kern_ntptime.c revision 1.29.6.1 1 1.29.6.1 simonb /* $NetBSD: kern_ntptime.c,v 1.29.6.1 2006/02/04 12:47:20 simonb Exp $ */
2 1.29.6.1 simonb #include <sys/types.h> /* XXX to get __HAVE_TIMECOUNTER, remove
3 1.29.6.1 simonb after all ports are converted. */
4 1.29.6.1 simonb #ifdef __HAVE_TIMECOUNTER
5 1.29.6.1 simonb
6 1.29.6.1 simonb /*-
7 1.29.6.1 simonb ***********************************************************************
8 1.29.6.1 simonb * *
9 1.29.6.1 simonb * Copyright (c) David L. Mills 1993-2001 *
10 1.29.6.1 simonb * *
11 1.29.6.1 simonb * Permission to use, copy, modify, and distribute this software and *
12 1.29.6.1 simonb * its documentation for any purpose and without fee is hereby *
13 1.29.6.1 simonb * granted, provided that the above copyright notice appears in all *
14 1.29.6.1 simonb * copies and that both the copyright notice and this permission *
15 1.29.6.1 simonb * notice appear in supporting documentation, and that the name *
16 1.29.6.1 simonb * University of Delaware not be used in advertising or publicity *
17 1.29.6.1 simonb * pertaining to distribution of the software without specific, *
18 1.29.6.1 simonb * written prior permission. The University of Delaware makes no *
19 1.29.6.1 simonb * representations about the suitability this software for any *
20 1.29.6.1 simonb * purpose. It is provided "as is" without express or implied *
21 1.29.6.1 simonb * warranty. *
22 1.29.6.1 simonb * *
23 1.29.6.1 simonb **********************************************************************/
24 1.1 jonathan
25 1.29.6.1 simonb /*
26 1.29.6.1 simonb * Adapted from the original sources for FreeBSD and timecounters by:
27 1.29.6.1 simonb * Poul-Henning Kamp <phk (at) FreeBSD.org>.
28 1.29.6.1 simonb *
29 1.29.6.1 simonb * The 32bit version of the "LP" macros seems a bit past its "sell by"
30 1.29.6.1 simonb * date so I have retained only the 64bit version and included it directly
31 1.29.6.1 simonb * in this file.
32 1.29.6.1 simonb *
33 1.29.6.1 simonb * Only minor changes done to interface with the timecounters over in
34 1.29.6.1 simonb * sys/kern/kern_clock.c. Some of the comments below may be (even more)
35 1.29.6.1 simonb * confusing and/or plain wrong in that context.
36 1.29.6.1 simonb */
37 1.29.6.1 simonb
38 1.29.6.1 simonb #include <sys/cdefs.h>
39 1.29.6.1 simonb /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 1.29.6.1 simonb __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.1 2006/02/04 12:47:20 simonb Exp $");
41 1.29.6.1 simonb
42 1.29.6.1 simonb #include "opt_ntp.h"
43 1.29.6.1 simonb
44 1.29.6.1 simonb #include <sys/param.h>
45 1.29.6.1 simonb #include <sys/resourcevar.h>
46 1.29.6.1 simonb #include <sys/systm.h>
47 1.29.6.1 simonb #include <sys/kernel.h>
48 1.29.6.1 simonb #include <sys/proc.h>
49 1.29.6.1 simonb #include <sys/sysctl.h>
50 1.29.6.1 simonb #include <sys/timex.h>
51 1.29.6.1 simonb #include <sys/vnode.h>
52 1.29.6.1 simonb
53 1.29.6.1 simonb #include <sys/mount.h>
54 1.29.6.1 simonb #include <sys/sa.h>
55 1.29.6.1 simonb #include <sys/syscallargs.h>
56 1.29.6.1 simonb
57 1.29.6.1 simonb #include <machine/cpu.h>
58 1.29.6.1 simonb
59 1.29.6.1 simonb #ifdef NTP
60 1.29.6.1 simonb /*
61 1.29.6.1 simonb * Single-precision macros for 64-bit machines
62 1.29.6.1 simonb */
63 1.29.6.1 simonb typedef int64_t l_fp;
64 1.29.6.1 simonb #define L_ADD(v, u) ((v) += (u))
65 1.29.6.1 simonb #define L_SUB(v, u) ((v) -= (u))
66 1.29.6.1 simonb #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
67 1.29.6.1 simonb #define L_NEG(v) ((v) = -(v))
68 1.29.6.1 simonb #define L_RSHIFT(v, n) \
69 1.29.6.1 simonb do { \
70 1.29.6.1 simonb if ((v) < 0) \
71 1.29.6.1 simonb (v) = -(-(v) >> (n)); \
72 1.29.6.1 simonb else \
73 1.29.6.1 simonb (v) = (v) >> (n); \
74 1.29.6.1 simonb } while (0)
75 1.29.6.1 simonb #define L_MPY(v, a) ((v) *= (a))
76 1.29.6.1 simonb #define L_CLR(v) ((v) = 0)
77 1.29.6.1 simonb #define L_ISNEG(v) ((v) < 0)
78 1.29.6.1 simonb #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
79 1.29.6.1 simonb #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
80 1.29.6.1 simonb
81 1.29.6.1 simonb /*
82 1.29.6.1 simonb * Generic NTP kernel interface
83 1.29.6.1 simonb *
84 1.29.6.1 simonb * These routines constitute the Network Time Protocol (NTP) interfaces
85 1.29.6.1 simonb * for user and daemon application programs. The ntp_gettime() routine
86 1.29.6.1 simonb * provides the time, maximum error (synch distance) and estimated error
87 1.29.6.1 simonb * (dispersion) to client user application programs. The ntp_adjtime()
88 1.29.6.1 simonb * routine is used by the NTP daemon to adjust the system clock to an
89 1.29.6.1 simonb * externally derived time. The time offset and related variables set by
90 1.29.6.1 simonb * this routine are used by other routines in this module to adjust the
91 1.29.6.1 simonb * phase and frequency of the clock discipline loop which controls the
92 1.29.6.1 simonb * system clock.
93 1.29.6.1 simonb *
94 1.29.6.1 simonb * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
95 1.29.6.1 simonb * defined), the time at each tick interrupt is derived directly from
96 1.29.6.1 simonb * the kernel time variable. When the kernel time is reckoned in
97 1.29.6.1 simonb * microseconds, (NTP_NANO undefined), the time is derived from the
98 1.29.6.1 simonb * kernel time variable together with a variable representing the
99 1.29.6.1 simonb * leftover nanoseconds at the last tick interrupt. In either case, the
100 1.29.6.1 simonb * current nanosecond time is reckoned from these values plus an
101 1.29.6.1 simonb * interpolated value derived by the clock routines in another
102 1.29.6.1 simonb * architecture-specific module. The interpolation can use either a
103 1.29.6.1 simonb * dedicated counter or a processor cycle counter (PCC) implemented in
104 1.29.6.1 simonb * some architectures.
105 1.29.6.1 simonb *
106 1.29.6.1 simonb * Note that all routines must run at priority splclock or higher.
107 1.29.6.1 simonb */
108 1.29.6.1 simonb /*
109 1.29.6.1 simonb * Phase/frequency-lock loop (PLL/FLL) definitions
110 1.29.6.1 simonb *
111 1.29.6.1 simonb * The nanosecond clock discipline uses two variable types, time
112 1.29.6.1 simonb * variables and frequency variables. Both types are represented as 64-
113 1.29.6.1 simonb * bit fixed-point quantities with the decimal point between two 32-bit
114 1.29.6.1 simonb * halves. On a 32-bit machine, each half is represented as a single
115 1.29.6.1 simonb * word and mathematical operations are done using multiple-precision
116 1.29.6.1 simonb * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
117 1.29.6.1 simonb * used.
118 1.29.6.1 simonb *
119 1.29.6.1 simonb * A time variable is a signed 64-bit fixed-point number in ns and
120 1.29.6.1 simonb * fraction. It represents the remaining time offset to be amortized
121 1.29.6.1 simonb * over succeeding tick interrupts. The maximum time offset is about
122 1.29.6.1 simonb * 0.5 s and the resolution is about 2.3e-10 ns.
123 1.29.6.1 simonb *
124 1.29.6.1 simonb * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
125 1.29.6.1 simonb * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
126 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 1.29.6.1 simonb * |s s s| ns |
128 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 1.29.6.1 simonb * | fraction |
130 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 1.29.6.1 simonb *
132 1.29.6.1 simonb * A frequency variable is a signed 64-bit fixed-point number in ns/s
133 1.29.6.1 simonb * and fraction. It represents the ns and fraction to be added to the
134 1.29.6.1 simonb * kernel time variable at each second. The maximum frequency offset is
135 1.29.6.1 simonb * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
136 1.29.6.1 simonb *
137 1.29.6.1 simonb * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
138 1.29.6.1 simonb * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
139 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140 1.29.6.1 simonb * |s s s s s s s s s s s s s| ns/s |
141 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142 1.29.6.1 simonb * | fraction |
143 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
144 1.29.6.1 simonb */
145 1.29.6.1 simonb /*
146 1.29.6.1 simonb * The following variables establish the state of the PLL/FLL and the
147 1.29.6.1 simonb * residual time and frequency offset of the local clock.
148 1.29.6.1 simonb */
149 1.29.6.1 simonb #define SHIFT_PLL 4 /* PLL loop gain (shift) */
150 1.29.6.1 simonb #define SHIFT_FLL 2 /* FLL loop gain (shift) */
151 1.29.6.1 simonb
152 1.29.6.1 simonb static int time_state = TIME_OK; /* clock state */
153 1.29.6.1 simonb static int time_status = STA_UNSYNC; /* clock status bits */
154 1.29.6.1 simonb static long time_tai; /* TAI offset (s) */
155 1.29.6.1 simonb static long time_monitor; /* last time offset scaled (ns) */
156 1.29.6.1 simonb static long time_constant; /* poll interval (shift) (s) */
157 1.29.6.1 simonb static long time_precision = 1; /* clock precision (ns) */
158 1.29.6.1 simonb static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
159 1.29.6.1 simonb static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
160 1.29.6.1 simonb static long time_reftime; /* time at last adjustment (s) */
161 1.29.6.1 simonb static l_fp time_offset; /* time offset (ns) */
162 1.29.6.1 simonb static l_fp time_freq; /* frequency offset (ns/s) */
163 1.29.6.1 simonb static l_fp time_adj; /* tick adjust (ns/s) */
164 1.29.6.1 simonb
165 1.29.6.1 simonb static int64_t time_adjtime; /* correction from adjtime(2) (usec) */
166 1.29.6.1 simonb
167 1.29.6.1 simonb extern int time_adjusted; /* ntp might have changed the system time */
168 1.29.6.1 simonb
169 1.29.6.1 simonb #ifdef PPS_SYNC
170 1.29.6.1 simonb /*
171 1.29.6.1 simonb * The following variables are used when a pulse-per-second (PPS) signal
172 1.29.6.1 simonb * is available and connected via a modem control lead. They establish
173 1.29.6.1 simonb * the engineering parameters of the clock discipline loop when
174 1.29.6.1 simonb * controlled by the PPS signal.
175 1.29.6.1 simonb */
176 1.29.6.1 simonb #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
177 1.29.6.1 simonb #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
178 1.29.6.1 simonb #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
179 1.29.6.1 simonb #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
180 1.29.6.1 simonb #define PPS_VALID 120 /* PPS signal watchdog max (s) */
181 1.29.6.1 simonb #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
182 1.29.6.1 simonb #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
183 1.29.6.1 simonb
184 1.29.6.1 simonb static struct timespec pps_tf[3]; /* phase median filter */
185 1.29.6.1 simonb static l_fp pps_freq; /* scaled frequency offset (ns/s) */
186 1.29.6.1 simonb static long pps_fcount; /* frequency accumulator */
187 1.29.6.1 simonb static long pps_jitter; /* nominal jitter (ns) */
188 1.29.6.1 simonb static long pps_stabil; /* nominal stability (scaled ns/s) */
189 1.29.6.1 simonb static long pps_lastsec; /* time at last calibration (s) */
190 1.29.6.1 simonb static int pps_valid; /* signal watchdog counter */
191 1.29.6.1 simonb static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
192 1.29.6.1 simonb static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
193 1.29.6.1 simonb static int pps_intcnt; /* wander counter */
194 1.29.6.1 simonb
195 1.29.6.1 simonb /*
196 1.29.6.1 simonb * PPS signal quality monitors
197 1.29.6.1 simonb */
198 1.29.6.1 simonb static long pps_calcnt; /* calibration intervals */
199 1.29.6.1 simonb static long pps_jitcnt; /* jitter limit exceeded */
200 1.29.6.1 simonb static long pps_stbcnt; /* stability limit exceeded */
201 1.29.6.1 simonb static long pps_errcnt; /* calibration errors */
202 1.29.6.1 simonb #endif /* PPS_SYNC */
203 1.29.6.1 simonb /*
204 1.29.6.1 simonb * End of phase/frequency-lock loop (PLL/FLL) definitions
205 1.29.6.1 simonb */
206 1.29.6.1 simonb
207 1.29.6.1 simonb static void hardupdate(long offset);
208 1.29.6.1 simonb
209 1.29.6.1 simonb /*ARGSUSED*/
210 1.29.6.1 simonb /*
211 1.29.6.1 simonb * ntp_gettime() - NTP user application interface
212 1.29.6.1 simonb */
213 1.29.6.1 simonb int
214 1.29.6.1 simonb sys_ntp_gettime(l, v, retval)
215 1.29.6.1 simonb struct lwp *l;
216 1.29.6.1 simonb void *v;
217 1.29.6.1 simonb register_t *retval;
218 1.29.6.1 simonb
219 1.29.6.1 simonb {
220 1.29.6.1 simonb struct sys_ntp_gettime_args /* {
221 1.29.6.1 simonb syscallarg(struct ntptimeval *) ntvp;
222 1.29.6.1 simonb } */ *uap = v;
223 1.29.6.1 simonb struct ntptimeval ntv;
224 1.29.6.1 simonb int error = 0;
225 1.29.6.1 simonb
226 1.29.6.1 simonb if (SCARG(uap, ntvp)) {
227 1.29.6.1 simonb nanotime(&ntv.time);
228 1.29.6.1 simonb ntv.maxerror = time_maxerror;
229 1.29.6.1 simonb ntv.esterror = time_esterror;
230 1.29.6.1 simonb ntv.tai = time_tai;
231 1.29.6.1 simonb ntv.time_state = time_state;
232 1.29.6.1 simonb
233 1.29.6.1 simonb error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
234 1.29.6.1 simonb sizeof(ntv));
235 1.29.6.1 simonb }
236 1.29.6.1 simonb if (!error) {
237 1.29.6.1 simonb
238 1.29.6.1 simonb /*
239 1.29.6.1 simonb * Status word error decode. If any of these conditions occur,
240 1.29.6.1 simonb * an error is returned, instead of the status word. Most
241 1.29.6.1 simonb * applications will care only about the fact the system clock
242 1.29.6.1 simonb * may not be trusted, not about the details.
243 1.29.6.1 simonb *
244 1.29.6.1 simonb * Hardware or software error
245 1.29.6.1 simonb */
246 1.29.6.1 simonb if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
247 1.29.6.1 simonb
248 1.29.6.1 simonb /*
249 1.29.6.1 simonb * PPS signal lost when either time or frequency synchronization
250 1.29.6.1 simonb * requested
251 1.29.6.1 simonb */
252 1.29.6.1 simonb (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
253 1.29.6.1 simonb !(time_status & STA_PPSSIGNAL)) ||
254 1.29.6.1 simonb
255 1.29.6.1 simonb /*
256 1.29.6.1 simonb * PPS jitter exceeded when time synchronization requested
257 1.29.6.1 simonb */
258 1.29.6.1 simonb (time_status & STA_PPSTIME &&
259 1.29.6.1 simonb time_status & STA_PPSJITTER) ||
260 1.29.6.1 simonb
261 1.29.6.1 simonb /*
262 1.29.6.1 simonb * PPS wander exceeded or calibration error when frequency
263 1.29.6.1 simonb * synchronization requested
264 1.29.6.1 simonb */
265 1.29.6.1 simonb (time_status & STA_PPSFREQ &&
266 1.29.6.1 simonb time_status & (STA_PPSWANDER | STA_PPSERROR)))
267 1.29.6.1 simonb ntv.time_state = TIME_ERROR;
268 1.29.6.1 simonb
269 1.29.6.1 simonb *retval = (register_t)ntv.time_state;
270 1.29.6.1 simonb }
271 1.29.6.1 simonb return(error);
272 1.29.6.1 simonb }
273 1.29.6.1 simonb
274 1.29.6.1 simonb /* ARGSUSED */
275 1.29.6.1 simonb /*
276 1.29.6.1 simonb * ntp_adjtime() - NTP daemon application interface
277 1.29.6.1 simonb */
278 1.29.6.1 simonb int
279 1.29.6.1 simonb sys_ntp_adjtime(l, v, retval)
280 1.29.6.1 simonb struct lwp *l;
281 1.29.6.1 simonb void *v;
282 1.29.6.1 simonb register_t *retval;
283 1.29.6.1 simonb {
284 1.29.6.1 simonb struct sys_ntp_adjtime_args /* {
285 1.29.6.1 simonb syscallarg(struct timex *) tp;
286 1.29.6.1 simonb } */ *uap = v;
287 1.29.6.1 simonb struct proc *p = l->l_proc;
288 1.29.6.1 simonb struct timex ntv;
289 1.29.6.1 simonb int error = 0;
290 1.29.6.1 simonb
291 1.29.6.1 simonb if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
292 1.29.6.1 simonb sizeof(ntv))) != 0)
293 1.29.6.1 simonb return (error);
294 1.29.6.1 simonb
295 1.29.6.1 simonb if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
296 1.29.6.1 simonb return (error);
297 1.29.6.1 simonb
298 1.29.6.1 simonb return (ntp_adjtime1(&ntv, v, retval));
299 1.29.6.1 simonb }
300 1.29.6.1 simonb
301 1.29.6.1 simonb int
302 1.29.6.1 simonb ntp_adjtime1(ntv, v, retval)
303 1.29.6.1 simonb struct timex *ntv;
304 1.29.6.1 simonb void *v;
305 1.29.6.1 simonb register_t *retval;
306 1.29.6.1 simonb {
307 1.29.6.1 simonb struct sys_ntp_adjtime_args /* {
308 1.29.6.1 simonb syscallarg(struct timex *) tp;
309 1.29.6.1 simonb } */ *uap = v;
310 1.29.6.1 simonb long freq;
311 1.29.6.1 simonb int modes;
312 1.29.6.1 simonb int s;
313 1.29.6.1 simonb int error = 0;
314 1.29.6.1 simonb
315 1.29.6.1 simonb /*
316 1.29.6.1 simonb * Update selected clock variables - only the superuser can
317 1.29.6.1 simonb * change anything. Note that there is no error checking here on
318 1.29.6.1 simonb * the assumption the superuser should know what it is doing.
319 1.29.6.1 simonb * Note that either the time constant or TAI offset are loaded
320 1.29.6.1 simonb * from the ntv.constant member, depending on the mode bits. If
321 1.29.6.1 simonb * the STA_PLL bit in the status word is cleared, the state and
322 1.29.6.1 simonb * status words are reset to the initial values at boot.
323 1.29.6.1 simonb */
324 1.29.6.1 simonb modes = ntv->modes;
325 1.29.6.1 simonb if (modes != 0)
326 1.29.6.1 simonb /* We need to save the system time during shutdown */
327 1.29.6.1 simonb time_adjusted |= 2;
328 1.29.6.1 simonb s = splclock();
329 1.29.6.1 simonb if (modes & MOD_MAXERROR)
330 1.29.6.1 simonb time_maxerror = ntv->maxerror;
331 1.29.6.1 simonb if (modes & MOD_ESTERROR)
332 1.29.6.1 simonb time_esterror = ntv->esterror;
333 1.29.6.1 simonb if (modes & MOD_STATUS) {
334 1.29.6.1 simonb if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
335 1.29.6.1 simonb time_state = TIME_OK;
336 1.29.6.1 simonb time_status = STA_UNSYNC;
337 1.29.6.1 simonb #ifdef PPS_SYNC
338 1.29.6.1 simonb pps_shift = PPS_FAVG;
339 1.29.6.1 simonb #endif /* PPS_SYNC */
340 1.29.6.1 simonb }
341 1.29.6.1 simonb time_status &= STA_RONLY;
342 1.29.6.1 simonb time_status |= ntv->status & ~STA_RONLY;
343 1.29.6.1 simonb }
344 1.29.6.1 simonb if (modes & MOD_TIMECONST) {
345 1.29.6.1 simonb if (ntv->constant < 0)
346 1.29.6.1 simonb time_constant = 0;
347 1.29.6.1 simonb else if (ntv->constant > MAXTC)
348 1.29.6.1 simonb time_constant = MAXTC;
349 1.29.6.1 simonb else
350 1.29.6.1 simonb time_constant = ntv->constant;
351 1.29.6.1 simonb }
352 1.29.6.1 simonb if (modes & MOD_TAI) {
353 1.29.6.1 simonb if (ntv->constant > 0) /* XXX zero & negative numbers ? */
354 1.29.6.1 simonb time_tai = ntv->constant;
355 1.29.6.1 simonb }
356 1.29.6.1 simonb #ifdef PPS_SYNC
357 1.29.6.1 simonb if (modes & MOD_PPSMAX) {
358 1.29.6.1 simonb if (ntv->shift < PPS_FAVG)
359 1.29.6.1 simonb pps_shiftmax = PPS_FAVG;
360 1.29.6.1 simonb else if (ntv->shift > PPS_FAVGMAX)
361 1.29.6.1 simonb pps_shiftmax = PPS_FAVGMAX;
362 1.29.6.1 simonb else
363 1.29.6.1 simonb pps_shiftmax = ntv.shift;
364 1.29.6.1 simonb }
365 1.29.6.1 simonb #endif /* PPS_SYNC */
366 1.29.6.1 simonb if (modes & MOD_NANO)
367 1.29.6.1 simonb time_status |= STA_NANO;
368 1.29.6.1 simonb if (modes & MOD_MICRO)
369 1.29.6.1 simonb time_status &= ~STA_NANO;
370 1.29.6.1 simonb if (modes & MOD_CLKB)
371 1.29.6.1 simonb time_status |= STA_CLK;
372 1.29.6.1 simonb if (modes & MOD_CLKA)
373 1.29.6.1 simonb time_status &= ~STA_CLK;
374 1.29.6.1 simonb if (modes & MOD_FREQUENCY) {
375 1.29.6.1 simonb freq = (ntv->freq * 1000LL) >> 16;
376 1.29.6.1 simonb if (freq > MAXFREQ)
377 1.29.6.1 simonb L_LINT(time_freq, MAXFREQ);
378 1.29.6.1 simonb else if (freq < -MAXFREQ)
379 1.29.6.1 simonb L_LINT(time_freq, -MAXFREQ);
380 1.29.6.1 simonb else {
381 1.29.6.1 simonb /*
382 1.29.6.1 simonb * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
383 1.29.6.1 simonb * time_freq is [ns/s * 2^32]
384 1.29.6.1 simonb */
385 1.29.6.1 simonb time_freq = ntv->freq * 1000LL * 65536LL;
386 1.29.6.1 simonb }
387 1.29.6.1 simonb #ifdef PPS_SYNC
388 1.29.6.1 simonb pps_freq = time_freq;
389 1.29.6.1 simonb #endif /* PPS_SYNC */
390 1.29.6.1 simonb }
391 1.29.6.1 simonb if (modes & MOD_OFFSET) {
392 1.29.6.1 simonb if (time_status & STA_NANO)
393 1.29.6.1 simonb hardupdate(ntv->offset);
394 1.29.6.1 simonb else
395 1.29.6.1 simonb hardupdate(ntv->offset * 1000);
396 1.29.6.1 simonb }
397 1.29.6.1 simonb
398 1.29.6.1 simonb /*
399 1.29.6.1 simonb * Retrieve all clock variables. Note that the TAI offset is
400 1.29.6.1 simonb * returned only by ntp_gettime();
401 1.29.6.1 simonb */
402 1.29.6.1 simonb if (time_status & STA_NANO)
403 1.29.6.1 simonb ntv->offset = L_GINT(time_offset);
404 1.29.6.1 simonb else
405 1.29.6.1 simonb ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
406 1.29.6.1 simonb ntv->freq = L_GINT((time_freq / 1000LL) << 16);
407 1.29.6.1 simonb ntv->maxerror = time_maxerror;
408 1.29.6.1 simonb ntv->esterror = time_esterror;
409 1.29.6.1 simonb ntv->status = time_status;
410 1.29.6.1 simonb ntv->constant = time_constant;
411 1.29.6.1 simonb if (time_status & STA_NANO)
412 1.29.6.1 simonb ntv->precision = time_precision;
413 1.29.6.1 simonb else
414 1.29.6.1 simonb ntv->precision = time_precision / 1000;
415 1.29.6.1 simonb ntv->tolerance = MAXFREQ * SCALE_PPM;
416 1.29.6.1 simonb #ifdef PPS_SYNC
417 1.29.6.1 simonb ntv->shift = pps_shift;
418 1.29.6.1 simonb ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
419 1.29.6.1 simonb if (time_status & STA_NANO)
420 1.29.6.1 simonb ntv->jitter = pps_jitter;
421 1.29.6.1 simonb else
422 1.29.6.1 simonb ntv->jitter = pps_jitter / 1000;
423 1.29.6.1 simonb ntv->stabil = pps_stabil;
424 1.29.6.1 simonb ntv->calcnt = pps_calcnt;
425 1.29.6.1 simonb ntv->errcnt = pps_errcnt;
426 1.29.6.1 simonb ntv->jitcnt = pps_jitcnt;
427 1.29.6.1 simonb ntv->stbcnt = pps_stbcnt;
428 1.29.6.1 simonb #endif /* PPS_SYNC */
429 1.29.6.1 simonb splx(s);
430 1.29.6.1 simonb
431 1.29.6.1 simonb error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
432 1.29.6.1 simonb if (!error) {
433 1.29.6.1 simonb
434 1.29.6.1 simonb /*
435 1.29.6.1 simonb * Status word error decode. See comments in
436 1.29.6.1 simonb * ntp_gettime() routine.
437 1.29.6.1 simonb */
438 1.29.6.1 simonb if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
439 1.29.6.1 simonb (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
440 1.29.6.1 simonb !(time_status & STA_PPSSIGNAL)) ||
441 1.29.6.1 simonb (time_status & STA_PPSTIME &&
442 1.29.6.1 simonb time_status & STA_PPSJITTER) ||
443 1.29.6.1 simonb (time_status & STA_PPSFREQ &&
444 1.29.6.1 simonb time_status & (STA_PPSWANDER | STA_PPSERROR))) {
445 1.29.6.1 simonb *retval = TIME_ERROR;
446 1.29.6.1 simonb } else
447 1.29.6.1 simonb *retval = (register_t)time_state;
448 1.29.6.1 simonb }
449 1.29.6.1 simonb return error;
450 1.29.6.1 simonb }
451 1.29.6.1 simonb
452 1.29.6.1 simonb /*
453 1.29.6.1 simonb * second_overflow() - called after ntp_tick_adjust()
454 1.29.6.1 simonb *
455 1.29.6.1 simonb * This routine is ordinarily called immediately following the above
456 1.29.6.1 simonb * routine ntp_tick_adjust(). While these two routines are normally
457 1.29.6.1 simonb * combined, they are separated here only for the purposes of
458 1.29.6.1 simonb * simulation.
459 1.29.6.1 simonb */
460 1.29.6.1 simonb void
461 1.29.6.1 simonb ntp_update_second(int64_t *adjustment, time_t *newsec)
462 1.29.6.1 simonb {
463 1.29.6.1 simonb int tickrate;
464 1.29.6.1 simonb l_fp ftemp; /* 32/64-bit temporary */
465 1.29.6.1 simonb
466 1.29.6.1 simonb /*
467 1.29.6.1 simonb * On rollover of the second both the nanosecond and microsecond
468 1.29.6.1 simonb * clocks are updated and the state machine cranked as
469 1.29.6.1 simonb * necessary. The phase adjustment to be used for the next
470 1.29.6.1 simonb * second is calculated and the maximum error is increased by
471 1.29.6.1 simonb * the tolerance.
472 1.29.6.1 simonb */
473 1.29.6.1 simonb time_maxerror += MAXFREQ / 1000;
474 1.29.6.1 simonb
475 1.29.6.1 simonb /*
476 1.29.6.1 simonb * Leap second processing. If in leap-insert state at
477 1.29.6.1 simonb * the end of the day, the system clock is set back one
478 1.29.6.1 simonb * second; if in leap-delete state, the system clock is
479 1.29.6.1 simonb * set ahead one second. The nano_time() routine or
480 1.29.6.1 simonb * external clock driver will insure that reported time
481 1.29.6.1 simonb * is always monotonic.
482 1.29.6.1 simonb */
483 1.29.6.1 simonb switch (time_state) {
484 1.29.6.1 simonb
485 1.29.6.1 simonb /*
486 1.29.6.1 simonb * No warning.
487 1.29.6.1 simonb */
488 1.29.6.1 simonb case TIME_OK:
489 1.29.6.1 simonb if (time_status & STA_INS)
490 1.29.6.1 simonb time_state = TIME_INS;
491 1.29.6.1 simonb else if (time_status & STA_DEL)
492 1.29.6.1 simonb time_state = TIME_DEL;
493 1.29.6.1 simonb break;
494 1.29.6.1 simonb
495 1.29.6.1 simonb /*
496 1.29.6.1 simonb * Insert second 23:59:60 following second
497 1.29.6.1 simonb * 23:59:59.
498 1.29.6.1 simonb */
499 1.29.6.1 simonb case TIME_INS:
500 1.29.6.1 simonb if (!(time_status & STA_INS))
501 1.29.6.1 simonb time_state = TIME_OK;
502 1.29.6.1 simonb else if ((*newsec) % 86400 == 0) {
503 1.29.6.1 simonb (*newsec)--;
504 1.29.6.1 simonb time_state = TIME_OOP;
505 1.29.6.1 simonb time_tai++;
506 1.29.6.1 simonb }
507 1.29.6.1 simonb break;
508 1.29.6.1 simonb
509 1.29.6.1 simonb /*
510 1.29.6.1 simonb * Delete second 23:59:59.
511 1.29.6.1 simonb */
512 1.29.6.1 simonb case TIME_DEL:
513 1.29.6.1 simonb if (!(time_status & STA_DEL))
514 1.29.6.1 simonb time_state = TIME_OK;
515 1.29.6.1 simonb else if (((*newsec) + 1) % 86400 == 0) {
516 1.29.6.1 simonb (*newsec)++;
517 1.29.6.1 simonb time_tai--;
518 1.29.6.1 simonb time_state = TIME_WAIT;
519 1.29.6.1 simonb }
520 1.29.6.1 simonb break;
521 1.29.6.1 simonb
522 1.29.6.1 simonb /*
523 1.29.6.1 simonb * Insert second in progress.
524 1.29.6.1 simonb */
525 1.29.6.1 simonb case TIME_OOP:
526 1.29.6.1 simonb time_state = TIME_WAIT;
527 1.29.6.1 simonb break;
528 1.29.6.1 simonb
529 1.29.6.1 simonb /*
530 1.29.6.1 simonb * Wait for status bits to clear.
531 1.29.6.1 simonb */
532 1.29.6.1 simonb case TIME_WAIT:
533 1.29.6.1 simonb if (!(time_status & (STA_INS | STA_DEL)))
534 1.29.6.1 simonb time_state = TIME_OK;
535 1.29.6.1 simonb }
536 1.29.6.1 simonb
537 1.29.6.1 simonb /*
538 1.29.6.1 simonb * Compute the total time adjustment for the next second
539 1.29.6.1 simonb * in ns. The offset is reduced by a factor depending on
540 1.29.6.1 simonb * whether the PPS signal is operating. Note that the
541 1.29.6.1 simonb * value is in effect scaled by the clock frequency,
542 1.29.6.1 simonb * since the adjustment is added at each tick interrupt.
543 1.29.6.1 simonb */
544 1.29.6.1 simonb ftemp = time_offset;
545 1.29.6.1 simonb #ifdef PPS_SYNC
546 1.29.6.1 simonb /* XXX even if PPS signal dies we should finish adjustment ? */
547 1.29.6.1 simonb if (time_status & STA_PPSTIME && time_status &
548 1.29.6.1 simonb STA_PPSSIGNAL)
549 1.29.6.1 simonb L_RSHIFT(ftemp, pps_shift);
550 1.29.6.1 simonb else
551 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
552 1.29.6.1 simonb #else
553 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
554 1.29.6.1 simonb #endif /* PPS_SYNC */
555 1.29.6.1 simonb time_adj = ftemp;
556 1.29.6.1 simonb L_SUB(time_offset, ftemp);
557 1.29.6.1 simonb L_ADD(time_adj, time_freq);
558 1.29.6.1 simonb
559 1.29.6.1 simonb /*
560 1.29.6.1 simonb * Apply any correction from adjtime(2). If more than one second
561 1.29.6.1 simonb * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
562 1.29.6.1 simonb * until the last second is slewed the final < 500 usecs.
563 1.29.6.1 simonb */
564 1.29.6.1 simonb if (time_adjtime != 0) {
565 1.29.6.1 simonb if (time_adjtime > 1000000)
566 1.29.6.1 simonb tickrate = 5000;
567 1.29.6.1 simonb else if (time_adjtime < -1000000)
568 1.29.6.1 simonb tickrate = -5000;
569 1.29.6.1 simonb else if (time_adjtime > 500)
570 1.29.6.1 simonb tickrate = 500;
571 1.29.6.1 simonb else if (time_adjtime < -500)
572 1.29.6.1 simonb tickrate = -500;
573 1.29.6.1 simonb else
574 1.29.6.1 simonb tickrate = time_adjtime;
575 1.29.6.1 simonb time_adjtime -= tickrate;
576 1.29.6.1 simonb L_LINT(ftemp, tickrate * 1000);
577 1.29.6.1 simonb L_ADD(time_adj, ftemp);
578 1.29.6.1 simonb }
579 1.29.6.1 simonb *adjustment = time_adj;
580 1.29.6.1 simonb
581 1.29.6.1 simonb #ifdef PPS_SYNC
582 1.29.6.1 simonb if (pps_valid > 0)
583 1.29.6.1 simonb pps_valid--;
584 1.29.6.1 simonb else
585 1.29.6.1 simonb time_status &= ~STA_PPSSIGNAL;
586 1.29.6.1 simonb #endif /* PPS_SYNC */
587 1.29.6.1 simonb }
588 1.29.6.1 simonb
589 1.29.6.1 simonb /*
590 1.29.6.1 simonb * ntp_init() - initialize variables and structures
591 1.29.6.1 simonb *
592 1.29.6.1 simonb * This routine must be called after the kernel variables hz and tick
593 1.29.6.1 simonb * are set or changed and before the next tick interrupt. In this
594 1.29.6.1 simonb * particular implementation, these values are assumed set elsewhere in
595 1.29.6.1 simonb * the kernel. The design allows the clock frequency and tick interval
596 1.29.6.1 simonb * to be changed while the system is running. So, this routine should
597 1.29.6.1 simonb * probably be integrated with the code that does that.
598 1.29.6.1 simonb */
599 1.29.6.1 simonb void
600 1.29.6.1 simonb ntp_init(void)
601 1.29.6.1 simonb {
602 1.29.6.1 simonb
603 1.29.6.1 simonb /*
604 1.29.6.1 simonb * The following variables are initialized only at startup. Only
605 1.29.6.1 simonb * those structures not cleared by the compiler need to be
606 1.29.6.1 simonb * initialized, and these only in the simulator. In the actual
607 1.29.6.1 simonb * kernel, any nonzero values here will quickly evaporate.
608 1.29.6.1 simonb */
609 1.29.6.1 simonb L_CLR(time_offset);
610 1.29.6.1 simonb L_CLR(time_freq);
611 1.29.6.1 simonb #ifdef PPS_SYNC
612 1.29.6.1 simonb pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
613 1.29.6.1 simonb pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
614 1.29.6.1 simonb pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
615 1.29.6.1 simonb pps_fcount = 0;
616 1.29.6.1 simonb L_CLR(pps_freq);
617 1.29.6.1 simonb #endif /* PPS_SYNC */
618 1.29.6.1 simonb }
619 1.29.6.1 simonb
620 1.29.6.1 simonb /*
621 1.29.6.1 simonb * hardupdate() - local clock update
622 1.29.6.1 simonb *
623 1.29.6.1 simonb * This routine is called by ntp_adjtime() to update the local clock
624 1.29.6.1 simonb * phase and frequency. The implementation is of an adaptive-parameter,
625 1.29.6.1 simonb * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
626 1.29.6.1 simonb * time and frequency offset estimates for each call. If the kernel PPS
627 1.29.6.1 simonb * discipline code is configured (PPS_SYNC), the PPS signal itself
628 1.29.6.1 simonb * determines the new time offset, instead of the calling argument.
629 1.29.6.1 simonb * Presumably, calls to ntp_adjtime() occur only when the caller
630 1.29.6.1 simonb * believes the local clock is valid within some bound (+-128 ms with
631 1.29.6.1 simonb * NTP). If the caller's time is far different than the PPS time, an
632 1.29.6.1 simonb * argument will ensue, and it's not clear who will lose.
633 1.29.6.1 simonb *
634 1.29.6.1 simonb * For uncompensated quartz crystal oscillators and nominal update
635 1.29.6.1 simonb * intervals less than 256 s, operation should be in phase-lock mode,
636 1.29.6.1 simonb * where the loop is disciplined to phase. For update intervals greater
637 1.29.6.1 simonb * than 1024 s, operation should be in frequency-lock mode, where the
638 1.29.6.1 simonb * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
639 1.29.6.1 simonb * is selected by the STA_MODE status bit.
640 1.29.6.1 simonb *
641 1.29.6.1 simonb * Note: splclock() is in effect.
642 1.29.6.1 simonb */
643 1.29.6.1 simonb void
644 1.29.6.1 simonb hardupdate(long offset)
645 1.29.6.1 simonb {
646 1.29.6.1 simonb long mtemp;
647 1.29.6.1 simonb l_fp ftemp;
648 1.29.6.1 simonb
649 1.29.6.1 simonb /*
650 1.29.6.1 simonb * Select how the phase is to be controlled and from which
651 1.29.6.1 simonb * source. If the PPS signal is present and enabled to
652 1.29.6.1 simonb * discipline the time, the PPS offset is used; otherwise, the
653 1.29.6.1 simonb * argument offset is used.
654 1.29.6.1 simonb */
655 1.29.6.1 simonb if (!(time_status & STA_PLL))
656 1.29.6.1 simonb return;
657 1.29.6.1 simonb if (!(time_status & STA_PPSTIME && time_status &
658 1.29.6.1 simonb STA_PPSSIGNAL)) {
659 1.29.6.1 simonb if (offset > MAXPHASE)
660 1.29.6.1 simonb time_monitor = MAXPHASE;
661 1.29.6.1 simonb else if (offset < -MAXPHASE)
662 1.29.6.1 simonb time_monitor = -MAXPHASE;
663 1.29.6.1 simonb else
664 1.29.6.1 simonb time_monitor = offset;
665 1.29.6.1 simonb L_LINT(time_offset, time_monitor);
666 1.29.6.1 simonb }
667 1.29.6.1 simonb
668 1.29.6.1 simonb /*
669 1.29.6.1 simonb * Select how the frequency is to be controlled and in which
670 1.29.6.1 simonb * mode (PLL or FLL). If the PPS signal is present and enabled
671 1.29.6.1 simonb * to discipline the frequency, the PPS frequency is used;
672 1.29.6.1 simonb * otherwise, the argument offset is used to compute it.
673 1.29.6.1 simonb */
674 1.29.6.1 simonb if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
675 1.29.6.1 simonb time_reftime = time_second;
676 1.29.6.1 simonb return;
677 1.29.6.1 simonb }
678 1.29.6.1 simonb if (time_status & STA_FREQHOLD || time_reftime == 0)
679 1.29.6.1 simonb time_reftime = time_second;
680 1.29.6.1 simonb mtemp = time_second - time_reftime;
681 1.29.6.1 simonb L_LINT(ftemp, time_monitor);
682 1.29.6.1 simonb L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
683 1.29.6.1 simonb L_MPY(ftemp, mtemp);
684 1.29.6.1 simonb L_ADD(time_freq, ftemp);
685 1.29.6.1 simonb time_status &= ~STA_MODE;
686 1.29.6.1 simonb if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
687 1.29.6.1 simonb MAXSEC)) {
688 1.29.6.1 simonb L_LINT(ftemp, (time_monitor << 4) / mtemp);
689 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_FLL + 4);
690 1.29.6.1 simonb L_ADD(time_freq, ftemp);
691 1.29.6.1 simonb time_status |= STA_MODE;
692 1.29.6.1 simonb }
693 1.29.6.1 simonb time_reftime = time_second;
694 1.29.6.1 simonb if (L_GINT(time_freq) > MAXFREQ)
695 1.29.6.1 simonb L_LINT(time_freq, MAXFREQ);
696 1.29.6.1 simonb else if (L_GINT(time_freq) < -MAXFREQ)
697 1.29.6.1 simonb L_LINT(time_freq, -MAXFREQ);
698 1.29.6.1 simonb }
699 1.29.6.1 simonb
700 1.29.6.1 simonb #ifdef PPS_SYNC
701 1.29.6.1 simonb /*
702 1.29.6.1 simonb * hardpps() - discipline CPU clock oscillator to external PPS signal
703 1.29.6.1 simonb *
704 1.29.6.1 simonb * This routine is called at each PPS interrupt in order to discipline
705 1.29.6.1 simonb * the CPU clock oscillator to the PPS signal. It measures the PPS phase
706 1.29.6.1 simonb * and leaves it in a handy spot for the hardclock() routine. It
707 1.29.6.1 simonb * integrates successive PPS phase differences and calculates the
708 1.29.6.1 simonb * frequency offset. This is used in hardclock() to discipline the CPU
709 1.29.6.1 simonb * clock oscillator so that intrinsic frequency error is cancelled out.
710 1.29.6.1 simonb * The code requires the caller to capture the time and hardware counter
711 1.29.6.1 simonb * value at the on-time PPS signal transition.
712 1.29.6.1 simonb *
713 1.29.6.1 simonb * Note that, on some Unix systems, this routine runs at an interrupt
714 1.29.6.1 simonb * priority level higher than the timer interrupt routine hardclock().
715 1.29.6.1 simonb * Therefore, the variables used are distinct from the hardclock()
716 1.29.6.1 simonb * variables, except for certain exceptions: The PPS frequency pps_freq
717 1.29.6.1 simonb * and phase pps_offset variables are determined by this routine and
718 1.29.6.1 simonb * updated atomically. The time_tolerance variable can be considered a
719 1.29.6.1 simonb * constant, since it is infrequently changed, and then only when the
720 1.29.6.1 simonb * PPS signal is disabled. The watchdog counter pps_valid is updated
721 1.29.6.1 simonb * once per second by hardclock() and is atomically cleared in this
722 1.29.6.1 simonb * routine.
723 1.29.6.1 simonb */
724 1.29.6.1 simonb void
725 1.29.6.1 simonb hardpps(struct timespec *tvp, /* time at PPS */
726 1.29.6.1 simonb long usec /* hardware counter at PPS */)
727 1.29.6.1 simonb {
728 1.29.6.1 simonb long u_sec, u_nsec, v_nsec; /* temps */
729 1.29.6.1 simonb l_fp ftemp;
730 1.29.6.1 simonb
731 1.29.6.1 simonb /*
732 1.29.6.1 simonb * The signal is first processed by a range gate and frequency
733 1.29.6.1 simonb * discriminator. The range gate rejects noise spikes outside
734 1.29.6.1 simonb * the range +-500 us. The frequency discriminator rejects input
735 1.29.6.1 simonb * signals with apparent frequency outside the range 1 +-500
736 1.29.6.1 simonb * PPM. If two hits occur in the same second, we ignore the
737 1.29.6.1 simonb * later hit; if not and a hit occurs outside the range gate,
738 1.29.6.1 simonb * keep the later hit for later comparison, but do not process
739 1.29.6.1 simonb * it.
740 1.29.6.1 simonb */
741 1.29.6.1 simonb time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
742 1.29.6.1 simonb time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
743 1.29.6.1 simonb pps_valid = PPS_VALID;
744 1.29.6.1 simonb u_sec = tsp->tv_sec;
745 1.29.6.1 simonb u_nsec = tsp->tv_nsec;
746 1.29.6.1 simonb if (u_nsec >= (NANOSECOND >> 1)) {
747 1.29.6.1 simonb u_nsec -= NANOSECOND;
748 1.29.6.1 simonb u_sec++;
749 1.29.6.1 simonb }
750 1.29.6.1 simonb v_nsec = u_nsec - pps_tf[0].tv_nsec;
751 1.29.6.1 simonb if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
752 1.29.6.1 simonb MAXFREQ)
753 1.29.6.1 simonb return;
754 1.29.6.1 simonb pps_tf[2] = pps_tf[1];
755 1.29.6.1 simonb pps_tf[1] = pps_tf[0];
756 1.29.6.1 simonb pps_tf[0].tv_sec = u_sec;
757 1.29.6.1 simonb pps_tf[0].tv_nsec = u_nsec;
758 1.29.6.1 simonb
759 1.29.6.1 simonb /*
760 1.29.6.1 simonb * Compute the difference between the current and previous
761 1.29.6.1 simonb * counter values. If the difference exceeds 0.5 s, assume it
762 1.29.6.1 simonb * has wrapped around, so correct 1.0 s. If the result exceeds
763 1.29.6.1 simonb * the tick interval, the sample point has crossed a tick
764 1.29.6.1 simonb * boundary during the last second, so correct the tick. Very
765 1.29.6.1 simonb * intricate.
766 1.29.6.1 simonb */
767 1.29.6.1 simonb u_nsec = nsec;
768 1.29.6.1 simonb if (u_nsec > (NANOSECOND >> 1))
769 1.29.6.1 simonb u_nsec -= NANOSECOND;
770 1.29.6.1 simonb else if (u_nsec < -(NANOSECOND >> 1))
771 1.29.6.1 simonb u_nsec += NANOSECOND;
772 1.29.6.1 simonb pps_fcount += u_nsec;
773 1.29.6.1 simonb if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
774 1.29.6.1 simonb return;
775 1.29.6.1 simonb time_status &= ~STA_PPSJITTER;
776 1.29.6.1 simonb
777 1.29.6.1 simonb /*
778 1.29.6.1 simonb * A three-stage median filter is used to help denoise the PPS
779 1.29.6.1 simonb * time. The median sample becomes the time offset estimate; the
780 1.29.6.1 simonb * difference between the other two samples becomes the time
781 1.29.6.1 simonb * dispersion (jitter) estimate.
782 1.29.6.1 simonb */
783 1.29.6.1 simonb if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
784 1.29.6.1 simonb if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
785 1.29.6.1 simonb v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
786 1.29.6.1 simonb u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
787 1.29.6.1 simonb } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
788 1.29.6.1 simonb v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
789 1.29.6.1 simonb u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
790 1.29.6.1 simonb } else {
791 1.29.6.1 simonb v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
792 1.29.6.1 simonb u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
793 1.29.6.1 simonb }
794 1.29.6.1 simonb } else {
795 1.29.6.1 simonb if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
796 1.29.6.1 simonb v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
797 1.29.6.1 simonb u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
798 1.29.6.1 simonb } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
799 1.29.6.1 simonb v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
800 1.29.6.1 simonb u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
801 1.29.6.1 simonb } else {
802 1.29.6.1 simonb v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
803 1.29.6.1 simonb u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
804 1.29.6.1 simonb }
805 1.29.6.1 simonb }
806 1.29.6.1 simonb
807 1.29.6.1 simonb /*
808 1.29.6.1 simonb * Nominal jitter is due to PPS signal noise and interrupt
809 1.29.6.1 simonb * latency. If it exceeds the popcorn threshold, the sample is
810 1.29.6.1 simonb * discarded. otherwise, if so enabled, the time offset is
811 1.29.6.1 simonb * updated. We can tolerate a modest loss of data here without
812 1.29.6.1 simonb * much degrading time accuracy.
813 1.29.6.1 simonb */
814 1.29.6.1 simonb if (u_nsec > (pps_jitter << PPS_POPCORN)) {
815 1.29.6.1 simonb time_status |= STA_PPSJITTER;
816 1.29.6.1 simonb pps_jitcnt++;
817 1.29.6.1 simonb } else if (time_status & STA_PPSTIME) {
818 1.29.6.1 simonb time_monitor = -v_nsec;
819 1.29.6.1 simonb L_LINT(time_offset, time_monitor);
820 1.29.6.1 simonb }
821 1.29.6.1 simonb pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
822 1.29.6.1 simonb u_sec = pps_tf[0].tv_sec - pps_lastsec;
823 1.29.6.1 simonb if (u_sec < (1 << pps_shift))
824 1.29.6.1 simonb return;
825 1.29.6.1 simonb
826 1.29.6.1 simonb /*
827 1.29.6.1 simonb * At the end of the calibration interval the difference between
828 1.29.6.1 simonb * the first and last counter values becomes the scaled
829 1.29.6.1 simonb * frequency. It will later be divided by the length of the
830 1.29.6.1 simonb * interval to determine the frequency update. If the frequency
831 1.29.6.1 simonb * exceeds a sanity threshold, or if the actual calibration
832 1.29.6.1 simonb * interval is not equal to the expected length, the data are
833 1.29.6.1 simonb * discarded. We can tolerate a modest loss of data here without
834 1.29.6.1 simonb * much degrading frequency accuracy.
835 1.29.6.1 simonb */
836 1.29.6.1 simonb pps_calcnt++;
837 1.29.6.1 simonb v_nsec = -pps_fcount;
838 1.29.6.1 simonb pps_lastsec = pps_tf[0].tv_sec;
839 1.29.6.1 simonb pps_fcount = 0;
840 1.29.6.1 simonb u_nsec = MAXFREQ << pps_shift;
841 1.29.6.1 simonb if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
842 1.29.6.1 simonb pps_shift)) {
843 1.29.6.1 simonb time_status |= STA_PPSERROR;
844 1.29.6.1 simonb pps_errcnt++;
845 1.29.6.1 simonb return;
846 1.29.6.1 simonb }
847 1.29.6.1 simonb
848 1.29.6.1 simonb /*
849 1.29.6.1 simonb * Here the raw frequency offset and wander (stability) is
850 1.29.6.1 simonb * calculated. If the wander is less than the wander threshold
851 1.29.6.1 simonb * for four consecutive averaging intervals, the interval is
852 1.29.6.1 simonb * doubled; if it is greater than the threshold for four
853 1.29.6.1 simonb * consecutive intervals, the interval is halved. The scaled
854 1.29.6.1 simonb * frequency offset is converted to frequency offset. The
855 1.29.6.1 simonb * stability metric is calculated as the average of recent
856 1.29.6.1 simonb * frequency changes, but is used only for performance
857 1.29.6.1 simonb * monitoring.
858 1.29.6.1 simonb */
859 1.29.6.1 simonb L_LINT(ftemp, v_nsec);
860 1.29.6.1 simonb L_RSHIFT(ftemp, pps_shift);
861 1.29.6.1 simonb L_SUB(ftemp, pps_freq);
862 1.29.6.1 simonb u_nsec = L_GINT(ftemp);
863 1.29.6.1 simonb if (u_nsec > PPS_MAXWANDER) {
864 1.29.6.1 simonb L_LINT(ftemp, PPS_MAXWANDER);
865 1.29.6.1 simonb pps_intcnt--;
866 1.29.6.1 simonb time_status |= STA_PPSWANDER;
867 1.29.6.1 simonb pps_stbcnt++;
868 1.29.6.1 simonb } else if (u_nsec < -PPS_MAXWANDER) {
869 1.29.6.1 simonb L_LINT(ftemp, -PPS_MAXWANDER);
870 1.29.6.1 simonb pps_intcnt--;
871 1.29.6.1 simonb time_status |= STA_PPSWANDER;
872 1.29.6.1 simonb pps_stbcnt++;
873 1.29.6.1 simonb } else {
874 1.29.6.1 simonb pps_intcnt++;
875 1.29.6.1 simonb }
876 1.29.6.1 simonb if (pps_intcnt >= 4) {
877 1.29.6.1 simonb pps_intcnt = 4;
878 1.29.6.1 simonb if (pps_shift < pps_shiftmax) {
879 1.29.6.1 simonb pps_shift++;
880 1.29.6.1 simonb pps_intcnt = 0;
881 1.29.6.1 simonb }
882 1.29.6.1 simonb } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
883 1.29.6.1 simonb pps_intcnt = -4;
884 1.29.6.1 simonb if (pps_shift > PPS_FAVG) {
885 1.29.6.1 simonb pps_shift--;
886 1.29.6.1 simonb pps_intcnt = 0;
887 1.29.6.1 simonb }
888 1.29.6.1 simonb }
889 1.29.6.1 simonb if (u_nsec < 0)
890 1.29.6.1 simonb u_nsec = -u_nsec;
891 1.29.6.1 simonb pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
892 1.29.6.1 simonb
893 1.29.6.1 simonb /*
894 1.29.6.1 simonb * The PPS frequency is recalculated and clamped to the maximum
895 1.29.6.1 simonb * MAXFREQ. If enabled, the system clock frequency is updated as
896 1.29.6.1 simonb * well.
897 1.29.6.1 simonb */
898 1.29.6.1 simonb L_ADD(pps_freq, ftemp);
899 1.29.6.1 simonb u_nsec = L_GINT(pps_freq);
900 1.29.6.1 simonb if (u_nsec > MAXFREQ)
901 1.29.6.1 simonb L_LINT(pps_freq, MAXFREQ);
902 1.29.6.1 simonb else if (u_nsec < -MAXFREQ)
903 1.29.6.1 simonb L_LINT(pps_freq, -MAXFREQ);
904 1.29.6.1 simonb if (time_status & STA_PPSFREQ)
905 1.29.6.1 simonb time_freq = pps_freq;
906 1.29.6.1 simonb }
907 1.29.6.1 simonb #endif /* PPS_SYNC */
908 1.29.6.1 simonb
909 1.29.6.1 simonb /*
910 1.29.6.1 simonb * return information about kernel precision timekeeping
911 1.29.6.1 simonb * XXX this should share code with sys_ntp_gettime
912 1.29.6.1 simonb */
913 1.29.6.1 simonb static int
914 1.29.6.1 simonb sysctl_kern_ntptime(SYSCTLFN_ARGS)
915 1.29.6.1 simonb {
916 1.29.6.1 simonb struct sysctlnode node;
917 1.29.6.1 simonb struct ntptimeval ntv;
918 1.29.6.1 simonb
919 1.29.6.1 simonb /*
920 1.29.6.1 simonb * Construct ntp_timeval.
921 1.29.6.1 simonb */
922 1.29.6.1 simonb
923 1.29.6.1 simonb nanotime(&ntv.time);
924 1.29.6.1 simonb ntv.maxerror = time_maxerror;
925 1.29.6.1 simonb ntv.esterror = time_esterror;
926 1.29.6.1 simonb ntv.tai = time_tai;
927 1.29.6.1 simonb ntv.time_state = time_state;
928 1.29.6.1 simonb
929 1.29.6.1 simonb #ifdef notyet
930 1.29.6.1 simonb /*
931 1.29.6.1 simonb * Status word error decode. If any of these conditions occur,
932 1.29.6.1 simonb * an error is returned, instead of the status word. Most
933 1.29.6.1 simonb * applications will care only about the fact the system clock
934 1.29.6.1 simonb * may not be trusted, not about the details.
935 1.29.6.1 simonb *
936 1.29.6.1 simonb * Hardware or software error
937 1.29.6.1 simonb */
938 1.29.6.1 simonb if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
939 1.29.6.1 simonb
940 1.29.6.1 simonb /*
941 1.29.6.1 simonb * PPS signal lost when either time or frequency synchronization
942 1.29.6.1 simonb * requested
943 1.29.6.1 simonb */
944 1.29.6.1 simonb (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
945 1.29.6.1 simonb !(time_status & STA_PPSSIGNAL)) ||
946 1.29.6.1 simonb
947 1.29.6.1 simonb /*
948 1.29.6.1 simonb * PPS jitter exceeded when time synchronization requested
949 1.29.6.1 simonb */
950 1.29.6.1 simonb (time_status & STA_PPSTIME &&
951 1.29.6.1 simonb time_status & STA_PPSJITTER) ||
952 1.29.6.1 simonb
953 1.29.6.1 simonb /*
954 1.29.6.1 simonb * PPS wander exceeded or calibration error when frequency
955 1.29.6.1 simonb * synchronization requested
956 1.29.6.1 simonb */
957 1.29.6.1 simonb (time_status & STA_PPSFREQ &&
958 1.29.6.1 simonb time_status & (STA_PPSWANDER | STA_PPSERROR)))
959 1.29.6.1 simonb ntv.time_state = TIME_ERROR;
960 1.29.6.1 simonb else
961 1.29.6.1 simonb ntv.time_state = time_state;
962 1.29.6.1 simonb #endif /* notyet */
963 1.29.6.1 simonb
964 1.29.6.1 simonb node = *rnode;
965 1.29.6.1 simonb node.sysctl_data = &ntv;
966 1.29.6.1 simonb node.sysctl_size = sizeof(ntv);
967 1.29.6.1 simonb return (sysctl_lookup(SYSCTLFN_CALL(&node)));
968 1.29.6.1 simonb }
969 1.29.6.1 simonb
970 1.29.6.1 simonb SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
971 1.29.6.1 simonb {
972 1.29.6.1 simonb
973 1.29.6.1 simonb sysctl_createv(clog, 0, NULL, NULL,
974 1.29.6.1 simonb CTLFLAG_PERMANENT,
975 1.29.6.1 simonb CTLTYPE_NODE, "kern", NULL,
976 1.29.6.1 simonb NULL, 0, NULL, 0,
977 1.29.6.1 simonb CTL_KERN, CTL_EOL);
978 1.29.6.1 simonb
979 1.29.6.1 simonb sysctl_createv(clog, 0, NULL, NULL,
980 1.29.6.1 simonb CTLFLAG_PERMANENT,
981 1.29.6.1 simonb CTLTYPE_STRUCT, "ntptime",
982 1.29.6.1 simonb SYSCTL_DESCR("Kernel clock values for NTP"),
983 1.29.6.1 simonb sysctl_kern_ntptime, 0, NULL,
984 1.29.6.1 simonb sizeof(struct ntptimeval),
985 1.29.6.1 simonb CTL_KERN, KERN_NTPTIME, CTL_EOL);
986 1.29.6.1 simonb }
987 1.29.6.1 simonb #else /* !NTP */
988 1.29.6.1 simonb /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
989 1.29.6.1 simonb
990 1.29.6.1 simonb int
991 1.29.6.1 simonb sys_ntp_gettime(l, v, retval)
992 1.29.6.1 simonb struct lwp *l;
993 1.29.6.1 simonb void *v;
994 1.29.6.1 simonb register_t *retval;
995 1.29.6.1 simonb {
996 1.29.6.1 simonb
997 1.29.6.1 simonb return(ENOSYS);
998 1.29.6.1 simonb }
999 1.29.6.1 simonb #endif /* !NTP */
1000 1.29.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
1001 1.1 jonathan /******************************************************************************
1002 1.1 jonathan * *
1003 1.1 jonathan * Copyright (c) David L. Mills 1993, 1994 *
1004 1.1 jonathan * *
1005 1.1 jonathan * Permission to use, copy, modify, and distribute this software and its *
1006 1.1 jonathan * documentation for any purpose and without fee is hereby granted, provided *
1007 1.1 jonathan * that the above copyright notice appears in all copies and that both the *
1008 1.1 jonathan * copyright notice and this permission notice appear in supporting *
1009 1.1 jonathan * documentation, and that the name University of Delaware not be used in *
1010 1.1 jonathan * advertising or publicity pertaining to distribution of the software *
1011 1.1 jonathan * without specific, written prior permission. The University of Delaware *
1012 1.1 jonathan * makes no representations about the suitability this software for any *
1013 1.1 jonathan * purpose. It is provided "as is" without express or implied warranty. *
1014 1.1 jonathan * *
1015 1.1 jonathan ******************************************************************************/
1016 1.1 jonathan
1017 1.1 jonathan /*
1018 1.1 jonathan * Modification history kern_ntptime.c
1019 1.1 jonathan *
1020 1.1 jonathan * 24 Sep 94 David L. Mills
1021 1.1 jonathan * Tightened code at exits.
1022 1.1 jonathan *
1023 1.1 jonathan * 24 Mar 94 David L. Mills
1024 1.1 jonathan * Revised syscall interface to include new variables for PPS
1025 1.1 jonathan * time discipline.
1026 1.1 jonathan *
1027 1.1 jonathan * 14 Feb 94 David L. Mills
1028 1.1 jonathan * Added code for external clock
1029 1.1 jonathan *
1030 1.1 jonathan * 28 Nov 93 David L. Mills
1031 1.1 jonathan * Revised frequency scaling to conform with adjusted parameters
1032 1.1 jonathan *
1033 1.1 jonathan * 17 Sep 93 David L. Mills
1034 1.1 jonathan * Created file
1035 1.1 jonathan */
1036 1.1 jonathan /*
1037 1.1 jonathan * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
1038 1.1 jonathan * V4.1.1 and V4.1.3
1039 1.1 jonathan *
1040 1.1 jonathan * These routines consitute the Network Time Protocol (NTP) interfaces
1041 1.1 jonathan * for user and daemon application programs. The ntp_gettime() routine
1042 1.1 jonathan * provides the time, maximum error (synch distance) and estimated error
1043 1.1 jonathan * (dispersion) to client user application programs. The ntp_adjtime()
1044 1.1 jonathan * routine is used by the NTP daemon to adjust the system clock to an
1045 1.1 jonathan * externally derived time. The time offset and related variables set by
1046 1.1 jonathan * this routine are used by hardclock() to adjust the phase and
1047 1.1 jonathan * frequency of the phase-lock loop which controls the system clock.
1048 1.1 jonathan */
1049 1.16 lukem
1050 1.16 lukem #include <sys/cdefs.h>
1051 1.29.6.1 simonb __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.1 2006/02/04 12:47:20 simonb Exp $");
1052 1.16 lukem
1053 1.6 jonathan #include "opt_ntp.h"
1054 1.6 jonathan
1055 1.1 jonathan #include <sys/param.h>
1056 1.1 jonathan #include <sys/resourcevar.h>
1057 1.1 jonathan #include <sys/systm.h>
1058 1.1 jonathan #include <sys/kernel.h>
1059 1.1 jonathan #include <sys/proc.h>
1060 1.18 simonb #include <sys/sysctl.h>
1061 1.1 jonathan #include <sys/timex.h>
1062 1.1 jonathan #include <sys/vnode.h>
1063 1.1 jonathan
1064 1.1 jonathan #include <sys/mount.h>
1065 1.22 thorpej #include <sys/sa.h>
1066 1.1 jonathan #include <sys/syscallargs.h>
1067 1.1 jonathan
1068 1.1 jonathan #include <machine/cpu.h>
1069 1.2 christos
1070 1.4 thorpej #ifdef NTP
1071 1.1 jonathan /*
1072 1.1 jonathan * The following variables are used by the hardclock() routine in the
1073 1.28 perry * kern_clock.c module and are described in that module.
1074 1.1 jonathan */
1075 1.1 jonathan extern int time_state; /* clock state */
1076 1.1 jonathan extern int time_status; /* clock status bits */
1077 1.1 jonathan extern long time_offset; /* time adjustment (us) */
1078 1.1 jonathan extern long time_freq; /* frequency offset (scaled ppm) */
1079 1.1 jonathan extern long time_maxerror; /* maximum error (us) */
1080 1.1 jonathan extern long time_esterror; /* estimated error (us) */
1081 1.1 jonathan extern long time_constant; /* pll time constant */
1082 1.1 jonathan extern long time_precision; /* clock precision (us) */
1083 1.1 jonathan extern long time_tolerance; /* frequency tolerance (scaled ppm) */
1084 1.24 drochner extern int time_adjusted; /* ntp might have changed the system time */
1085 1.1 jonathan
1086 1.1 jonathan #ifdef PPS_SYNC
1087 1.1 jonathan /*
1088 1.1 jonathan * The following variables are used only if the PPS signal discipline
1089 1.1 jonathan * is configured in the kernel.
1090 1.1 jonathan */
1091 1.1 jonathan extern int pps_shift; /* interval duration (s) (shift) */
1092 1.1 jonathan extern long pps_freq; /* pps frequency offset (scaled ppm) */
1093 1.1 jonathan extern long pps_jitter; /* pps jitter (us) */
1094 1.1 jonathan extern long pps_stabil; /* pps stability (scaled ppm) */
1095 1.1 jonathan extern long pps_jitcnt; /* jitter limit exceeded */
1096 1.1 jonathan extern long pps_calcnt; /* calibration intervals */
1097 1.1 jonathan extern long pps_errcnt; /* calibration errors */
1098 1.1 jonathan extern long pps_stbcnt; /* stability limit exceeded */
1099 1.1 jonathan #endif /* PPS_SYNC */
1100 1.1 jonathan
1101 1.1 jonathan /*ARGSUSED*/
1102 1.1 jonathan /*
1103 1.1 jonathan * ntp_gettime() - NTP user application interface
1104 1.1 jonathan */
1105 1.1 jonathan int
1106 1.22 thorpej sys_ntp_gettime(l, v, retval)
1107 1.22 thorpej struct lwp *l;
1108 1.1 jonathan void *v;
1109 1.1 jonathan register_t *retval;
1110 1.1 jonathan
1111 1.1 jonathan {
1112 1.3 thorpej struct sys_ntp_gettime_args /* {
1113 1.5 cgd syscallarg(struct ntptimeval *) ntvp;
1114 1.1 jonathan } */ *uap = v;
1115 1.1 jonathan struct timeval atv;
1116 1.1 jonathan struct ntptimeval ntv;
1117 1.1 jonathan int error = 0;
1118 1.1 jonathan int s;
1119 1.1 jonathan
1120 1.5 cgd if (SCARG(uap, ntvp)) {
1121 1.1 jonathan s = splclock();
1122 1.1 jonathan #ifdef EXT_CLOCK
1123 1.1 jonathan /*
1124 1.1 jonathan * The microtime() external clock routine returns a
1125 1.1 jonathan * status code. If less than zero, we declare an error
1126 1.1 jonathan * in the clock status word and return the kernel
1127 1.1 jonathan * (software) time variable. While there are other
1128 1.1 jonathan * places that call microtime(), this is the only place
1129 1.1 jonathan * that matters from an application point of view.
1130 1.1 jonathan */
1131 1.1 jonathan if (microtime(&atv) < 0) {
1132 1.1 jonathan time_status |= STA_CLOCKERR;
1133 1.1 jonathan ntv.time = time;
1134 1.1 jonathan } else
1135 1.1 jonathan time_status &= ~STA_CLOCKERR;
1136 1.1 jonathan #else /* EXT_CLOCK */
1137 1.1 jonathan microtime(&atv);
1138 1.1 jonathan #endif /* EXT_CLOCK */
1139 1.1 jonathan ntv.time = atv;
1140 1.1 jonathan ntv.maxerror = time_maxerror;
1141 1.1 jonathan ntv.esterror = time_esterror;
1142 1.1 jonathan (void) splx(s);
1143 1.1 jonathan
1144 1.5 cgd error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
1145 1.7 perry sizeof(ntv));
1146 1.1 jonathan }
1147 1.1 jonathan if (!error) {
1148 1.1 jonathan
1149 1.1 jonathan /*
1150 1.1 jonathan * Status word error decode. If any of these conditions
1151 1.1 jonathan * occur, an error is returned, instead of the status
1152 1.1 jonathan * word. Most applications will care only about the fact
1153 1.1 jonathan * the system clock may not be trusted, not about the
1154 1.1 jonathan * details.
1155 1.1 jonathan *
1156 1.1 jonathan * Hardware or software error
1157 1.1 jonathan */
1158 1.1 jonathan if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1159 1.1 jonathan
1160 1.1 jonathan /*
1161 1.1 jonathan * PPS signal lost when either time or frequency
1162 1.1 jonathan * synchronization requested
1163 1.1 jonathan */
1164 1.1 jonathan (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1165 1.1 jonathan !(time_status & STA_PPSSIGNAL)) ||
1166 1.1 jonathan
1167 1.1 jonathan /*
1168 1.1 jonathan * PPS jitter exceeded when time synchronization
1169 1.1 jonathan * requested
1170 1.1 jonathan */
1171 1.1 jonathan (time_status & STA_PPSTIME &&
1172 1.1 jonathan time_status & STA_PPSJITTER) ||
1173 1.1 jonathan
1174 1.1 jonathan /*
1175 1.1 jonathan * PPS wander exceeded or calibration error when
1176 1.1 jonathan * frequency synchronization requested
1177 1.1 jonathan */
1178 1.1 jonathan (time_status & STA_PPSFREQ &&
1179 1.1 jonathan time_status & (STA_PPSWANDER | STA_PPSERROR)))
1180 1.1 jonathan *retval = TIME_ERROR;
1181 1.1 jonathan else
1182 1.1 jonathan *retval = (register_t)time_state;
1183 1.1 jonathan }
1184 1.1 jonathan return(error);
1185 1.1 jonathan }
1186 1.1 jonathan
1187 1.1 jonathan /* ARGSUSED */
1188 1.1 jonathan /*
1189 1.1 jonathan * ntp_adjtime() - NTP daemon application interface
1190 1.1 jonathan */
1191 1.1 jonathan int
1192 1.22 thorpej sys_ntp_adjtime(l, v, retval)
1193 1.22 thorpej struct lwp *l;
1194 1.1 jonathan void *v;
1195 1.1 jonathan register_t *retval;
1196 1.1 jonathan {
1197 1.3 thorpej struct sys_ntp_adjtime_args /* {
1198 1.1 jonathan syscallarg(struct timex *) tp;
1199 1.1 jonathan } */ *uap = v;
1200 1.22 thorpej struct proc *p = l->l_proc;
1201 1.1 jonathan struct timex ntv;
1202 1.1 jonathan int error = 0;
1203 1.1 jonathan
1204 1.1 jonathan if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
1205 1.14 manu sizeof(ntv))) != 0)
1206 1.14 manu return (error);
1207 1.14 manu
1208 1.14 manu if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
1209 1.1 jonathan return (error);
1210 1.1 jonathan
1211 1.21 eeh return (ntp_adjtime1(&ntv, v, retval));
1212 1.14 manu }
1213 1.14 manu
1214 1.14 manu int
1215 1.15 jmc ntp_adjtime1(ntv, v, retval)
1216 1.14 manu struct timex *ntv;
1217 1.15 jmc void *v;
1218 1.14 manu register_t *retval;
1219 1.14 manu {
1220 1.21 eeh struct sys_ntp_adjtime_args /* {
1221 1.21 eeh syscallarg(struct timex *) tp;
1222 1.21 eeh } */ *uap = v;
1223 1.14 manu int error = 0;
1224 1.14 manu int modes;
1225 1.14 manu int s;
1226 1.14 manu
1227 1.1 jonathan /*
1228 1.28 perry * Update selected clock variables. Note that there is no error
1229 1.28 perry * checking here on the assumption the superuser should know
1230 1.14 manu * what it is doing.
1231 1.1 jonathan */
1232 1.15 jmc modes = ntv->modes;
1233 1.23 dsl if (modes != 0)
1234 1.23 dsl /* We need to save the system time during shutdown */
1235 1.23 dsl time_adjusted |= 2;
1236 1.1 jonathan s = splclock();
1237 1.1 jonathan if (modes & MOD_FREQUENCY)
1238 1.1 jonathan #ifdef PPS_SYNC
1239 1.15 jmc time_freq = ntv->freq - pps_freq;
1240 1.1 jonathan #else /* PPS_SYNC */
1241 1.15 jmc time_freq = ntv->freq;
1242 1.1 jonathan #endif /* PPS_SYNC */
1243 1.1 jonathan if (modes & MOD_MAXERROR)
1244 1.15 jmc time_maxerror = ntv->maxerror;
1245 1.1 jonathan if (modes & MOD_ESTERROR)
1246 1.15 jmc time_esterror = ntv->esterror;
1247 1.1 jonathan if (modes & MOD_STATUS) {
1248 1.1 jonathan time_status &= STA_RONLY;
1249 1.15 jmc time_status |= ntv->status & ~STA_RONLY;
1250 1.1 jonathan }
1251 1.1 jonathan if (modes & MOD_TIMECONST)
1252 1.15 jmc time_constant = ntv->constant;
1253 1.1 jonathan if (modes & MOD_OFFSET)
1254 1.15 jmc hardupdate(ntv->offset);
1255 1.1 jonathan
1256 1.1 jonathan /*
1257 1.1 jonathan * Retrieve all clock variables
1258 1.1 jonathan */
1259 1.1 jonathan if (time_offset < 0)
1260 1.15 jmc ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1261 1.1 jonathan else
1262 1.15 jmc ntv->offset = time_offset >> SHIFT_UPDATE;
1263 1.1 jonathan #ifdef PPS_SYNC
1264 1.15 jmc ntv->freq = time_freq + pps_freq;
1265 1.1 jonathan #else /* PPS_SYNC */
1266 1.15 jmc ntv->freq = time_freq;
1267 1.1 jonathan #endif /* PPS_SYNC */
1268 1.15 jmc ntv->maxerror = time_maxerror;
1269 1.15 jmc ntv->esterror = time_esterror;
1270 1.15 jmc ntv->status = time_status;
1271 1.15 jmc ntv->constant = time_constant;
1272 1.15 jmc ntv->precision = time_precision;
1273 1.15 jmc ntv->tolerance = time_tolerance;
1274 1.1 jonathan #ifdef PPS_SYNC
1275 1.15 jmc ntv->shift = pps_shift;
1276 1.15 jmc ntv->ppsfreq = pps_freq;
1277 1.15 jmc ntv->jitter = pps_jitter >> PPS_AVG;
1278 1.15 jmc ntv->stabil = pps_stabil;
1279 1.15 jmc ntv->calcnt = pps_calcnt;
1280 1.15 jmc ntv->errcnt = pps_errcnt;
1281 1.15 jmc ntv->jitcnt = pps_jitcnt;
1282 1.15 jmc ntv->stbcnt = pps_stbcnt;
1283 1.1 jonathan #endif /* PPS_SYNC */
1284 1.1 jonathan (void)splx(s);
1285 1.1 jonathan
1286 1.21 eeh error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
1287 1.1 jonathan if (!error) {
1288 1.1 jonathan
1289 1.1 jonathan /*
1290 1.1 jonathan * Status word error decode. See comments in
1291 1.1 jonathan * ntp_gettime() routine.
1292 1.1 jonathan */
1293 1.1 jonathan if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1294 1.1 jonathan (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1295 1.1 jonathan !(time_status & STA_PPSSIGNAL)) ||
1296 1.1 jonathan (time_status & STA_PPSTIME &&
1297 1.1 jonathan time_status & STA_PPSJITTER) ||
1298 1.1 jonathan (time_status & STA_PPSFREQ &&
1299 1.1 jonathan time_status & (STA_PPSWANDER | STA_PPSERROR)))
1300 1.1 jonathan *retval = TIME_ERROR;
1301 1.1 jonathan else
1302 1.1 jonathan *retval = (register_t)time_state;
1303 1.1 jonathan }
1304 1.1 jonathan return error;
1305 1.1 jonathan }
1306 1.1 jonathan
1307 1.1 jonathan /*
1308 1.1 jonathan * return information about kernel precision timekeeping
1309 1.1 jonathan */
1310 1.25 atatat static int
1311 1.25 atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
1312 1.1 jonathan {
1313 1.25 atatat struct sysctlnode node;
1314 1.1 jonathan struct timeval atv;
1315 1.1 jonathan struct ntptimeval ntv;
1316 1.1 jonathan int s;
1317 1.1 jonathan
1318 1.1 jonathan /*
1319 1.1 jonathan * Construct ntp_timeval.
1320 1.1 jonathan */
1321 1.1 jonathan
1322 1.1 jonathan s = splclock();
1323 1.1 jonathan #ifdef EXT_CLOCK
1324 1.1 jonathan /*
1325 1.1 jonathan * The microtime() external clock routine returns a
1326 1.1 jonathan * status code. If less than zero, we declare an error
1327 1.1 jonathan * in the clock status word and return the kernel
1328 1.1 jonathan * (software) time variable. While there are other
1329 1.1 jonathan * places that call microtime(), this is the only place
1330 1.1 jonathan * that matters from an application point of view.
1331 1.1 jonathan */
1332 1.1 jonathan if (microtime(&atv) < 0) {
1333 1.1 jonathan time_status |= STA_CLOCKERR;
1334 1.1 jonathan ntv.time = time;
1335 1.1 jonathan } else {
1336 1.1 jonathan time_status &= ~STA_CLOCKERR;
1337 1.1 jonathan }
1338 1.1 jonathan #else /* EXT_CLOCK */
1339 1.1 jonathan microtime(&atv);
1340 1.1 jonathan #endif /* EXT_CLOCK */
1341 1.1 jonathan ntv.time = atv;
1342 1.1 jonathan ntv.maxerror = time_maxerror;
1343 1.1 jonathan ntv.esterror = time_esterror;
1344 1.1 jonathan splx(s);
1345 1.1 jonathan
1346 1.1 jonathan #ifdef notyet
1347 1.1 jonathan /*
1348 1.1 jonathan * Status word error decode. If any of these conditions
1349 1.1 jonathan * occur, an error is returned, instead of the status
1350 1.1 jonathan * word. Most applications will care only about the fact
1351 1.1 jonathan * the system clock may not be trusted, not about the
1352 1.1 jonathan * details.
1353 1.1 jonathan *
1354 1.1 jonathan * Hardware or software error
1355 1.1 jonathan */
1356 1.1 jonathan if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1357 1.1 jonathan ntv.time_state = TIME_ERROR;
1358 1.1 jonathan
1359 1.1 jonathan /*
1360 1.1 jonathan * PPS signal lost when either time or frequency
1361 1.1 jonathan * synchronization requested
1362 1.1 jonathan */
1363 1.1 jonathan (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1364 1.1 jonathan !(time_status & STA_PPSSIGNAL)) ||
1365 1.1 jonathan
1366 1.1 jonathan /*
1367 1.1 jonathan * PPS jitter exceeded when time synchronization
1368 1.1 jonathan * requested
1369 1.1 jonathan */
1370 1.1 jonathan (time_status & STA_PPSTIME &&
1371 1.1 jonathan time_status & STA_PPSJITTER) ||
1372 1.1 jonathan
1373 1.1 jonathan /*
1374 1.1 jonathan * PPS wander exceeded or calibration error when
1375 1.1 jonathan * frequency synchronization requested
1376 1.1 jonathan */
1377 1.1 jonathan (time_status & STA_PPSFREQ &&
1378 1.1 jonathan time_status & (STA_PPSWANDER | STA_PPSERROR)))
1379 1.1 jonathan ntv.time_state = TIME_ERROR;
1380 1.1 jonathan else
1381 1.1 jonathan ntv.time_state = time_state;
1382 1.1 jonathan #endif /* notyet */
1383 1.25 atatat
1384 1.25 atatat node = *rnode;
1385 1.25 atatat node.sysctl_data = &ntv;
1386 1.25 atatat node.sysctl_size = sizeof(ntv);
1387 1.25 atatat return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1388 1.25 atatat }
1389 1.25 atatat
1390 1.25 atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1391 1.25 atatat {
1392 1.25 atatat
1393 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1394 1.26 atatat CTLFLAG_PERMANENT,
1395 1.25 atatat CTLTYPE_NODE, "kern", NULL,
1396 1.25 atatat NULL, 0, NULL, 0,
1397 1.25 atatat CTL_KERN, CTL_EOL);
1398 1.25 atatat
1399 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1400 1.26 atatat CTLFLAG_PERMANENT,
1401 1.27 atatat CTLTYPE_STRUCT, "ntptime",
1402 1.27 atatat SYSCTL_DESCR("Kernel clock values for NTP"),
1403 1.25 atatat sysctl_kern_ntptime, 0, NULL,
1404 1.25 atatat sizeof(struct ntptimeval),
1405 1.25 atatat CTL_KERN, KERN_NTPTIME, CTL_EOL);
1406 1.1 jonathan }
1407 1.4 thorpej #else /* !NTP */
1408 1.13 bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1409 1.13 bjh21
1410 1.4 thorpej int
1411 1.22 thorpej sys_ntp_gettime(l, v, retval)
1412 1.22 thorpej struct lwp *l;
1413 1.4 thorpej void *v;
1414 1.4 thorpej register_t *retval;
1415 1.4 thorpej {
1416 1.19 simonb
1417 1.4 thorpej return(ENOSYS);
1418 1.4 thorpej }
1419 1.13 bjh21 #endif /* !NTP */
1420 1.29.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
1421