.33    kardel  * residual time and frequency offset of the local clock.
    173  1.33    kardel  */
    174  1.33    kardel #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    175  1.33    kardel #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    176  1.33    kardel 
    177  1.33    kardel static int time_state = TIME_OK;	/* clock state */
    178  1.33    kardel static int time_status = STA_UNSYNC;	/* clock status bits */
    179  1.33    kardel static long time_tai;			/* TAI offset (s) */
    180  1.33    kardel static long time_monitor;		/* last time offset scaled (ns) */
    181  1.33    kardel static long time_constant;		/* poll interval (shift) (s) */
    182  1.33    kardel static long time_precision = 1;		/* clock precision (ns) */
    183  1.33    kardel static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    184  1.33    kardel static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    185  1.53   tsutsui static time_t time_reftime;		/* time at last adjustment (s) */
    186  1.33    kardel static l_fp time_offset;		/* time offset (ns) */
    187  1.33    kardel static l_fp time_freq;			/* frequency offset (ns/s) */
    188  1.33    kardel #endif /* NTP */
    189  1.33    kardel 
    190  1.33    kardel static l_fp time_adj;			/* tick adjust (ns/s) */
    191  1.33    kardel int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    192  1.33    kardel 
    193  1.33    kardel #ifdef NTP
    194  1.33    kardel #ifdef PPS_SYNC
    195  1.33    kardel /*
    196  1.33    kardel  * The following variables are used when a pulse-per-second (PPS) signal
    197  1.33    kardel  * is available and connected via a modem control lead. They establish
    198  1.33    kardel  * the engineering parameters of the clock discipline loop when
    199  1.33    kardel  * controlled by the PPS signal.
    200  1.33    kardel  */
    201  1.33    kardel #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    202  1.33    kardel #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    203  1.33    kardel #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    204  1.33    kardel #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    205  1.33    kardel #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    206  1.33    kardel #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    207  1.33    kardel #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    208  1.33    kardel 
    209  1.33    kardel static struct timespec pps_tf[3];	/* phase median filter */
    210  1.33    kardel static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    211  1.33    kardel static long pps_fcount;			/* frequency accumulator */
    212  1.33    kardel static long pps_jitter;			/* nominal jitter (ns) */
    213  1.33    kardel static long pps_stabil;			/* nominal stability (scaled ns/s) */
    214  1.33    kardel static long pps_lastsec;		/* time at last calibration (s) */
    215  1.33    kardel static int pps_valid;			/* signal watchdog counter */
    216  1.33    kardel static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    217  1.33    kardel static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    218  1.33    kardel static int pps_intcnt;			/* wander counter */
    219  1.33    kardel 
    220  1.33    kardel /*
    221  1.33    kardel  * PPS signal quality monitors
    222  1.33    kardel  */
    223  1.33    kardel static long pps_calcnt;			/* calibration intervals */
    224  1.33    kardel static long pps_jitcnt;			/* jitter limit exceeded */
    225  1.33    kardel static long pps_stbcnt;			/* stability limit exceeded */
    226  1.33    kardel static long pps_errcnt;			/* calibration errors */
    227  1.33    kardel #endif /* PPS_SYNC */
    228  1.33    kardel /*
    229  1.33    kardel  * End of phase/frequency-lock loop (PLL/FLL) definitions
    230  1.33    kardel  */
    231  1.33    kardel 
    232  1.33    kardel static void hardupdate(long offset);
    233  1.33    kardel 
    234  1.33    kardel /*
    235  1.33    kardel  * ntp_gettime() - NTP user application interface
    236  1.33    kardel  */
    237  1.33    kardel void
    238  1.45       dsl ntp_gettime(struct ntptimeval *ntv)
    239  1.33    kardel {
    240  1.60  christos 	memset(ntv, 0, sizeof(*ntv));
    241  1.48        ad 
    242  1.48        ad 	mutex_spin_enter(&timecounter_lock);
    243  1.33    kardel 	nanotime(&ntv->time);
    244  1.33    kardel 	ntv->maxerror = time_maxerror;
    245  1.33    kardel 	ntv->esterror = time_esterror;
    246  1.33    kardel 	ntv->tai = time_tai;
    247  1.33    kardel 	ntv->time_state = time_state;
    248  1.48        ad 	mutex_spin_exit(&timecounter_lock);
    249  1.33    kardel }
    250  1.33    kardel 
    251  1.33    kardel /* ARGSUSED */
    252  1.33    kardel /*
    253  1.33    kardel  * ntp_adjtime() - NTP daemon application interface
    254  1.33    kardel  */
    255  1.33    kardel int
    256  1.45       dsl sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    257  1.33    kardel {
    258  1.45       dsl 	/* {
    259  1.33    kardel 		syscallarg(struct timex *) tp;
    260  1.45       dsl 	} */
    261  1.33    kardel 	struct timex ntv;
    262  1.56      maxv 	int error;
    263  1.33    kardel 
    264  1.43  christos 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
    265  1.35        ad 	if (error != 0)
    266  1.33    kardel 		return (error);
    267  1.33    kardel 
    268  1.37      elad 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
    269  1.37      elad 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
    270  1.36      elad 	    NULL, NULL)) != 0)
    271  1.33    kardel 		return (error);
    272  1.33    kardel 
    273  1.33    kardel 	ntp_adjtime1(&ntv);
    274  1.33    kardel 
    275  1.43  christos 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
    276  1.35        ad 	if (!error)
    277  1.33    kardel 		*retval = ntp_timestatus();
    278  1.35        ad 
    279  1.33    kardel 	return error;
    280  1.33    kardel }
    281  1.33    kardel 
    282  1.33    kardel void
    283  1.45       dsl ntp_adjtime1(struct timex *ntv)
    284  1.33    kardel {
    285  1.33    kardel 	long freq;
    286  1.33    kardel 	int modes;
    287  1.33    kardel 
    288  1.33    kardel 	/*
    289  1.33    kardel 	 * Update selected clock variables - only the superuser can
    290  1.33    kardel 	 * change anything. Note that there is no error checking here on
    291  1.33    kardel 	 * the assumption the superuser should know what it is doing.
    292  1.33    kardel 	 * Note that either the time constant or TAI offset are loaded
    293  1.33    kardel 	 * from the ntv.constant member, depending on the mode bits. If
    294  1.33    kardel 	 * the STA_PLL bit in the status word is cleared, the state and
    295  1.33    kardel 	 * status words are reset to the initial values at boot.
    296  1.33    kardel 	 */
    297  1.48        ad 	mutex_spin_enter(&timecounter_lock);
    298  1.33    kardel 	modes = ntv->modes;
    299  1.33    kardel 	if (modes != 0)
    300  1.33    kardel 		/* We need to save the system time during shutdown */
    301  1.33    kardel 		time_adjusted |= 2;
    302  1.33    kardel 	if (modes & MOD_MAXERROR)
    303  1.33    kardel 		time_maxerror = ntv->maxerror;
    304  1.33    kardel 	if (modes & MOD_ESTERROR)
    305  1.33    kardel 		time_esterror = ntv->esterror;
    306  1.33    kardel 	if (modes & MOD_STATUS) {
    307  1.33    kardel 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    308  1.33    kardel 			time_state = TIME_OK;
    309  1.33    kardel 			time_status = STA_UNSYNC;
    310  1.33    kardel #ifdef PPS_SYNC
    311  1.33    kardel 			pps_shift = PPS_FAVG;
    312  1.33    kardel #endif /* PPS_SYNC */
    313  1.33    kardel 		}
    314  1.33    kardel 		time_status &= STA_RONLY;
    315  1.33    kardel 		time_status |= ntv->status & ~STA_RONLY;
    316  1.33    kardel 	}
    317  1.33    kardel 	if (modes & MOD_TIMECONST) {
    318  1.33    kardel 		if (ntv->constant < 0)
    319  1.33    kardel 			time_constant = 0;
    320  1.33    kardel 		else if (ntv->constant > MAXTC)
    321  1.33    kardel 			time_constant = MAXTC;
    322  1.33    kardel 		else
    323  1.33    kardel 			time_constant = ntv->constant;
    324  1.33    kardel 	}
    325  1.33    kardel 	if (modes & MOD_TAI) {
    326  1.33    kardel 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    327  1.33    kardel 			time_tai = ntv->constant;
    328  1.33    kardel 	}
    329  1.33    kardel #ifdef PPS_SYNC
    330  1.33    kardel 	if (modes & MOD_PPSMAX) {
    331  1.33    kardel 		if (ntv->shift < PPS_FAVG)
    332  1.33    kardel 			pps_shiftmax = PPS_FAVG;
    333  1.33    kardel 		else if (ntv->shift > PPS_FAVGMAX)
    334  1.33    kardel 			pps_shiftmax = PPS_FAVGMAX;
    335  1.33    kardel 		else
    336  1.33    kardel 			pps_shiftmax = ntv->shift;
    337  1.33    kardel 	}
    338  1.33    kardel #endif /* PPS_SYNC */
    339  1.33    kardel 	if (modes & MOD_NANO)
    340  1.33    kardel 		time_status |= STA_NANO;
    341  1.33    kardel 	if (modes & MOD_MICRO)
    342  1.33    kardel 		time_status &= ~STA_NANO;
    343  1.33    kardel 	if (modes & MOD_CLKB)
    344  1.33    kardel 		time_status |= STA_CLK;
    345  1.33    kardel 	if (modes & MOD_CLKA)
    346  1.33    kardel 		time_status &= ~STA_CLK;
    347  1.33    kardel 	if (modes & MOD_FREQUENCY) {
    348  1.61  riastrad 		freq = MIN(INT32_MAX, MAX(INT32_MIN, ntv->freq));
    349  1.61  riastrad 		freq = (freq * (int64_t)1000) >> 16;
    350  1.33    kardel 		if (freq > MAXFREQ)
    351  1.33    kardel 			L_LINT(time_freq, MAXFREQ);
    352  1.33    kardel 		else if (freq < -MAXFREQ)
    353  1.33    kardel 			L_LINT(time_freq, -MAXFREQ);
    354  1.33    kardel 		else {
    355  1.33    kardel 			/*
    356  1.33    kardel 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    357  1.33    kardel 			 * time_freq is [ns/s * 2^32]
    358  1.33    kardel 			 */
    359  1.33    kardel 			time_freq = ntv->freq * 1000LL * 65536LL;
    360  1.33    kardel 		}
    361  1.33    kardel #ifdef PPS_SYNC
    362  1.33    kardel 		pps_freq = time_freq;
    363  1.33    kardel #endif /* PPS_SYNC */
    364  1.33    kardel 	}
    365  1.33    kardel 	if (modes & MOD_OFFSET) {
    366  1.62  riastrad 		if (time_status & STA_NANO) {
    367  1.33    kardel 			hardupdate(ntv->offset);
    368  1.62  riastrad 		} else {
    369  1.62  riastrad 			long offset = ntv->offset;
    370  1.62  riastrad 			offset = MIN(offset, MAXPHASE/1000);
    371  1.62  riastrad 			offset = MAX(offset, -MAXPHASE/1000);
    372  1.62  riastrad 			hardupdate(offset * 1000);
    373  1.62  riastrad 		}
    374  1.33    kardel 	}
    375  1.33    kardel 
    376  1.33    kardel 	/*
    377  1.33    kardel 	 * Retrieve all clock variables. Note that the TAI offset is
    378  1.33    kardel 	 * returned only by ntp_gettime();
    379  1.33    kardel 	 */
    380  1.33    kardel 	if (time_status & STA_NANO)
    381  1.33    kardel 		ntv->offset = L_GINT(time_offset);
    382  1.33    kardel 	else
    383  1.33    kardel 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    384  1.63  riastrad 	if (time_freq < 0)
    385  1.63  riastrad 		ntv->freq = L_GINT(-((-time_freq / 1000LL) << 16));
    386  1.63  riastrad 	else
    387  1.63  riastrad 		ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    388  1.33    kardel 	ntv->maxerror = time_maxerror;
    389  1.33    kardel 	ntv->esterror = time_esterror;
    390  1.33    kardel 	ntv->status = time_status;
    391  1.33    kardel 	ntv->constant = time_constant;
    392  1.33    kardel 	if (time_status & STA_NANO)
    393  1.33    kardel 		ntv->precision = time_precision;
    394  1.33    kardel 	else
    395  1.33    kardel 		ntv->precision = time_precision / 1000;
    396  1.33    kardel 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    397  1.33    kardel #ifdef PPS_SYNC
    398  1.33    kardel 	ntv->shift = pps_shift;
    399  1.33    kardel 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    400  1.33    kardel 	if (time_status & STA_NANO)
    401  1.33    kardel 		ntv->jitter = pps_jitter;
    402  1.33    kardel 	else
    403  1.33    kardel 		ntv->jitter = pps_jitter / 1000;
    404  1.33    kardel 	ntv->stabil = pps_stabil;
    405  1.33    kardel 	ntv->calcnt = pps_calcnt;
    406  1.33    kardel 	ntv->errcnt = pps_errcnt;
    407  1.33    kardel 	ntv->jitcnt = pps_jitcnt;
    408  1.33    kardel 	ntv->stbcnt = pps_stbcnt;
    409  1.33    kardel #endif /* PPS_SYNC */
    410  1.48        ad 	mutex_spin_exit(&timecounter_lock);
    411  1.33    kardel }
    412  1.33    kardel #endif /* NTP */
    413  1.33    kardel 
    414  1.33    kardel /*
    415  1.33    kardel  * second_overflow() - called after ntp_tick_adjust()
    416  1.33    kardel  *
    417  1.33    kardel  * This routine is ordinarily called immediately following the above
    418  1.33    kardel  * routine ntp_tick_adjust(). While these two routines are normally
    419  1.33    kardel  * combined, they are separated here only for the purposes of
    420  1.33    kardel  * simulation.
    421  1.33    kardel  */
    422  1.33    kardel void
    423  1.33    kardel ntp_update_second(int64_t *adjustment, time_t *newsec)
    424  1.33    kardel {
    425  1.33    kardel 	int tickrate;
    426  1.33    kardel 	l_fp ftemp;		/* 32/64-bit temporary */
    427  1.33    kardel 
    428  1.59  riastrad 	KASSERT(mutex_owned(&timecounter_lock));
    429  1.48        ad 
    430  1.33    kardel #ifdef NTP
    431  1.33    kardel 
    432  1.33    kardel 	/*
    433  1.33    kardel 	 * On rollover of the second both the nanosecond and microsecond
    434  1.33    kardel 	 * clocks are updated and the state machine cranked as
    435  1.33    kardel 	 * necessary. The phase adjustment to be used for the next
    436  1.33    kardel 	 * second is calculated and the maximum error is increased by
    437  1.33    kardel 	 * the tolerance.
    438  1.33    kardel 	 */
    439  1.33    kardel 	time_maxerror += MAXFREQ / 1000;
    440  1.33    kardel 
    441  1.33    kardel 	/*
    442  1.33    kardel 	 * Leap second processing. If in leap-insert state at
    443  1.33    kardel 	 * the end of the day, the system clock is set back one
    444  1.33    kardel 	 * second; if in leap-delete state, the system clock is
    445  1.33    kardel 	 * set ahead one second. The nano_time() routine or
    446  1.33    kardel 	 * external clock driver will insure that reported time
    447  1.33    kardel 	 * is always monotonic.
    448  1.33    kardel 	 */
    449  1.33    kardel 	switch (time_state) {
    450  1.33    kardel 
    451  1.33    kardel 		/*
    452  1.33    kardel 		 * No warning.
    453  1.33    kardel 		 */
    454  1.33    kardel 		case TIME_OK:
    455  1.33    kardel 		if (time_status & STA_INS)
    456  1.33    kardel 			time_state = TIME_INS;
    457  1.33    kardel 		else if (time_status & STA_DEL)
    458  1.33    kardel 			time_state = TIME_DEL;
    459  1.33    kardel 		break;
    460  1.33    kardel 
    461  1.33    kardel 		/*
    462  1.33    kardel 		 * Insert second 23:59:60 following second
    463  1.33    kardel 		 * 23:59:59.
    464  1.33    kardel 		 */
    465  1.33    kardel 		case TIME_INS:
    466  1.33    kardel 		if (!(time_status & STA_INS))
    467  1.33    kardel 			time_state = TIME_OK;
    468  1.33    kardel 		else if ((*newsec) % 86400 == 0) {
    469  1.33    kardel 			(*newsec)--;
    470  1.33    kardel 			time_state = TIME_OOP;
    471  1.33    kardel 			time_tai++;
    472  1.33    kardel 		}
    473  1.33    kardel 		break;
    474  1.33    kardel 
    475  1.33    kardel 		/*
    476  1.33    kardel 		 * Delete second 23:59:59.
    477  1.33    kardel 		 */
    478  1.33    kardel 		case TIME_DEL:
    479  1.33    kardel 		if (!(time_status & STA_DEL))
    480  1.33    kardel 			time_state = TIME_OK;
    481  1.33    kardel 		else if (((*newsec) + 1) % 86400 == 0) {
    482  1.33    kardel 			(*newsec)++;
    483  1.33    kardel 			time_tai--;
    484  1.33    kardel 			time_state = TIME_WAIT;
    485  1.33    kardel 		}
    486  1.33    kardel 		break;
    487  1.33    kardel 
    488  1.33    kardel 		/*
    489  1.33    kardel 		 * Insert second in progress.
    490  1.33    kardel 		 */
    491  1.33    kardel 		case TIME_OOP:
    492  1.33    kardel 			time_state = TIME_WAIT;
    493  1.33    kardel 		break;
    494  1.33    kardel 
    495  1.33    kardel 		/*
    496  1.33    kardel 		 * Wait for status bits to clear.
    497  1.33    kardel 		 */
    498  1.33    kardel 		case TIME_WAIT:
    499  1.33    kardel 		if (!(time_status & (STA_INS | STA_DEL)))
    500  1.33    kardel 			time_state = TIME_OK;
    501  1.33    kardel 	}
    502  1.33    kardel 
    503  1.33    kardel 	/*
    504  1.33    kardel 	 * Compute the total time adjustment for the next second
    505  1.33    kardel 	 * in ns. The offset is reduced by a factor depending on
    506  1.33    kardel 	 * whether the PPS signal is operating. Note that the
    507  1.33    kardel 	 * value is in effect scaled by the clock frequency,
    508  1.33    kardel 	 * since the adjustment is added at each tick interrupt.
    509  1.33    kardel 	 */
    510  1.33    kardel 	ftemp = time_offset;
    511  1.33    kardel #ifdef PPS_SYNC
    512  1.33    kardel 	/* XXX even if PPS signal dies we should finish adjustment ? */
    513  1.33    kardel 	if (time_status & STA_PPSTIME && time_status &
    514  1.33    kardel 	    STA_PPSSIGNAL)
    515  1.33    kardel 		L_RSHIFT(ftemp, pps_shift);
    516  1.33    kardel 	else
    517  1.33    kardel 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    518  1.33    kardel #else
    519  1.33    kardel 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    520  1.33    kardel #endif /* PPS_SYNC */
    521  1.33    kardel 	time_adj = ftemp;
    522  1.33    kardel 	L_SUB(time_offset, ftemp);
    523  1.33    kardel 	L_ADD(time_adj, time_freq);
    524  1.33    kardel 
    525  1.33    kardel #ifdef PPS_SYNC
    526  1.33    kardel 	if (pps_valid > 0)
    527  1.33    kardel 		pps_valid--;
    528  1.33    kardel 	else
    529  1.33    kardel 		time_status &= ~STA_PPSSIGNAL;
    530  1.33    kardel #endif /* PPS_SYNC */
    531  1.34    kardel #else  /* !NTP */
    532  1.34    kardel 	L_CLR(time_adj);
    533  1.34    kardel #endif /* !NTP */
    534  1.33    kardel 
    535  1.33    kardel 	/*
    536  1.33    kardel 	 * Apply any correction from adjtime(2).  If more than one second
    537  1.33    kardel 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    538  1.33    kardel 	 * until the last second is slewed the final < 500 usecs.
    539  1.33    kardel 	 */
    540  1.33    kardel 	if (time_adjtime != 0) {
    541  1.33    kardel 		if (time_adjtime > 1000000)
    542  1.33    kardel 			tickrate = 5000;
    543  1.33    kardel 		else if (time_adjtime < -1000000)
    544  1.33    kardel 			tickrate = -5000;
    545  1.33    kardel 		else if (time_adjtime > 500)
    546  1.33    kardel 			tickrate = 500;
    547  1.33    kardel 		else if (time_adjtime < -500)
    548  1.33    kardel 			tickrate = -500;
    549  1.33    kardel 		else
    550  1.33    kardel 			tickrate = time_adjtime;
    551  1.33    kardel 		time_adjtime -= tickrate;
    552  1.33    kardel 		L_LINT(ftemp, tickrate * 1000);
    553  1.33    kardel 		L_ADD(time_adj, ftemp);
    554  1.33    kardel 	}
    555  1.33    kardel 	*adjustment = time_adj;
    556  1.33    kardel }
    557  1.33    kardel 
    558  1.33    kardel /*
    559  1.33    kardel  * ntp_init() - initialize variables and structures
    560  1.33    kardel  *
    561  1.33    kardel  * This routine must be called after the kernel variables hz and tick
    562  1.33    kardel  * are set or changed and before the next tick interrupt. In this
    563  1.33    kardel  * particular implementation, these values are assumed set elsewhere in
    564  1.33    kardel  * the kernel. The design allows the clock frequency and tick interval
    565  1.33    kardel  * to be changed while the system is running. So, this routine should
    566  1.33    kardel  * probably be integrated with the code that does that.
    567  1.33    kardel  */
    568  1.33    kardel void
    569  1.33    kardel ntp_init(void)
    570  1.33    kardel {
    571  1.33    kardel 
    572  1.33    kardel 	/*
    573  1.33    kardel 	 * The following variables are initialized only at startup. Only
    574  1.33    kardel 	 * those structures not cleared by the compiler need to be
    575  1.33    kardel 	 * initialized, and these only in the simulator. In the actual
    576  1.33    kardel 	 * kernel, any nonzero values here will quickly evaporate.
    577  1.33    kardel 	 */
    578  1.33    kardel 	L_CLR(time_adj);
    579  1.33    kardel #ifdef NTP
    580  1.33    kardel 	L_CLR(time_offset);
    581  1.33    kardel 	L_CLR(time_freq);
    582  1.33    kardel #ifdef PPS_SYNC
    583  1.33    kardel 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    584  1.33    kardel 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    585  1.33    kardel 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    586  1.33    kardel 	pps_fcount = 0;
    587  1.33    kardel 	L_CLR(pps_freq);
    588  1.33    kardel #endif /* PPS_SYNC */
    589  1.33    kardel #endif
    590  1.33    kardel }
    591  1.33    kardel 
    592  1.33    kardel #ifdef NTP
    593  1.33    kardel /*
    594  1.33    kardel  * hardupdate() - local clock update
    595  1.33    kardel  *
    596  1.33    kardel  * This routine is called by ntp_adjtime() to update the local clock
    597  1.33    kardel  * phase and frequency. The implementation is of an adaptive-parameter,
    598  1.33    kardel  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    599  1.33    kardel  * time and frequency offset estimates for each call. If the kernel PPS
    600  1.33    kardel  * discipline code is configured (PPS_SYNC), the PPS signal itself
    601  1.33    kardel  * determines the new time offset, instead of the calling argument.
    602  1.33    kardel  * Presumably, calls to ntp_adjtime() occur only when the caller
    603  1.33    kardel  * believes the local clock is valid within some bound (+-128 ms with
    604  1.33    kardel  * NTP). If the caller's time is far different than the PPS time, an
    605  1.33    kardel  * argument will ensue, and it's not clear who will lose.
    606  1.33    kardel  *
    607  1.33    kardel  * For uncompensated quartz crystal oscillators and nominal update
    608  1.33    kardel  * intervals less than 256 s, operation should be in phase-lock mode,
    609  1.33    kardel  * where the loop is disciplined to phase. For update intervals greater
    610  1.33    kardel  * than 1024 s, operation should be in frequency-lock mode, where the
    611  1.33    kardel  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    612  1.33    kardel  * is selected by the STA_MODE status bit.
    613  1.33    kardel  *
    614  1.33    kardel  * Note: splclock() is in effect.
    615  1.33    kardel  */
    616  1.33    kardel void
    617  1.33    kardel hardupdate(long offset)
    618  1.33    kardel {
    619  1.33    kardel 	long mtemp;
    620  1.33    kardel 	l_fp ftemp;
    621  1.33    kardel 
    622  1.48        ad 	KASSERT(mutex_owned(&timecounter_lock));
    623  1.48        ad 
    624  1.33    kardel 	/*
    625  1.33    kardel 	 * Select how the phase is to be controlled and from which
    626  1.33    kardel 	 * source. If the PPS signal is present and enabled to
    627  1.33    kardel 	 * discipline the time, the PPS offset is used; otherwise, the
    628  1.33    kardel 	 * argument offset is used.
    629  1.33    kardel 	 */
    630  1.33    kardel 	if (!(time_status & STA_PLL))
    631  1.33    kardel 		return;
    632  1.33    kardel 	if (!(time_status & STA_PPSTIME && time_status &
    633  1.33    kardel 	    STA_PPSSIGNAL)) {
    634  1.33    kardel 		if (offset > MAXPHASE)
    635  1.33    kardel 			time_monitor = MAXPHASE;
    636  1.33    kardel 		else if (offset < -MAXPHASE)
    637  1.33    kardel 			time_monitor = -MAXPHASE;
    638  1.33    kardel 		else
    639  1.33    kardel 			time_monitor = offset;
    640  1.33    kardel 		L_LINT(time_offset, time_monitor);
    641  1.33    kardel 	}
    642  1.33    kardel 
    643  1.33    kardel 	/*
    644  1.33    kardel 	 * Select how the frequency is to be controlled and in which
    645  1.33    kardel 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    646  1.33    kardel 	 * to discipline the frequency, the PPS frequency is used;
    647  1.33    kardel 	 * otherwise, the argument offset is used to compute it.
    648  1.33    kardel 	 */
    649  1.33    kardel 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    650  1.33    kardel 		time_reftime = time_second;
    651  1.33    kardel 		return;
    652  1.33    kardel 	}
    653  1.33    kardel 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    654  1.33    kardel 		time_reftime = time_second;
    655  1.33    kardel 	mtemp = time_second - time_reftime;
    656  1.33    kardel 	L_LINT(ftemp, time_monitor);
    657  1.33    kardel 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    658  1.33    kardel 	L_MPY(ftemp, mtemp);
    659  1.33    kardel 	L_ADD(time_freq, ftemp);
    660  1.33    kardel 	time_status &= ~STA_MODE;
    661  1.33    kardel 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    662  1.33    kardel 	    MAXSEC)) {
    663  1.33    kardel 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    664  1.33    kardel 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    665  1.33    kardel 		L_ADD(time_freq, ftemp);
    666  1.33    kardel 		time_status |= STA_MODE;
    667  1.33    kardel 	}
    668  1.33    kardel 	time_reftime = time_second;
    669  1.33    kardel 	if (L_GINT(time_freq) > MAXFREQ)
    670  1.33    kardel 		L_LINT(time_freq, MAXFREQ);
    671  1.33    kardel 	else if (L_GINT(time_freq) < -MAXFREQ)
    672  1.33    kardel 		L_LINT(time_freq, -MAXFREQ);
    673  1.33    kardel }
    674  1.33    kardel 
    675  1.33    kardel #ifdef PPS_SYNC
    676  1.33    kardel /*
    677  1.33    kardel  * hardpps() - discipline CPU clock oscillator to external PPS signal
    678  1.33    kardel  *
    679  1.33    kardel  * This routine is called at each PPS interrupt in order to discipline
    680  1.33    kardel  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    681  1.33    kardel  * and leaves it in a handy spot for the hardclock() routine. It
    682  1.33    kardel  * integrates successive PPS phase differences and calculates the
    683  1.33    kardel  * frequency offset. This is used in hardclock() to discipline the CPU
    684  1.33    kardel  * clock oscillator so that intrinsic frequency error is cancelled out.
    685  1.33    kardel  * The code requires the caller to capture the time and hardware counter
    686  1.33    kardel  * value at the on-time PPS signal transition.
    687  1.33    kardel  *
    688  1.33    kardel  * Note that, on some Unix systems, this routine runs at an interrupt
    689  1.33    kardel  * priority level higher than the timer interrupt routine hardclock().
    690  1.33    kardel  * Therefore, the variables used are distinct from the hardclock()
    691  1.33    kardel  * variables, except for certain exceptions: The PPS frequency pps_freq
    692  1.33    kardel  * and phase pps_offset variables are determined by this routine and
    693  1.33    kardel  * updated atomically. The time_tolerance variable can be considered a
    694  1.33    kardel  * constant, since it is infrequently changed, and then only when the
    695  1.33    kardel  * PPS signal is disabled. The watchdog counter pps_valid is updated
    696  1.33    kardel  * once per second by hardclock() and is atomically cleared in this
    697  1.33    kardel  * routine.
    698  1.33    kardel  */
    699  1.33    kardel void
    700  1.33    kardel hardpps(struct timespec *tsp,		/* time at PPS */
    701  1.33    kardel 	long nsec			/* hardware counter at PPS */)
    702  1.33    kardel {
    703  1.33    kardel 	long u_sec, u_nsec, v_nsec; /* temps */
    704  1.33    kardel 	l_fp ftemp;
    705  1.33    kardel 
    706  1.48        ad 	KASSERT(mutex_owned(&timecounter_lock));
    707  1.48        ad 
    708  1.33    kardel 	/*
    709  1.33    kardel 	 * The signal is first processed by a range gate and frequency
    710  1.33    kardel 	 * discriminator. The range gate rejects noise spikes outside
    711  1.33    kardel 	 * the range +-500 us. The frequency discriminator rejects input
    712  1.33    kardel 	 * signals with apparent frequency outside the range 1 +-500
    713  1.33    kardel 	 * PPM. If two hits occur in the same second, we ignore the
    714  1.33    kardel 	 * later hit; if not and a hit occurs outside the range gate,
    715  1.33    kardel 	 * keep the later hit for later comparison, but do not process
    716  1.33    kardel 	 * it.
    717  1.33    kardel 	 */
    718  1.33    kardel 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    719  1.33    kardel 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    720  1.33    kardel 	pps_valid = PPS_VALID;
    721  1.33    kardel 	u_sec = tsp->tv_sec;
    722  1.33    kardel 	u_nsec = tsp->tv_nsec;
    723  1.33    kardel 	if (u_nsec >= (NANOSECOND >> 1)) {
    724  1.33    kardel 		u_nsec -= NANOSECOND;
    725  1.33    kardel 		u_sec++;
    726  1.33    kardel 	}
    727  1.33    kardel 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    728  1.33    kardel 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    729  1.33    kardel 	    MAXFREQ)
    730  1.33    kardel 		return;
    731  1.33    kardel 	pps_tf[2] = pps_tf[1];
    732  1.33    kardel 	pps_tf[1] = pps_tf[0];
    733  1.33    kardel 	pps_tf[0].tv_sec = u_sec;
    734  1.33    kardel 	pps_tf[0].tv_nsec = u_nsec;
    735  1.33    kardel 
    736  1.33    kardel 	/*
    737  1.33    kardel 	 * Compute the difference between the current and previous
    738  1.33    kardel 	 * counter values. If the difference exceeds 0.5 s, assume it
    739  1.33    kardel 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    740  1.33    kardel 	 * the tick interval, the sample point has crossed a tick
    741  1.33    kardel 	 * boundary during the last second, so correct the tick. Very
    742  1.33    kardel 	 * intricate.
    743  1.33    kardel 	 */
    744  1.33    kardel 	u_nsec = nsec;
    745  1.33    kardel 	if (u_nsec > (NANOSECOND >> 1))
    746  1.33    kardel 		u_nsec -= NANOSECOND;
    747  1.33    kardel 	else if (u_nsec < -(NANOSECOND >> 1))
    748  1.33    kardel 		u_nsec += NANOSECOND;
    749  1.33    kardel 	pps_fcount += u_nsec;
    750  1.33    kardel 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    751  1.33    kardel 		return;
    752  1.33    kardel 	time_status &= ~STA_PPSJITTER;
    753  1.33    kardel 
    754  1.33    kardel 	/*
    755  1.33    kardel 	 * A three-stage median filter is used to help denoise the PPS
    756  1.33    kardel 	 * time. The median sample becomes the time offset estimate; the
    757  1.33    kardel 	 * difference between the other two samples becomes the time
    758  1.33    kardel 	 * dispersion (jitter) estimate.
    759  1.33    kardel 	 */
    760  1.33    kardel 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    761  1.33    kardel 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    762  1.33    kardel 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    763  1.33    kardel 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    764  1.33    kardel 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    765  1.33    kardel 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    766  1.33    kardel 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    767  1.33    kardel 		} else {
    768  1.33    kardel 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    769  1.33    kardel 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    770  1.33    kardel 		}
    771  1.33    kardel 	} else {
    772  1.33    kardel 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    773  1.33    kardel 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    774  1.33    kardel 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    775  1.33    kardel 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    776  1.33    kardel 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    777  1.33    kardel 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    778  1.33    kardel 		} else {
    779  1.33    kardel 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    780  1.33    kardel 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    781  1.33    kardel 		}
    782  1.33    kardel 	}
    783  1.33    kardel 
    784  1.33    kardel 	/*
    785  1.33    kardel 	 * Nominal jitter is due to PPS signal noise and interrupt
    786  1.33    kardel 	 * latency. If it exceeds the popcorn threshold, the sample is
    787  1.33    kardel 	 * discarded. otherwise, if so enabled, the time offset is
    788  1.33    kardel 	 * updated. We can tolerate a modest loss of data here without
    789  1.33    kardel 	 * much degrading time accuracy.
    790  1.33    kardel 	 */
    791  1.33    kardel 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    792  1.33    kardel 		time_status |= STA_PPSJITTER;
    793  1.33    kardel 		pps_jitcnt++;
    794  1.33    kardel 	} else if (time_status & STA_PPSTIME) {
    795  1.33    kardel 		time_monitor = -v_nsec;
    796  1.33    kardel 		L_LINT(time_offset, time_monitor);
    797  1.33    kardel 	}
    798  1.33    kardel 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    799  1.33    kardel 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    800  1.33    kardel 	if (u_sec < (1 << pps_shift))
    801  1.33    kardel 		return;
    802  1.33    kardel 
    803  1.33    kardel 	/*
    804  1.33    kardel 	 * At the end of the calibration interval the difference between
    805  1.33    kardel 	 * the first and last counter values becomes the scaled
    806  1.33    kardel 	 * frequency. It will later be divided by the length of the
    807  1.33    kardel 	 * interval to determine the frequency update. If the frequency
    808  1.33    kardel 	 * exceeds a sanity threshold, or if the actual calibration
    809  1.33    kardel 	 * interval is not equal to the expected length, the data are
    810  1.33    kardel 	 * discarded. We can tolerate a modest loss of data here without
    811  1.33    kardel 	 * much degrading frequency accuracy.
    812  1.33    kardel 	 */
    813  1.33    kardel 	pps_calcnt++;
    814  1.33    kardel 	v_nsec = -pps_fcount;
    815  1.33    kardel 	pps_lastsec = pps_tf[0].tv_sec;
    816  1.33    kardel 	pps_fcount = 0;
    817  1.33    kardel 	u_nsec = MAXFREQ << pps_shift;
    818  1.33    kardel 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    819  1.33    kardel 	    pps_shift)) {
    820  1.33    kardel 		time_status |= STA_PPSERROR;
    821  1.33    kardel 		pps_errcnt++;
    822  1.33    kardel 		return;
    823  1.33    kardel 	}
    824  1.33    kardel 
    825  1.33    kardel 	/*
    826  1.33    kardel 	 * Here the raw frequency offset and wander (stability) is
    827  1.33    kardel 	 * calculated. If the wander is less than the wander threshold
    828  1.33    kardel 	 * for four consecutive averaging intervals, the interval is
    829  1.33    kardel 	 * doubled; if it is greater than the threshold for four
    830  1.33    kardel 	 * consecutive intervals, the interval is halved. The scaled
    831  1.33    kardel 	 * frequency offset is converted to frequency offset. The
    832  1.33    kardel 	 * stability metric is calculated as the average of recent
    833  1.33    kardel 	 * frequency changes, but is used only for performance
    834  1.33    kardel 	 * monitoring.
    835  1.33    kardel 	 */
    836  1.33    kardel 	L_LINT(ftemp, v_nsec);
    837  1.33    kardel 	L_RSHIFT(ftemp, pps_shift);
    838  1.33    kardel 	L_SUB(ftemp, pps_freq);
    839  1.33    kardel 	u_nsec = L_GINT(ftemp);
    840  1.33    kardel 	if (u_nsec > PPS_MAXWANDER) {
    841  1.33    kardel 		L_LINT(ftemp, PPS_MAXWANDER);
    842  1.33    kardel 		pps_intcnt--;
    843  1.33    kardel 		time_status |= STA_PPSWANDER;
    844  1.33    kardel 		pps_stbcnt++;
    845  1.33    kardel 	} else if (u_nsec < -PPS_MAXWANDER) {
    846  1.33    kardel 		L_LINT(ftemp, -PPS_MAXWANDER);
    847  1.33    kardel 		pps_intcnt--;
    848  1.33    kardel 		time_status |= STA_PPSWANDER;
    849  1.33    kardel 		pps_stbcnt++;
    850  1.33    kardel 	} else {
    851  1.33    kardel 		pps_intcnt++;
    852  1.33    kardel 	}
    853  1.33    kardel 	if (pps_intcnt >= 4) {
    854  1.33    kardel 		pps_intcnt = 4;
    855  1.33    kardel 		if (pps_shift < pps_shiftmax) {
    856  1.33    kardel 			pps_shift++;
    857  1.33    kardel 			pps_intcnt = 0;
    858  1.33    kardel 		}
    859  1.33    kardel 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    860  1.33    kardel 		pps_intcnt = -4;
    861  1.33    kardel 		if (pps_shift > PPS_FAVG) {
    862  1.33    kardel 			pps_shift--;
    863  1.33    kardel 			pps_intcnt = 0;
    864  1.33    kardel 		}
    865  1.33    kardel 	}
    866  1.33    kardel 	if (u_nsec < 0)
    867  1.33    kardel 		u_nsec = -u_nsec;
    868  1.33    kardel 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    869  1.33    kardel 
    870  1.33    kardel 	/*
    871  1.33    kardel 	 * The PPS frequency is recalculated and clamped to the maximum
    872  1.33    kardel 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    873  1.33    kardel 	 * well.
    874  1.33    kardel 	 */
    875  1.33    kardel 	L_ADD(pps_freq, ftemp);
    876  1.33    kardel 	u_nsec = L_GINT(pps_freq);
    877  1.33    kardel 	if (u_nsec > MAXFREQ)
    878  1.33    kardel 		L_LINT(pps_freq, MAXFREQ);
    879  1.33    kardel 	else if (u_nsec < -MAXFREQ)
    880  1.33    kardel 		L_LINT(pps_freq, -MAXFREQ);
    881  1.33    kardel 	if (time_status & STA_PPSFREQ)
    882  1.33    kardel 		time_freq = pps_freq;
    883  1.33    kardel }
    884  1.33    kardel #endif /* PPS_SYNC */
    885  1.33    kardel #endif /* NTP */
    886  1.33    kardel 
    887  1.33    kardel #ifdef NTP
    888  1.33    kardel int
    889  1.47      matt ntp_timestatus(void)
    890  1.33    kardel {
    891  1.48        ad 	int rv;
    892  1.48        ad 
    893  1.33    kardel 	/*
    894  1.33    kardel 	 * Status word error decode. If any of these conditions
    895  1.33    kardel 	 * occur, an error is returned, instead of the status
    896  1.33    kardel 	 * word. Most applications will care only about the fact
    897  1.33    kardel 	 * the system clock may not be trusted, not about the
    898  1.33    kardel 	 * details.
    899  1.33    kardel 	 *
    900  1.33    kardel 	 * Hardware or software error
    901  1.33    kardel 	 */
    902  1.48        ad 	mutex_spin_enter(&timecounter_lock);
    903  1.33    kardel 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    904  1.33    kardel 
    905  1.33    kardel 	/*
    906  1.33    kardel 	 * PPS signal lost when either time or frequency
    907  1.33    kardel 	 * synchronization requested
    908  1.33    kardel 	 */
    909  1.33    kardel 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    910  1.33    kardel 	     !(time_status & STA_PPSSIGNAL)) ||
    911  1.33    kardel 
    912  1.33    kardel 	/*
    913  1.33    kardel 	 * PPS jitter exceeded when time synchronization
    914  1.33    kardel 	 * requested
    915  1.33    kardel 	 */
    916  1.33    kardel 	    (time_status & STA_PPSTIME &&
    917  1.33    kardel 	     time_status & STA_PPSJITTER) ||
    918  1.33    kardel 
    919  1.33    kardel 	/*
    920  1.33    kardel 	 * PPS wander exceeded or calibration error when
    921  1.33    kardel 	 * frequency synchronization requested
    922  1.33    kardel 	 */
    923  1.33    kardel 	    (time_status & STA_PPSFREQ &&
    924  1.33    kardel 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
    925  1.48        ad 		rv = TIME_ERROR;
    926  1.33    kardel 	else
    927  1.48        ad 		rv = time_state;
    928  1.48        ad 	mutex_spin_exit(&timecounter_lock);
    929  1.48        ad 
    930  1.48        ad 	return rv;
    931  1.33    kardel }
    932   1.1  jonathan 
    933  1.33    kardel /*ARGSUSED*/
    934  1.33    kardel /*
    935  1.33    kardel  * ntp_gettime() - NTP user application interface
    936  1.33    kardel  */
    937  1.33    kardel int
    938  1.51  christos sys___ntp_gettime50(struct lwp *l, const struct sys___ntp_gettime50_args *uap, register_t *retval)
    939  1.33    kardel {
    940  1.45       dsl 	/* {
    941  1.33    kardel 		syscallarg(struct ntptimeval *) ntvp;
    942  1.45       dsl 	} */
    943  1.33    kardel 	struct ntptimeval ntv;
    944  1.33    kardel 	int error = 0;
    945  1.33    kardel 
    946  1.33    kardel 	if (SCARG(uap, ntvp)) {
    947  1.33    kardel 		ntp_gettime(&ntv);
    948  1.33    kardel 
    949  1.43  christos 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
    950  1.33    kardel 				sizeof(ntv));
    951  1.33    kardel 	}
    952   1.1  jonathan 	if (!error) {
    953  1.33    kardel 		*retval = ntp_timestatus();
    954  1.33    kardel 	}
    955  1.33    kardel 	return(error);
    956  1.33    kardel }
    957   1.1  jonathan 
    958   1.1  jonathan /*
    959   1.1  jonathan  * return information about kernel precision timekeeping
    960   1.1  jonathan  */
    961  1.25    atatat static int
    962  1.25    atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
    963   1.1  jonathan {
    964  1.25    atatat 	struct sysctlnode node;
    965   1.1  jonathan 	struct ntptimeval ntv;
    966   1.1  jonathan 
    967  1.31  drochner 	ntp_gettime(&ntv);
    968  1.25    atatat 
    969  1.25    atatat 	node = *rnode;
    970  1.25    atatat 	node.sysctl_data = &ntv;
    971  1.25    atatat 	node.sysctl_size = sizeof(ntv);
    972  1.25    atatat 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    973  1.25    atatat }
    974  1.25    atatat 
    975  1.25    atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
    976  1.25    atatat {
    977  1.25    atatat 
    978  1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
    979  1.26    atatat 		       CTLFLAG_PERMANENT,
    980  1.27    atatat 		       CTLTYPE_STRUCT, "ntptime",
    981  1.27    atatat 		       SYSCTL_DESCR("Kernel clock values for NTP"),
    982  1.25    atatat 		       sysctl_kern_ntptime, 0, NULL,
    983  1.25    atatat 		       sizeof(struct ntptimeval),
    984  1.25    atatat 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
    985   1.1  jonathan }
    986  1.13     bjh21 #endif /* !NTP */
    987