Home | History | Annotate | Line # | Download | only in kern
kern_ntptime.c revision 1.28.4.6
      1  1.28.4.6      yamt /*	$NetBSD: kern_ntptime.c,v 1.28.4.6 2008/01/21 09:46:07 yamt Exp $	*/
      2  1.28.4.1      yamt 
      3  1.28.4.1      yamt /*-
      4  1.28.4.1      yamt  ***********************************************************************
      5  1.28.4.1      yamt  *								       *
      6  1.28.4.1      yamt  * Copyright (c) David L. Mills 1993-2001			       *
      7  1.28.4.1      yamt  *								       *
      8  1.28.4.1      yamt  * Permission to use, copy, modify, and distribute this software and   *
      9  1.28.4.1      yamt  * its documentation for any purpose and without fee is hereby	       *
     10  1.28.4.1      yamt  * granted, provided that the above copyright notice appears in all    *
     11  1.28.4.1      yamt  * copies and that both the copyright notice and this permission       *
     12  1.28.4.1      yamt  * notice appear in supporting documentation, and that the name	       *
     13  1.28.4.1      yamt  * University of Delaware not be used in advertising or publicity      *
     14  1.28.4.1      yamt  * pertaining to distribution of the software without specific,	       *
     15  1.28.4.1      yamt  * written prior permission. The University of Delaware makes no       *
     16  1.28.4.1      yamt  * representations about the suitability this software for any	       *
     17  1.28.4.1      yamt  * purpose. It is provided "as is" without express or implied	       *
     18  1.28.4.1      yamt  * warranty.							       *
     19  1.28.4.1      yamt  *								       *
     20  1.28.4.1      yamt  **********************************************************************/
     21       1.1  jonathan 
     22  1.28.4.1      yamt /*
     23  1.28.4.1      yamt  * Adapted from the original sources for FreeBSD and timecounters by:
     24  1.28.4.1      yamt  * Poul-Henning Kamp <phk (at) FreeBSD.org>.
     25  1.28.4.1      yamt  *
     26  1.28.4.1      yamt  * The 32bit version of the "LP" macros seems a bit past its "sell by"
     27  1.28.4.1      yamt  * date so I have retained only the 64bit version and included it directly
     28  1.28.4.1      yamt  * in this file.
     29  1.28.4.1      yamt  *
     30  1.28.4.1      yamt  * Only minor changes done to interface with the timecounters over in
     31  1.28.4.1      yamt  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
     32  1.28.4.1      yamt  * confusing and/or plain wrong in that context.
     33  1.28.4.1      yamt  */
     34  1.28.4.1      yamt 
     35  1.28.4.1      yamt #include <sys/cdefs.h>
     36  1.28.4.1      yamt /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
     37  1.28.4.6      yamt __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.28.4.6 2008/01/21 09:46:07 yamt Exp $");
     38  1.28.4.1      yamt 
     39  1.28.4.1      yamt #include "opt_ntp.h"
     40  1.28.4.1      yamt #include "opt_compat_netbsd.h"
     41  1.28.4.1      yamt 
     42  1.28.4.1      yamt #include <sys/param.h>
     43  1.28.4.1      yamt #include <sys/resourcevar.h>
     44  1.28.4.1      yamt #include <sys/systm.h>
     45  1.28.4.1      yamt #include <sys/kernel.h>
     46  1.28.4.1      yamt #include <sys/proc.h>
     47  1.28.4.1      yamt #include <sys/sysctl.h>
     48  1.28.4.1      yamt #include <sys/timex.h>
     49  1.28.4.1      yamt #ifdef COMPAT_30
     50  1.28.4.1      yamt #include <compat/sys/timex.h>
     51  1.28.4.1      yamt #endif
     52  1.28.4.1      yamt #include <sys/vnode.h>
     53  1.28.4.1      yamt #include <sys/kauth.h>
     54  1.28.4.1      yamt 
     55  1.28.4.1      yamt #include <sys/mount.h>
     56  1.28.4.1      yamt #include <sys/syscallargs.h>
     57  1.28.4.1      yamt 
     58  1.28.4.5      yamt #include <sys/cpu.h>
     59  1.28.4.1      yamt 
     60  1.28.4.1      yamt /*
     61  1.28.4.1      yamt  * Single-precision macros for 64-bit machines
     62  1.28.4.1      yamt  */
     63  1.28.4.1      yamt typedef int64_t l_fp;
     64  1.28.4.1      yamt #define L_ADD(v, u)	((v) += (u))
     65  1.28.4.1      yamt #define L_SUB(v, u)	((v) -= (u))
     66  1.28.4.1      yamt #define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
     67  1.28.4.1      yamt #define L_NEG(v)	((v) = -(v))
     68  1.28.4.1      yamt #define L_RSHIFT(v, n) \
     69  1.28.4.1      yamt 	do { \
     70  1.28.4.1      yamt 		if ((v) < 0) \
     71  1.28.4.1      yamt 			(v) = -(-(v) >> (n)); \
     72  1.28.4.1      yamt 		else \
     73  1.28.4.1      yamt 			(v) = (v) >> (n); \
     74  1.28.4.1      yamt 	} while (0)
     75  1.28.4.1      yamt #define L_MPY(v, a)	((v) *= (a))
     76  1.28.4.1      yamt #define L_CLR(v)	((v) = 0)
     77  1.28.4.1      yamt #define L_ISNEG(v)	((v) < 0)
     78  1.28.4.1      yamt #define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
     79  1.28.4.1      yamt #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
     80  1.28.4.1      yamt 
     81  1.28.4.1      yamt #ifdef NTP
     82  1.28.4.1      yamt /*
     83  1.28.4.1      yamt  * Generic NTP kernel interface
     84  1.28.4.1      yamt  *
     85  1.28.4.1      yamt  * These routines constitute the Network Time Protocol (NTP) interfaces
     86  1.28.4.1      yamt  * for user and daemon application programs. The ntp_gettime() routine
     87  1.28.4.1      yamt  * provides the time, maximum error (synch distance) and estimated error
     88  1.28.4.1      yamt  * (dispersion) to client user application programs. The ntp_adjtime()
     89  1.28.4.1      yamt  * routine is used by the NTP daemon to adjust the system clock to an
     90  1.28.4.1      yamt  * externally derived time. The time offset and related variables set by
     91  1.28.4.1      yamt  * this routine are used by other routines in this module to adjust the
     92  1.28.4.1      yamt  * phase and frequency of the clock discipline loop which controls the
     93  1.28.4.1      yamt  * system clock.
     94  1.28.4.1      yamt  *
     95  1.28.4.1      yamt  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
     96  1.28.4.1      yamt  * defined), the time at each tick interrupt is derived directly from
     97  1.28.4.1      yamt  * the kernel time variable. When the kernel time is reckoned in
     98  1.28.4.1      yamt  * microseconds, (NTP_NANO undefined), the time is derived from the
     99  1.28.4.1      yamt  * kernel time variable together with a variable representing the
    100  1.28.4.1      yamt  * leftover nanoseconds at the last tick interrupt. In either case, the
    101  1.28.4.1      yamt  * current nanosecond time is reckoned from these values plus an
    102  1.28.4.1      yamt  * interpolated value derived by the clock routines in another
    103  1.28.4.1      yamt  * architecture-specific module. The interpolation can use either a
    104  1.28.4.1      yamt  * dedicated counter or a processor cycle counter (PCC) implemented in
    105  1.28.4.1      yamt  * some architectures.
    106  1.28.4.1      yamt  *
    107  1.28.4.1      yamt  * Note that all routines must run at priority splclock or higher.
    108  1.28.4.1      yamt  */
    109  1.28.4.1      yamt /*
    110  1.28.4.1      yamt  * Phase/frequency-lock loop (PLL/FLL) definitions
    111  1.28.4.1      yamt  *
    112  1.28.4.1      yamt  * The nanosecond clock discipline uses two variable types, time
    113  1.28.4.1      yamt  * variables and frequency variables. Both types are represented as 64-
    114  1.28.4.1      yamt  * bit fixed-point quantities with the decimal point between two 32-bit
    115  1.28.4.1      yamt  * halves. On a 32-bit machine, each half is represented as a single
    116  1.28.4.1      yamt  * word and mathematical operations are done using multiple-precision
    117  1.28.4.1      yamt  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
    118  1.28.4.1      yamt  * used.
    119  1.28.4.1      yamt  *
    120  1.28.4.1      yamt  * A time variable is a signed 64-bit fixed-point number in ns and
    121  1.28.4.1      yamt  * fraction. It represents the remaining time offset to be amortized
    122  1.28.4.1      yamt  * over succeeding tick interrupts. The maximum time offset is about
    123  1.28.4.1      yamt  * 0.5 s and the resolution is about 2.3e-10 ns.
    124  1.28.4.1      yamt  *
    125  1.28.4.1      yamt  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    126  1.28.4.1      yamt  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    127  1.28.4.1      yamt  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    128  1.28.4.1      yamt  * |s s s|			 ns				   |
    129  1.28.4.1      yamt  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    130  1.28.4.1      yamt  * |			    fraction				   |
    131  1.28.4.1      yamt  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    132  1.28.4.1      yamt  *
    133  1.28.4.1      yamt  * A frequency variable is a signed 64-bit fixed-point number in ns/s
    134  1.28.4.1      yamt  * and fraction. It represents the ns and fraction to be added to the
    135  1.28.4.1      yamt  * kernel time variable at each second. The maximum frequency offset is
    136  1.28.4.1      yamt  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
    137  1.28.4.1      yamt  *
    138  1.28.4.1      yamt  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    139  1.28.4.1      yamt  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    140  1.28.4.1      yamt  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    141  1.28.4.1      yamt  * |s s s s s s s s s s s s s|	          ns/s			   |
    142  1.28.4.1      yamt  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    143  1.28.4.1      yamt  * |			    fraction				   |
    144  1.28.4.1      yamt  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    145  1.28.4.1      yamt  */
    146  1.28.4.1      yamt /*
    147  1.28.4.1      yamt  * The following variables establish the state of the PLL/FLL and the
    148  1.28.4.1      yamt  * residual time and frequency offset of the local clock.
    149  1.28.4.1      yamt  */
    150  1.28.4.1      yamt #define SHIFT_PLL	4		/* PLL loop gain (shift) */
    151  1.28.4.1      yamt #define SHIFT_FLL	2		/* FLL loop gain (shift) */
    152  1.28.4.1      yamt 
    153  1.28.4.1      yamt static int time_state = TIME_OK;	/* clock state */
    154  1.28.4.1      yamt static int time_status = STA_UNSYNC;	/* clock status bits */
    155  1.28.4.1      yamt static long time_tai;			/* TAI offset (s) */
    156  1.28.4.1      yamt static long time_monitor;		/* last time offset scaled (ns) */
    157  1.28.4.1      yamt static long time_constant;		/* poll interval (shift) (s) */
    158  1.28.4.1      yamt static long time_precision = 1;		/* clock precision (ns) */
    159  1.28.4.1      yamt static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
    160  1.28.4.1      yamt static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
    161  1.28.4.1      yamt static long time_reftime;		/* time at last adjustment (s) */
    162  1.28.4.1      yamt static l_fp time_offset;		/* time offset (ns) */
    163  1.28.4.1      yamt static l_fp time_freq;			/* frequency offset (ns/s) */
    164  1.28.4.1      yamt #endif /* NTP */
    165  1.28.4.1      yamt 
    166  1.28.4.1      yamt static l_fp time_adj;			/* tick adjust (ns/s) */
    167  1.28.4.1      yamt int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
    168  1.28.4.1      yamt 
    169  1.28.4.1      yamt extern int time_adjusted;	/* ntp might have changed the system time */
    170  1.28.4.1      yamt 
    171  1.28.4.1      yamt #ifdef NTP
    172  1.28.4.1      yamt #ifdef PPS_SYNC
    173  1.28.4.1      yamt /*
    174  1.28.4.1      yamt  * The following variables are used when a pulse-per-second (PPS) signal
    175  1.28.4.1      yamt  * is available and connected via a modem control lead. They establish
    176  1.28.4.1      yamt  * the engineering parameters of the clock discipline loop when
    177  1.28.4.1      yamt  * controlled by the PPS signal.
    178  1.28.4.1      yamt  */
    179  1.28.4.1      yamt #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
    180  1.28.4.1      yamt #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
    181  1.28.4.1      yamt #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
    182  1.28.4.1      yamt #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
    183  1.28.4.1      yamt #define PPS_VALID	120		/* PPS signal watchdog max (s) */
    184  1.28.4.1      yamt #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
    185  1.28.4.1      yamt #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
    186  1.28.4.1      yamt 
    187  1.28.4.1      yamt static struct timespec pps_tf[3];	/* phase median filter */
    188  1.28.4.1      yamt static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
    189  1.28.4.1      yamt static long pps_fcount;			/* frequency accumulator */
    190  1.28.4.1      yamt static long pps_jitter;			/* nominal jitter (ns) */
    191  1.28.4.1      yamt static long pps_stabil;			/* nominal stability (scaled ns/s) */
    192  1.28.4.1      yamt static long pps_lastsec;		/* time at last calibration (s) */
    193  1.28.4.1      yamt static int pps_valid;			/* signal watchdog counter */
    194  1.28.4.1      yamt static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
    195  1.28.4.1      yamt static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
    196  1.28.4.1      yamt static int pps_intcnt;			/* wander counter */
    197  1.28.4.1      yamt 
    198  1.28.4.1      yamt /*
    199  1.28.4.1      yamt  * PPS signal quality monitors
    200  1.28.4.1      yamt  */
    201  1.28.4.1      yamt static long pps_calcnt;			/* calibration intervals */
    202  1.28.4.1      yamt static long pps_jitcnt;			/* jitter limit exceeded */
    203  1.28.4.1      yamt static long pps_stbcnt;			/* stability limit exceeded */
    204  1.28.4.1      yamt static long pps_errcnt;			/* calibration errors */
    205  1.28.4.1      yamt #endif /* PPS_SYNC */
    206  1.28.4.1      yamt /*
    207  1.28.4.1      yamt  * End of phase/frequency-lock loop (PLL/FLL) definitions
    208  1.28.4.1      yamt  */
    209  1.28.4.1      yamt 
    210  1.28.4.1      yamt static void hardupdate(long offset);
    211  1.28.4.1      yamt 
    212  1.28.4.1      yamt /*
    213  1.28.4.1      yamt  * ntp_gettime() - NTP user application interface
    214  1.28.4.1      yamt  */
    215  1.28.4.1      yamt void
    216  1.28.4.6      yamt ntp_gettime(struct ntptimeval *ntv)
    217  1.28.4.1      yamt {
    218  1.28.4.1      yamt 	nanotime(&ntv->time);
    219  1.28.4.1      yamt 	ntv->maxerror = time_maxerror;
    220  1.28.4.1      yamt 	ntv->esterror = time_esterror;
    221  1.28.4.1      yamt 	ntv->tai = time_tai;
    222  1.28.4.1      yamt 	ntv->time_state = time_state;
    223  1.28.4.1      yamt }
    224  1.28.4.1      yamt 
    225  1.28.4.1      yamt /* ARGSUSED */
    226  1.28.4.1      yamt /*
    227  1.28.4.1      yamt  * ntp_adjtime() - NTP daemon application interface
    228  1.28.4.1      yamt  */
    229  1.28.4.1      yamt int
    230  1.28.4.6      yamt sys_ntp_adjtime(struct lwp *l, const struct sys_ntp_adjtime_args *uap, register_t *retval)
    231  1.28.4.1      yamt {
    232  1.28.4.6      yamt 	/* {
    233  1.28.4.1      yamt 		syscallarg(struct timex *) tp;
    234  1.28.4.6      yamt 	} */
    235  1.28.4.1      yamt 	struct timex ntv;
    236  1.28.4.1      yamt 	int error = 0;
    237  1.28.4.1      yamt 
    238  1.28.4.4      yamt 	error = copyin((void *)SCARG(uap, tp), (void *)&ntv, sizeof(ntv));
    239  1.28.4.2      yamt 	if (error != 0)
    240  1.28.4.1      yamt 		return (error);
    241  1.28.4.1      yamt 
    242  1.28.4.2      yamt 	if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
    243  1.28.4.2      yamt 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
    244  1.28.4.2      yamt 	    NULL, NULL)) != 0)
    245  1.28.4.1      yamt 		return (error);
    246  1.28.4.1      yamt 
    247  1.28.4.1      yamt 	ntp_adjtime1(&ntv);
    248  1.28.4.1      yamt 
    249  1.28.4.4      yamt 	error = copyout((void *)&ntv, (void *)SCARG(uap, tp), sizeof(ntv));
    250  1.28.4.2      yamt 	if (!error)
    251  1.28.4.1      yamt 		*retval = ntp_timestatus();
    252  1.28.4.2      yamt 
    253  1.28.4.1      yamt 	return error;
    254  1.28.4.1      yamt }
    255  1.28.4.1      yamt 
    256  1.28.4.1      yamt void
    257  1.28.4.6      yamt ntp_adjtime1(struct timex *ntv)
    258  1.28.4.1      yamt {
    259  1.28.4.1      yamt 	long freq;
    260  1.28.4.1      yamt 	int modes;
    261  1.28.4.1      yamt 	int s;
    262  1.28.4.1      yamt 
    263  1.28.4.1      yamt 	/*
    264  1.28.4.1      yamt 	 * Update selected clock variables - only the superuser can
    265  1.28.4.1      yamt 	 * change anything. Note that there is no error checking here on
    266  1.28.4.1      yamt 	 * the assumption the superuser should know what it is doing.
    267  1.28.4.1      yamt 	 * Note that either the time constant or TAI offset are loaded
    268  1.28.4.1      yamt 	 * from the ntv.constant member, depending on the mode bits. If
    269  1.28.4.1      yamt 	 * the STA_PLL bit in the status word is cleared, the state and
    270  1.28.4.1      yamt 	 * status words are reset to the initial values at boot.
    271  1.28.4.1      yamt 	 */
    272  1.28.4.1      yamt 	modes = ntv->modes;
    273  1.28.4.1      yamt 	if (modes != 0)
    274  1.28.4.1      yamt 		/* We need to save the system time during shutdown */
    275  1.28.4.1      yamt 		time_adjusted |= 2;
    276  1.28.4.1      yamt 	s = splclock();
    277  1.28.4.1      yamt 	if (modes & MOD_MAXERROR)
    278  1.28.4.1      yamt 		time_maxerror = ntv->maxerror;
    279  1.28.4.1      yamt 	if (modes & MOD_ESTERROR)
    280  1.28.4.1      yamt 		time_esterror = ntv->esterror;
    281  1.28.4.1      yamt 	if (modes & MOD_STATUS) {
    282  1.28.4.1      yamt 		if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
    283  1.28.4.1      yamt 			time_state = TIME_OK;
    284  1.28.4.1      yamt 			time_status = STA_UNSYNC;
    285  1.28.4.1      yamt #ifdef PPS_SYNC
    286  1.28.4.1      yamt 			pps_shift = PPS_FAVG;
    287  1.28.4.1      yamt #endif /* PPS_SYNC */
    288  1.28.4.1      yamt 		}
    289  1.28.4.1      yamt 		time_status &= STA_RONLY;
    290  1.28.4.1      yamt 		time_status |= ntv->status & ~STA_RONLY;
    291  1.28.4.1      yamt 	}
    292  1.28.4.1      yamt 	if (modes & MOD_TIMECONST) {
    293  1.28.4.1      yamt 		if (ntv->constant < 0)
    294  1.28.4.1      yamt 			time_constant = 0;
    295  1.28.4.1      yamt 		else if (ntv->constant > MAXTC)
    296  1.28.4.1      yamt 			time_constant = MAXTC;
    297  1.28.4.1      yamt 		else
    298  1.28.4.1      yamt 			time_constant = ntv->constant;
    299  1.28.4.1      yamt 	}
    300  1.28.4.1      yamt 	if (modes & MOD_TAI) {
    301  1.28.4.1      yamt 		if (ntv->constant > 0)	/* XXX zero & negative numbers ? */
    302  1.28.4.1      yamt 			time_tai = ntv->constant;
    303  1.28.4.1      yamt 	}
    304  1.28.4.1      yamt #ifdef PPS_SYNC
    305  1.28.4.1      yamt 	if (modes & MOD_PPSMAX) {
    306  1.28.4.1      yamt 		if (ntv->shift < PPS_FAVG)
    307  1.28.4.1      yamt 			pps_shiftmax = PPS_FAVG;
    308  1.28.4.1      yamt 		else if (ntv->shift > PPS_FAVGMAX)
    309  1.28.4.1      yamt 			pps_shiftmax = PPS_FAVGMAX;
    310  1.28.4.1      yamt 		else
    311  1.28.4.1      yamt 			pps_shiftmax = ntv->shift;
    312  1.28.4.1      yamt 	}
    313  1.28.4.1      yamt #endif /* PPS_SYNC */
    314  1.28.4.1      yamt 	if (modes & MOD_NANO)
    315  1.28.4.1      yamt 		time_status |= STA_NANO;
    316  1.28.4.1      yamt 	if (modes & MOD_MICRO)
    317  1.28.4.1      yamt 		time_status &= ~STA_NANO;
    318  1.28.4.1      yamt 	if (modes & MOD_CLKB)
    319  1.28.4.1      yamt 		time_status |= STA_CLK;
    320  1.28.4.1      yamt 	if (modes & MOD_CLKA)
    321  1.28.4.1      yamt 		time_status &= ~STA_CLK;
    322  1.28.4.1      yamt 	if (modes & MOD_FREQUENCY) {
    323  1.28.4.1      yamt 		freq = (ntv->freq * 1000LL) >> 16;
    324  1.28.4.1      yamt 		if (freq > MAXFREQ)
    325  1.28.4.1      yamt 			L_LINT(time_freq, MAXFREQ);
    326  1.28.4.1      yamt 		else if (freq < -MAXFREQ)
    327  1.28.4.1      yamt 			L_LINT(time_freq, -MAXFREQ);
    328  1.28.4.1      yamt 		else {
    329  1.28.4.1      yamt 			/*
    330  1.28.4.1      yamt 			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
    331  1.28.4.1      yamt 			 * time_freq is [ns/s * 2^32]
    332  1.28.4.1      yamt 			 */
    333  1.28.4.1      yamt 			time_freq = ntv->freq * 1000LL * 65536LL;
    334  1.28.4.1      yamt 		}
    335  1.28.4.1      yamt #ifdef PPS_SYNC
    336  1.28.4.1      yamt 		pps_freq = time_freq;
    337  1.28.4.1      yamt #endif /* PPS_SYNC */
    338  1.28.4.1      yamt 	}
    339  1.28.4.1      yamt 	if (modes & MOD_OFFSET) {
    340  1.28.4.1      yamt 		if (time_status & STA_NANO)
    341  1.28.4.1      yamt 			hardupdate(ntv->offset);
    342  1.28.4.1      yamt 		else
    343  1.28.4.1      yamt 			hardupdate(ntv->offset * 1000);
    344  1.28.4.1      yamt 	}
    345  1.28.4.1      yamt 
    346  1.28.4.1      yamt 	/*
    347  1.28.4.1      yamt 	 * Retrieve all clock variables. Note that the TAI offset is
    348  1.28.4.1      yamt 	 * returned only by ntp_gettime();
    349  1.28.4.1      yamt 	 */
    350  1.28.4.1      yamt 	if (time_status & STA_NANO)
    351  1.28.4.1      yamt 		ntv->offset = L_GINT(time_offset);
    352  1.28.4.1      yamt 	else
    353  1.28.4.1      yamt 		ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
    354  1.28.4.1      yamt 	ntv->freq = L_GINT((time_freq / 1000LL) << 16);
    355  1.28.4.1      yamt 	ntv->maxerror = time_maxerror;
    356  1.28.4.1      yamt 	ntv->esterror = time_esterror;
    357  1.28.4.1      yamt 	ntv->status = time_status;
    358  1.28.4.1      yamt 	ntv->constant = time_constant;
    359  1.28.4.1      yamt 	if (time_status & STA_NANO)
    360  1.28.4.1      yamt 		ntv->precision = time_precision;
    361  1.28.4.1      yamt 	else
    362  1.28.4.1      yamt 		ntv->precision = time_precision / 1000;
    363  1.28.4.1      yamt 	ntv->tolerance = MAXFREQ * SCALE_PPM;
    364  1.28.4.1      yamt #ifdef PPS_SYNC
    365  1.28.4.1      yamt 	ntv->shift = pps_shift;
    366  1.28.4.1      yamt 	ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
    367  1.28.4.1      yamt 	if (time_status & STA_NANO)
    368  1.28.4.1      yamt 		ntv->jitter = pps_jitter;
    369  1.28.4.1      yamt 	else
    370  1.28.4.1      yamt 		ntv->jitter = pps_jitter / 1000;
    371  1.28.4.1      yamt 	ntv->stabil = pps_stabil;
    372  1.28.4.1      yamt 	ntv->calcnt = pps_calcnt;
    373  1.28.4.1      yamt 	ntv->errcnt = pps_errcnt;
    374  1.28.4.1      yamt 	ntv->jitcnt = pps_jitcnt;
    375  1.28.4.1      yamt 	ntv->stbcnt = pps_stbcnt;
    376  1.28.4.1      yamt #endif /* PPS_SYNC */
    377  1.28.4.1      yamt 	splx(s);
    378  1.28.4.1      yamt }
    379  1.28.4.1      yamt #endif /* NTP */
    380  1.28.4.1      yamt 
    381  1.28.4.1      yamt /*
    382  1.28.4.1      yamt  * second_overflow() - called after ntp_tick_adjust()
    383  1.28.4.1      yamt  *
    384  1.28.4.1      yamt  * This routine is ordinarily called immediately following the above
    385  1.28.4.1      yamt  * routine ntp_tick_adjust(). While these two routines are normally
    386  1.28.4.1      yamt  * combined, they are separated here only for the purposes of
    387  1.28.4.1      yamt  * simulation.
    388  1.28.4.1      yamt  */
    389  1.28.4.1      yamt void
    390  1.28.4.1      yamt ntp_update_second(int64_t *adjustment, time_t *newsec)
    391  1.28.4.1      yamt {
    392  1.28.4.1      yamt 	int tickrate;
    393  1.28.4.1      yamt 	l_fp ftemp;		/* 32/64-bit temporary */
    394  1.28.4.1      yamt 
    395  1.28.4.1      yamt #ifdef NTP
    396  1.28.4.1      yamt 
    397  1.28.4.1      yamt 	/*
    398  1.28.4.1      yamt 	 * On rollover of the second both the nanosecond and microsecond
    399  1.28.4.1      yamt 	 * clocks are updated and the state machine cranked as
    400  1.28.4.1      yamt 	 * necessary. The phase adjustment to be used for the next
    401  1.28.4.1      yamt 	 * second is calculated and the maximum error is increased by
    402  1.28.4.1      yamt 	 * the tolerance.
    403  1.28.4.1      yamt 	 */
    404  1.28.4.1      yamt 	time_maxerror += MAXFREQ / 1000;
    405  1.28.4.1      yamt 
    406  1.28.4.1      yamt 	/*
    407  1.28.4.1      yamt 	 * Leap second processing. If in leap-insert state at
    408  1.28.4.1      yamt 	 * the end of the day, the system clock is set back one
    409  1.28.4.1      yamt 	 * second; if in leap-delete state, the system clock is
    410  1.28.4.1      yamt 	 * set ahead one second. The nano_time() routine or
    411  1.28.4.1      yamt 	 * external clock driver will insure that reported time
    412  1.28.4.1      yamt 	 * is always monotonic.
    413  1.28.4.1      yamt 	 */
    414  1.28.4.1      yamt 	switch (time_state) {
    415  1.28.4.1      yamt 
    416  1.28.4.1      yamt 		/*
    417  1.28.4.1      yamt 		 * No warning.
    418  1.28.4.1      yamt 		 */
    419  1.28.4.1      yamt 		case TIME_OK:
    420  1.28.4.1      yamt 		if (time_status & STA_INS)
    421  1.28.4.1      yamt 			time_state = TIME_INS;
    422  1.28.4.1      yamt 		else if (time_status & STA_DEL)
    423  1.28.4.1      yamt 			time_state = TIME_DEL;
    424  1.28.4.1      yamt 		break;
    425  1.28.4.1      yamt 
    426  1.28.4.1      yamt 		/*
    427  1.28.4.1      yamt 		 * Insert second 23:59:60 following second
    428  1.28.4.1      yamt 		 * 23:59:59.
    429  1.28.4.1      yamt 		 */
    430  1.28.4.1      yamt 		case TIME_INS:
    431  1.28.4.1      yamt 		if (!(time_status & STA_INS))
    432  1.28.4.1      yamt 			time_state = TIME_OK;
    433  1.28.4.1      yamt 		else if ((*newsec) % 86400 == 0) {
    434  1.28.4.1      yamt 			(*newsec)--;
    435  1.28.4.1      yamt 			time_state = TIME_OOP;
    436  1.28.4.1      yamt 			time_tai++;
    437  1.28.4.1      yamt 		}
    438  1.28.4.1      yamt 		break;
    439  1.28.4.1      yamt 
    440  1.28.4.1      yamt 		/*
    441  1.28.4.1      yamt 		 * Delete second 23:59:59.
    442  1.28.4.1      yamt 		 */
    443  1.28.4.1      yamt 		case TIME_DEL:
    444  1.28.4.1      yamt 		if (!(time_status & STA_DEL))
    445  1.28.4.1      yamt 			time_state = TIME_OK;
    446  1.28.4.1      yamt 		else if (((*newsec) + 1) % 86400 == 0) {
    447  1.28.4.1      yamt 			(*newsec)++;
    448  1.28.4.1      yamt 			time_tai--;
    449  1.28.4.1      yamt 			time_state = TIME_WAIT;
    450  1.28.4.1      yamt 		}
    451  1.28.4.1      yamt 		break;
    452  1.28.4.1      yamt 
    453  1.28.4.1      yamt 		/*
    454  1.28.4.1      yamt 		 * Insert second in progress.
    455  1.28.4.1      yamt 		 */
    456  1.28.4.1      yamt 		case TIME_OOP:
    457  1.28.4.1      yamt 			time_state = TIME_WAIT;
    458  1.28.4.1      yamt 		break;
    459  1.28.4.1      yamt 
    460  1.28.4.1      yamt 		/*
    461  1.28.4.1      yamt 		 * Wait for status bits to clear.
    462  1.28.4.1      yamt 		 */
    463  1.28.4.1      yamt 		case TIME_WAIT:
    464  1.28.4.1      yamt 		if (!(time_status & (STA_INS | STA_DEL)))
    465  1.28.4.1      yamt 			time_state = TIME_OK;
    466  1.28.4.1      yamt 	}
    467  1.28.4.1      yamt 
    468  1.28.4.1      yamt 	/*
    469  1.28.4.1      yamt 	 * Compute the total time adjustment for the next second
    470  1.28.4.1      yamt 	 * in ns. The offset is reduced by a factor depending on
    471  1.28.4.1      yamt 	 * whether the PPS signal is operating. Note that the
    472  1.28.4.1      yamt 	 * value is in effect scaled by the clock frequency,
    473  1.28.4.1      yamt 	 * since the adjustment is added at each tick interrupt.
    474  1.28.4.1      yamt 	 */
    475  1.28.4.1      yamt 	ftemp = time_offset;
    476  1.28.4.1      yamt #ifdef PPS_SYNC
    477  1.28.4.1      yamt 	/* XXX even if PPS signal dies we should finish adjustment ? */
    478  1.28.4.1      yamt 	if (time_status & STA_PPSTIME && time_status &
    479  1.28.4.1      yamt 	    STA_PPSSIGNAL)
    480  1.28.4.1      yamt 		L_RSHIFT(ftemp, pps_shift);
    481  1.28.4.1      yamt 	else
    482  1.28.4.1      yamt 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    483  1.28.4.1      yamt #else
    484  1.28.4.1      yamt 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
    485  1.28.4.1      yamt #endif /* PPS_SYNC */
    486  1.28.4.1      yamt 	time_adj = ftemp;
    487  1.28.4.1      yamt 	L_SUB(time_offset, ftemp);
    488  1.28.4.1      yamt 	L_ADD(time_adj, time_freq);
    489  1.28.4.1      yamt 
    490  1.28.4.1      yamt #ifdef PPS_SYNC
    491  1.28.4.1      yamt 	if (pps_valid > 0)
    492  1.28.4.1      yamt 		pps_valid--;
    493  1.28.4.1      yamt 	else
    494  1.28.4.1      yamt 		time_status &= ~STA_PPSSIGNAL;
    495  1.28.4.1      yamt #endif /* PPS_SYNC */
    496  1.28.4.2      yamt #else  /* !NTP */
    497  1.28.4.2      yamt 	L_CLR(time_adj);
    498  1.28.4.2      yamt #endif /* !NTP */
    499  1.28.4.1      yamt 
    500  1.28.4.1      yamt 	/*
    501  1.28.4.1      yamt 	 * Apply any correction from adjtime(2).  If more than one second
    502  1.28.4.1      yamt 	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
    503  1.28.4.1      yamt 	 * until the last second is slewed the final < 500 usecs.
    504  1.28.4.1      yamt 	 */
    505  1.28.4.1      yamt 	if (time_adjtime != 0) {
    506  1.28.4.1      yamt 		if (time_adjtime > 1000000)
    507  1.28.4.1      yamt 			tickrate = 5000;
    508  1.28.4.1      yamt 		else if (time_adjtime < -1000000)
    509  1.28.4.1      yamt 			tickrate = -5000;
    510  1.28.4.1      yamt 		else if (time_adjtime > 500)
    511  1.28.4.1      yamt 			tickrate = 500;
    512  1.28.4.1      yamt 		else if (time_adjtime < -500)
    513  1.28.4.1      yamt 			tickrate = -500;
    514  1.28.4.1      yamt 		else
    515  1.28.4.1      yamt 			tickrate = time_adjtime;
    516  1.28.4.1      yamt 		time_adjtime -= tickrate;
    517  1.28.4.1      yamt 		L_LINT(ftemp, tickrate * 1000);
    518  1.28.4.1      yamt 		L_ADD(time_adj, ftemp);
    519  1.28.4.1      yamt 	}
    520  1.28.4.1      yamt 	*adjustment = time_adj;
    521  1.28.4.1      yamt }
    522  1.28.4.1      yamt 
    523  1.28.4.1      yamt /*
    524  1.28.4.1      yamt  * ntp_init() - initialize variables and structures
    525  1.28.4.1      yamt  *
    526  1.28.4.1      yamt  * This routine must be called after the kernel variables hz and tick
    527  1.28.4.1      yamt  * are set or changed and before the next tick interrupt. In this
    528  1.28.4.1      yamt  * particular implementation, these values are assumed set elsewhere in
    529  1.28.4.1      yamt  * the kernel. The design allows the clock frequency and tick interval
    530  1.28.4.1      yamt  * to be changed while the system is running. So, this routine should
    531  1.28.4.1      yamt  * probably be integrated with the code that does that.
    532  1.28.4.1      yamt  */
    533  1.28.4.1      yamt void
    534  1.28.4.1      yamt ntp_init(void)
    535  1.28.4.1      yamt {
    536  1.28.4.1      yamt 
    537  1.28.4.1      yamt 	/*
    538  1.28.4.1      yamt 	 * The following variables are initialized only at startup. Only
    539  1.28.4.1      yamt 	 * those structures not cleared by the compiler need to be
    540  1.28.4.1      yamt 	 * initialized, and these only in the simulator. In the actual
    541  1.28.4.1      yamt 	 * kernel, any nonzero values here will quickly evaporate.
    542  1.28.4.1      yamt 	 */
    543  1.28.4.1      yamt 	L_CLR(time_adj);
    544  1.28.4.1      yamt #ifdef NTP
    545  1.28.4.1      yamt 	L_CLR(time_offset);
    546  1.28.4.1      yamt 	L_CLR(time_freq);
    547  1.28.4.1      yamt #ifdef PPS_SYNC
    548  1.28.4.1      yamt 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
    549  1.28.4.1      yamt 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
    550  1.28.4.1      yamt 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
    551  1.28.4.1      yamt 	pps_fcount = 0;
    552  1.28.4.1      yamt 	L_CLR(pps_freq);
    553  1.28.4.1      yamt #endif /* PPS_SYNC */
    554  1.28.4.1      yamt #endif
    555  1.28.4.1      yamt }
    556  1.28.4.1      yamt 
    557  1.28.4.1      yamt #ifdef NTP
    558  1.28.4.1      yamt /*
    559  1.28.4.1      yamt  * hardupdate() - local clock update
    560  1.28.4.1      yamt  *
    561  1.28.4.1      yamt  * This routine is called by ntp_adjtime() to update the local clock
    562  1.28.4.1      yamt  * phase and frequency. The implementation is of an adaptive-parameter,
    563  1.28.4.1      yamt  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
    564  1.28.4.1      yamt  * time and frequency offset estimates for each call. If the kernel PPS
    565  1.28.4.1      yamt  * discipline code is configured (PPS_SYNC), the PPS signal itself
    566  1.28.4.1      yamt  * determines the new time offset, instead of the calling argument.
    567  1.28.4.1      yamt  * Presumably, calls to ntp_adjtime() occur only when the caller
    568  1.28.4.1      yamt  * believes the local clock is valid within some bound (+-128 ms with
    569  1.28.4.1      yamt  * NTP). If the caller's time is far different than the PPS time, an
    570  1.28.4.1      yamt  * argument will ensue, and it's not clear who will lose.
    571  1.28.4.1      yamt  *
    572  1.28.4.1      yamt  * For uncompensated quartz crystal oscillators and nominal update
    573  1.28.4.1      yamt  * intervals less than 256 s, operation should be in phase-lock mode,
    574  1.28.4.1      yamt  * where the loop is disciplined to phase. For update intervals greater
    575  1.28.4.1      yamt  * than 1024 s, operation should be in frequency-lock mode, where the
    576  1.28.4.1      yamt  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
    577  1.28.4.1      yamt  * is selected by the STA_MODE status bit.
    578  1.28.4.1      yamt  *
    579  1.28.4.1      yamt  * Note: splclock() is in effect.
    580  1.28.4.1      yamt  */
    581  1.28.4.1      yamt void
    582  1.28.4.1      yamt hardupdate(long offset)
    583  1.28.4.1      yamt {
    584  1.28.4.1      yamt 	long mtemp;
    585  1.28.4.1      yamt 	l_fp ftemp;
    586  1.28.4.1      yamt 
    587  1.28.4.1      yamt 	/*
    588  1.28.4.1      yamt 	 * Select how the phase is to be controlled and from which
    589  1.28.4.1      yamt 	 * source. If the PPS signal is present and enabled to
    590  1.28.4.1      yamt 	 * discipline the time, the PPS offset is used; otherwise, the
    591  1.28.4.1      yamt 	 * argument offset is used.
    592  1.28.4.1      yamt 	 */
    593  1.28.4.1      yamt 	if (!(time_status & STA_PLL))
    594  1.28.4.1      yamt 		return;
    595  1.28.4.1      yamt 	if (!(time_status & STA_PPSTIME && time_status &
    596  1.28.4.1      yamt 	    STA_PPSSIGNAL)) {
    597  1.28.4.1      yamt 		if (offset > MAXPHASE)
    598  1.28.4.1      yamt 			time_monitor = MAXPHASE;
    599  1.28.4.1      yamt 		else if (offset < -MAXPHASE)
    600  1.28.4.1      yamt 			time_monitor = -MAXPHASE;
    601  1.28.4.1      yamt 		else
    602  1.28.4.1      yamt 			time_monitor = offset;
    603  1.28.4.1      yamt 		L_LINT(time_offset, time_monitor);
    604  1.28.4.1      yamt 	}
    605  1.28.4.1      yamt 
    606  1.28.4.1      yamt 	/*
    607  1.28.4.1      yamt 	 * Select how the frequency is to be controlled and in which
    608  1.28.4.1      yamt 	 * mode (PLL or FLL). If the PPS signal is present and enabled
    609  1.28.4.1      yamt 	 * to discipline the frequency, the PPS frequency is used;
    610  1.28.4.1      yamt 	 * otherwise, the argument offset is used to compute it.
    611  1.28.4.1      yamt 	 */
    612  1.28.4.1      yamt 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
    613  1.28.4.1      yamt 		time_reftime = time_second;
    614  1.28.4.1      yamt 		return;
    615  1.28.4.1      yamt 	}
    616  1.28.4.1      yamt 	if (time_status & STA_FREQHOLD || time_reftime == 0)
    617  1.28.4.1      yamt 		time_reftime = time_second;
    618  1.28.4.1      yamt 	mtemp = time_second - time_reftime;
    619  1.28.4.1      yamt 	L_LINT(ftemp, time_monitor);
    620  1.28.4.1      yamt 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
    621  1.28.4.1      yamt 	L_MPY(ftemp, mtemp);
    622  1.28.4.1      yamt 	L_ADD(time_freq, ftemp);
    623  1.28.4.1      yamt 	time_status &= ~STA_MODE;
    624  1.28.4.1      yamt 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
    625  1.28.4.1      yamt 	    MAXSEC)) {
    626  1.28.4.1      yamt 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
    627  1.28.4.1      yamt 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
    628  1.28.4.1      yamt 		L_ADD(time_freq, ftemp);
    629  1.28.4.1      yamt 		time_status |= STA_MODE;
    630  1.28.4.1      yamt 	}
    631  1.28.4.1      yamt 	time_reftime = time_second;
    632  1.28.4.1      yamt 	if (L_GINT(time_freq) > MAXFREQ)
    633  1.28.4.1      yamt 		L_LINT(time_freq, MAXFREQ);
    634  1.28.4.1      yamt 	else if (L_GINT(time_freq) < -MAXFREQ)
    635  1.28.4.1      yamt 		L_LINT(time_freq, -MAXFREQ);
    636  1.28.4.1      yamt }
    637  1.28.4.1      yamt 
    638  1.28.4.1      yamt #ifdef PPS_SYNC
    639  1.28.4.1      yamt /*
    640  1.28.4.1      yamt  * hardpps() - discipline CPU clock oscillator to external PPS signal
    641  1.28.4.1      yamt  *
    642  1.28.4.1      yamt  * This routine is called at each PPS interrupt in order to discipline
    643  1.28.4.1      yamt  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
    644  1.28.4.1      yamt  * and leaves it in a handy spot for the hardclock() routine. It
    645  1.28.4.1      yamt  * integrates successive PPS phase differences and calculates the
    646  1.28.4.1      yamt  * frequency offset. This is used in hardclock() to discipline the CPU
    647  1.28.4.1      yamt  * clock oscillator so that intrinsic frequency error is cancelled out.
    648  1.28.4.1      yamt  * The code requires the caller to capture the time and hardware counter
    649  1.28.4.1      yamt  * value at the on-time PPS signal transition.
    650  1.28.4.1      yamt  *
    651  1.28.4.1      yamt  * Note that, on some Unix systems, this routine runs at an interrupt
    652  1.28.4.1      yamt  * priority level higher than the timer interrupt routine hardclock().
    653  1.28.4.1      yamt  * Therefore, the variables used are distinct from the hardclock()
    654  1.28.4.1      yamt  * variables, except for certain exceptions: The PPS frequency pps_freq
    655  1.28.4.1      yamt  * and phase pps_offset variables are determined by this routine and
    656  1.28.4.1      yamt  * updated atomically. The time_tolerance variable can be considered a
    657  1.28.4.1      yamt  * constant, since it is infrequently changed, and then only when the
    658  1.28.4.1      yamt  * PPS signal is disabled. The watchdog counter pps_valid is updated
    659  1.28.4.1      yamt  * once per second by hardclock() and is atomically cleared in this
    660  1.28.4.1      yamt  * routine.
    661  1.28.4.1      yamt  */
    662  1.28.4.1      yamt void
    663  1.28.4.1      yamt hardpps(struct timespec *tsp,		/* time at PPS */
    664  1.28.4.1      yamt 	long nsec			/* hardware counter at PPS */)
    665  1.28.4.1      yamt {
    666  1.28.4.1      yamt 	long u_sec, u_nsec, v_nsec; /* temps */
    667  1.28.4.1      yamt 	l_fp ftemp;
    668  1.28.4.1      yamt 
    669  1.28.4.1      yamt 	/*
    670  1.28.4.1      yamt 	 * The signal is first processed by a range gate and frequency
    671  1.28.4.1      yamt 	 * discriminator. The range gate rejects noise spikes outside
    672  1.28.4.1      yamt 	 * the range +-500 us. The frequency discriminator rejects input
    673  1.28.4.1      yamt 	 * signals with apparent frequency outside the range 1 +-500
    674  1.28.4.1      yamt 	 * PPM. If two hits occur in the same second, we ignore the
    675  1.28.4.1      yamt 	 * later hit; if not and a hit occurs outside the range gate,
    676  1.28.4.1      yamt 	 * keep the later hit for later comparison, but do not process
    677  1.28.4.1      yamt 	 * it.
    678  1.28.4.1      yamt 	 */
    679  1.28.4.1      yamt 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
    680  1.28.4.1      yamt 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
    681  1.28.4.1      yamt 	pps_valid = PPS_VALID;
    682  1.28.4.1      yamt 	u_sec = tsp->tv_sec;
    683  1.28.4.1      yamt 	u_nsec = tsp->tv_nsec;
    684  1.28.4.1      yamt 	if (u_nsec >= (NANOSECOND >> 1)) {
    685  1.28.4.1      yamt 		u_nsec -= NANOSECOND;
    686  1.28.4.1      yamt 		u_sec++;
    687  1.28.4.1      yamt 	}
    688  1.28.4.1      yamt 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
    689  1.28.4.1      yamt 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
    690  1.28.4.1      yamt 	    MAXFREQ)
    691  1.28.4.1      yamt 		return;
    692  1.28.4.1      yamt 	pps_tf[2] = pps_tf[1];
    693  1.28.4.1      yamt 	pps_tf[1] = pps_tf[0];
    694  1.28.4.1      yamt 	pps_tf[0].tv_sec = u_sec;
    695  1.28.4.1      yamt 	pps_tf[0].tv_nsec = u_nsec;
    696  1.28.4.1      yamt 
    697  1.28.4.1      yamt 	/*
    698  1.28.4.1      yamt 	 * Compute the difference between the current and previous
    699  1.28.4.1      yamt 	 * counter values. If the difference exceeds 0.5 s, assume it
    700  1.28.4.1      yamt 	 * has wrapped around, so correct 1.0 s. If the result exceeds
    701  1.28.4.1      yamt 	 * the tick interval, the sample point has crossed a tick
    702  1.28.4.1      yamt 	 * boundary during the last second, so correct the tick. Very
    703  1.28.4.1      yamt 	 * intricate.
    704  1.28.4.1      yamt 	 */
    705  1.28.4.1      yamt 	u_nsec = nsec;
    706  1.28.4.1      yamt 	if (u_nsec > (NANOSECOND >> 1))
    707  1.28.4.1      yamt 		u_nsec -= NANOSECOND;
    708  1.28.4.1      yamt 	else if (u_nsec < -(NANOSECOND >> 1))
    709  1.28.4.1      yamt 		u_nsec += NANOSECOND;
    710  1.28.4.1      yamt 	pps_fcount += u_nsec;
    711  1.28.4.1      yamt 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
    712  1.28.4.1      yamt 		return;
    713  1.28.4.1      yamt 	time_status &= ~STA_PPSJITTER;
    714  1.28.4.1      yamt 
    715  1.28.4.1      yamt 	/*
    716  1.28.4.1      yamt 	 * A three-stage median filter is used to help denoise the PPS
    717  1.28.4.1      yamt 	 * time. The median sample becomes the time offset estimate; the
    718  1.28.4.1      yamt 	 * difference between the other two samples becomes the time
    719  1.28.4.1      yamt 	 * dispersion (jitter) estimate.
    720  1.28.4.1      yamt 	 */
    721  1.28.4.1      yamt 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
    722  1.28.4.1      yamt 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
    723  1.28.4.1      yamt 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
    724  1.28.4.1      yamt 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
    725  1.28.4.1      yamt 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
    726  1.28.4.1      yamt 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
    727  1.28.4.1      yamt 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
    728  1.28.4.1      yamt 		} else {
    729  1.28.4.1      yamt 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
    730  1.28.4.1      yamt 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
    731  1.28.4.1      yamt 		}
    732  1.28.4.1      yamt 	} else {
    733  1.28.4.1      yamt 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
    734  1.28.4.1      yamt 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
    735  1.28.4.1      yamt 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
    736  1.28.4.1      yamt 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
    737  1.28.4.1      yamt 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
    738  1.28.4.1      yamt 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
    739  1.28.4.1      yamt 		} else {
    740  1.28.4.1      yamt 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
    741  1.28.4.1      yamt 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
    742  1.28.4.1      yamt 		}
    743  1.28.4.1      yamt 	}
    744  1.28.4.1      yamt 
    745  1.28.4.1      yamt 	/*
    746  1.28.4.1      yamt 	 * Nominal jitter is due to PPS signal noise and interrupt
    747  1.28.4.1      yamt 	 * latency. If it exceeds the popcorn threshold, the sample is
    748  1.28.4.1      yamt 	 * discarded. otherwise, if so enabled, the time offset is
    749  1.28.4.1      yamt 	 * updated. We can tolerate a modest loss of data here without
    750  1.28.4.1      yamt 	 * much degrading time accuracy.
    751  1.28.4.1      yamt 	 */
    752  1.28.4.1      yamt 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
    753  1.28.4.1      yamt 		time_status |= STA_PPSJITTER;
    754  1.28.4.1      yamt 		pps_jitcnt++;
    755  1.28.4.1      yamt 	} else if (time_status & STA_PPSTIME) {
    756  1.28.4.1      yamt 		time_monitor = -v_nsec;
    757  1.28.4.1      yamt 		L_LINT(time_offset, time_monitor);
    758  1.28.4.1      yamt 	}
    759  1.28.4.1      yamt 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
    760  1.28.4.1      yamt 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
    761  1.28.4.1      yamt 	if (u_sec < (1 << pps_shift))
    762  1.28.4.1      yamt 		return;
    763  1.28.4.1      yamt 
    764  1.28.4.1      yamt 	/*
    765  1.28.4.1      yamt 	 * At the end of the calibration interval the difference between
    766  1.28.4.1      yamt 	 * the first and last counter values becomes the scaled
    767  1.28.4.1      yamt 	 * frequency. It will later be divided by the length of the
    768  1.28.4.1      yamt 	 * interval to determine the frequency update. If the frequency
    769  1.28.4.1      yamt 	 * exceeds a sanity threshold, or if the actual calibration
    770  1.28.4.1      yamt 	 * interval is not equal to the expected length, the data are
    771  1.28.4.1      yamt 	 * discarded. We can tolerate a modest loss of data here without
    772  1.28.4.1      yamt 	 * much degrading frequency accuracy.
    773  1.28.4.1      yamt 	 */
    774  1.28.4.1      yamt 	pps_calcnt++;
    775  1.28.4.1      yamt 	v_nsec = -pps_fcount;
    776  1.28.4.1      yamt 	pps_lastsec = pps_tf[0].tv_sec;
    777  1.28.4.1      yamt 	pps_fcount = 0;
    778  1.28.4.1      yamt 	u_nsec = MAXFREQ << pps_shift;
    779  1.28.4.1      yamt 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
    780  1.28.4.1      yamt 	    pps_shift)) {
    781  1.28.4.1      yamt 		time_status |= STA_PPSERROR;
    782  1.28.4.1      yamt 		pps_errcnt++;
    783  1.28.4.1      yamt 		return;
    784  1.28.4.1      yamt 	}
    785  1.28.4.1      yamt 
    786  1.28.4.1      yamt 	/*
    787  1.28.4.1      yamt 	 * Here the raw frequency offset and wander (stability) is
    788  1.28.4.1      yamt 	 * calculated. If the wander is less than the wander threshold
    789  1.28.4.1      yamt 	 * for four consecutive averaging intervals, the interval is
    790  1.28.4.1      yamt 	 * doubled; if it is greater than the threshold for four
    791  1.28.4.1      yamt 	 * consecutive intervals, the interval is halved. The scaled
    792  1.28.4.1      yamt 	 * frequency offset is converted to frequency offset. The
    793  1.28.4.1      yamt 	 * stability metric is calculated as the average of recent
    794  1.28.4.1      yamt 	 * frequency changes, but is used only for performance
    795  1.28.4.1      yamt 	 * monitoring.
    796  1.28.4.1      yamt 	 */
    797  1.28.4.1      yamt 	L_LINT(ftemp, v_nsec);
    798  1.28.4.1      yamt 	L_RSHIFT(ftemp, pps_shift);
    799  1.28.4.1      yamt 	L_SUB(ftemp, pps_freq);
    800  1.28.4.1      yamt 	u_nsec = L_GINT(ftemp);
    801  1.28.4.1      yamt 	if (u_nsec > PPS_MAXWANDER) {
    802  1.28.4.1      yamt 		L_LINT(ftemp, PPS_MAXWANDER);
    803  1.28.4.1      yamt 		pps_intcnt--;
    804  1.28.4.1      yamt 		time_status |= STA_PPSWANDER;
    805  1.28.4.1      yamt 		pps_stbcnt++;
    806  1.28.4.1      yamt 	} else if (u_nsec < -PPS_MAXWANDER) {
    807  1.28.4.1      yamt 		L_LINT(ftemp, -PPS_MAXWANDER);
    808  1.28.4.1      yamt 		pps_intcnt--;
    809  1.28.4.1      yamt 		time_status |= STA_PPSWANDER;
    810  1.28.4.1      yamt 		pps_stbcnt++;
    811  1.28.4.1      yamt 	} else {
    812  1.28.4.1      yamt 		pps_intcnt++;
    813  1.28.4.1      yamt 	}
    814  1.28.4.1      yamt 	if (pps_intcnt >= 4) {
    815  1.28.4.1      yamt 		pps_intcnt = 4;
    816  1.28.4.1      yamt 		if (pps_shift < pps_shiftmax) {
    817  1.28.4.1      yamt 			pps_shift++;
    818  1.28.4.1      yamt 			pps_intcnt = 0;
    819  1.28.4.1      yamt 		}
    820  1.28.4.1      yamt 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
    821  1.28.4.1      yamt 		pps_intcnt = -4;
    822  1.28.4.1      yamt 		if (pps_shift > PPS_FAVG) {
    823  1.28.4.1      yamt 			pps_shift--;
    824  1.28.4.1      yamt 			pps_intcnt = 0;
    825  1.28.4.1      yamt 		}
    826  1.28.4.1      yamt 	}
    827  1.28.4.1      yamt 	if (u_nsec < 0)
    828  1.28.4.1      yamt 		u_nsec = -u_nsec;
    829  1.28.4.1      yamt 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
    830  1.28.4.1      yamt 
    831  1.28.4.1      yamt 	/*
    832  1.28.4.1      yamt 	 * The PPS frequency is recalculated and clamped to the maximum
    833  1.28.4.1      yamt 	 * MAXFREQ. If enabled, the system clock frequency is updated as
    834  1.28.4.1      yamt 	 * well.
    835  1.28.4.1      yamt 	 */
    836  1.28.4.1      yamt 	L_ADD(pps_freq, ftemp);
    837  1.28.4.1      yamt 	u_nsec = L_GINT(pps_freq);
    838  1.28.4.1      yamt 	if (u_nsec > MAXFREQ)
    839  1.28.4.1      yamt 		L_LINT(pps_freq, MAXFREQ);
    840  1.28.4.1      yamt 	else if (u_nsec < -MAXFREQ)
    841  1.28.4.1      yamt 		L_LINT(pps_freq, -MAXFREQ);
    842  1.28.4.1      yamt 	if (time_status & STA_PPSFREQ)
    843  1.28.4.1      yamt 		time_freq = pps_freq;
    844  1.28.4.1      yamt }
    845  1.28.4.1      yamt #endif /* PPS_SYNC */
    846  1.28.4.1      yamt #endif /* NTP */
    847       1.1  jonathan 
    848  1.28.4.1      yamt #ifdef NTP
    849  1.28.4.1      yamt int
    850  1.28.4.1      yamt ntp_timestatus()
    851       1.1  jonathan {
    852       1.1  jonathan 	/*
    853       1.1  jonathan 	 * Status word error decode. If any of these conditions
    854       1.1  jonathan 	 * occur, an error is returned, instead of the status
    855       1.1  jonathan 	 * word. Most applications will care only about the fact
    856       1.1  jonathan 	 * the system clock may not be trusted, not about the
    857       1.1  jonathan 	 * details.
    858       1.1  jonathan 	 *
    859       1.1  jonathan 	 * Hardware or software error
    860       1.1  jonathan 	 */
    861       1.1  jonathan 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    862       1.1  jonathan 
    863       1.1  jonathan 	/*
    864       1.1  jonathan 	 * PPS signal lost when either time or frequency
    865       1.1  jonathan 	 * synchronization requested
    866       1.1  jonathan 	 */
    867  1.28.4.1      yamt 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    868  1.28.4.1      yamt 	     !(time_status & STA_PPSSIGNAL)) ||
    869       1.1  jonathan 
    870       1.1  jonathan 	/*
    871       1.1  jonathan 	 * PPS jitter exceeded when time synchronization
    872       1.1  jonathan 	 * requested
    873       1.1  jonathan 	 */
    874  1.28.4.1      yamt 	    (time_status & STA_PPSTIME &&
    875  1.28.4.1      yamt 	     time_status & STA_PPSJITTER) ||
    876       1.1  jonathan 
    877       1.1  jonathan 	/*
    878       1.1  jonathan 	 * PPS wander exceeded or calibration error when
    879       1.1  jonathan 	 * frequency synchronization requested
    880       1.1  jonathan 	 */
    881  1.28.4.1      yamt 	    (time_status & STA_PPSFREQ &&
    882  1.28.4.1      yamt 	     time_status & (STA_PPSWANDER | STA_PPSERROR)))
    883  1.28.4.1      yamt 		return (TIME_ERROR);
    884       1.1  jonathan 	else
    885  1.28.4.1      yamt 		return (time_state);
    886  1.28.4.1      yamt }
    887  1.28.4.1      yamt 
    888  1.28.4.1      yamt /*ARGSUSED*/
    889  1.28.4.1      yamt /*
    890  1.28.4.1      yamt  * ntp_gettime() - NTP user application interface
    891  1.28.4.1      yamt  */
    892  1.28.4.1      yamt int
    893  1.28.4.6      yamt sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
    894  1.28.4.1      yamt {
    895  1.28.4.6      yamt 	/* {
    896  1.28.4.1      yamt 		syscallarg(struct ntptimeval *) ntvp;
    897  1.28.4.6      yamt 	} */
    898  1.28.4.1      yamt 	struct ntptimeval ntv;
    899  1.28.4.1      yamt 	int error = 0;
    900  1.28.4.1      yamt 
    901  1.28.4.1      yamt 	if (SCARG(uap, ntvp)) {
    902  1.28.4.1      yamt 		ntp_gettime(&ntv);
    903  1.28.4.1      yamt 
    904  1.28.4.4      yamt 		error = copyout((void *)&ntv, (void *)SCARG(uap, ntvp),
    905  1.28.4.1      yamt 				sizeof(ntv));
    906  1.28.4.1      yamt 	}
    907  1.28.4.1      yamt 	if (!error) {
    908  1.28.4.1      yamt 		*retval = ntp_timestatus();
    909  1.28.4.1      yamt 	}
    910  1.28.4.1      yamt 	return(error);
    911  1.28.4.1      yamt }
    912  1.28.4.1      yamt 
    913  1.28.4.1      yamt #ifdef COMPAT_30
    914  1.28.4.1      yamt int
    915  1.28.4.6      yamt compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
    916  1.28.4.1      yamt {
    917  1.28.4.6      yamt 	/* {
    918  1.28.4.1      yamt 		syscallarg(struct ntptimeval30 *) ontvp;
    919  1.28.4.6      yamt 	} */
    920  1.28.4.1      yamt 	struct ntptimeval ntv;
    921  1.28.4.1      yamt 	struct ntptimeval30 ontv;
    922  1.28.4.1      yamt 	int error = 0;
    923  1.28.4.1      yamt 
    924  1.28.4.1      yamt 	if (SCARG(uap, ntvp)) {
    925  1.28.4.1      yamt 		ntp_gettime(&ntv);
    926  1.28.4.1      yamt 		TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
    927  1.28.4.1      yamt 		ontv.maxerror = ntv.maxerror;
    928  1.28.4.1      yamt 		ontv.esterror = ntv.esterror;
    929  1.28.4.1      yamt 
    930  1.28.4.4      yamt 		error = copyout((void *)&ontv, (void *)SCARG(uap, ntvp),
    931  1.28.4.1      yamt 				sizeof(ontv));
    932  1.28.4.1      yamt  	}
    933  1.28.4.1      yamt 	if (!error)
    934  1.28.4.1      yamt 		*retval = ntp_timestatus();
    935  1.28.4.1      yamt 
    936  1.28.4.1      yamt 	return (error);
    937  1.28.4.1      yamt }
    938  1.28.4.1      yamt #endif
    939  1.28.4.1      yamt 
    940  1.28.4.1      yamt /*
    941  1.28.4.1      yamt  * return information about kernel precision timekeeping
    942  1.28.4.1      yamt  */
    943  1.28.4.1      yamt static int
    944  1.28.4.1      yamt sysctl_kern_ntptime(SYSCTLFN_ARGS)
    945  1.28.4.1      yamt {
    946  1.28.4.1      yamt 	struct sysctlnode node;
    947  1.28.4.1      yamt 	struct ntptimeval ntv;
    948  1.28.4.1      yamt 
    949  1.28.4.1      yamt 	ntp_gettime(&ntv);
    950      1.25    atatat 
    951      1.25    atatat 	node = *rnode;
    952      1.25    atatat 	node.sysctl_data = &ntv;
    953      1.25    atatat 	node.sysctl_size = sizeof(ntv);
    954      1.25    atatat 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
    955      1.25    atatat }
    956      1.25    atatat 
    957      1.25    atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
    958      1.25    atatat {
    959      1.25    atatat 
    960      1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
    961      1.26    atatat 		       CTLFLAG_PERMANENT,
    962      1.25    atatat 		       CTLTYPE_NODE, "kern", NULL,
    963      1.25    atatat 		       NULL, 0, NULL, 0,
    964      1.25    atatat 		       CTL_KERN, CTL_EOL);
    965      1.25    atatat 
    966      1.26    atatat 	sysctl_createv(clog, 0, NULL, NULL,
    967      1.26    atatat 		       CTLFLAG_PERMANENT,
    968      1.27    atatat 		       CTLTYPE_STRUCT, "ntptime",
    969      1.27    atatat 		       SYSCTL_DESCR("Kernel clock values for NTP"),
    970      1.25    atatat 		       sysctl_kern_ntptime, 0, NULL,
    971      1.25    atatat 		       sizeof(struct ntptimeval),
    972      1.25    atatat 		       CTL_KERN, KERN_NTPTIME, CTL_EOL);
    973       1.1  jonathan }
    974       1.4   thorpej #else /* !NTP */
    975      1.13     bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
    976      1.13     bjh21 
    977       1.4   thorpej int
    978  1.28.4.6      yamt sys___ntp_gettime30(struct lwp *l, const struct sys___ntp_gettime30_args *uap, register_t *retval)
    979       1.4   thorpej {
    980      1.19    simonb 
    981       1.4   thorpej 	return(ENOSYS);
    982       1.4   thorpej }
    983  1.28.4.1      yamt 
    984  1.28.4.1      yamt #ifdef COMPAT_30
    985  1.28.4.1      yamt int
    986  1.28.4.6      yamt compat_30_sys_ntp_gettime(struct lwp *l, const struct compat_30_sys_ntp_gettime_args *uap, register_t *retval)
    987  1.28.4.1      yamt {
    988  1.28.4.1      yamt 
    989  1.28.4.1      yamt  	return(ENOSYS);
    990  1.28.4.1      yamt }
    991  1.28.4.1      yamt #endif
    992      1.13     bjh21 #endif /* !NTP */
    993