kern_ntptime.c revision 1.29.6.2 1 1.29.6.2 kardel /* $NetBSD: kern_ntptime.c,v 1.29.6.2 2006/02/28 21:01:52 kardel Exp $ */
2 1.29.6.1 simonb #include <sys/types.h> /* XXX to get __HAVE_TIMECOUNTER, remove
3 1.29.6.1 simonb after all ports are converted. */
4 1.29.6.1 simonb #ifdef __HAVE_TIMECOUNTER
5 1.29.6.1 simonb
6 1.29.6.1 simonb /*-
7 1.29.6.1 simonb ***********************************************************************
8 1.29.6.1 simonb * *
9 1.29.6.1 simonb * Copyright (c) David L. Mills 1993-2001 *
10 1.29.6.1 simonb * *
11 1.29.6.1 simonb * Permission to use, copy, modify, and distribute this software and *
12 1.29.6.1 simonb * its documentation for any purpose and without fee is hereby *
13 1.29.6.1 simonb * granted, provided that the above copyright notice appears in all *
14 1.29.6.1 simonb * copies and that both the copyright notice and this permission *
15 1.29.6.1 simonb * notice appear in supporting documentation, and that the name *
16 1.29.6.1 simonb * University of Delaware not be used in advertising or publicity *
17 1.29.6.1 simonb * pertaining to distribution of the software without specific, *
18 1.29.6.1 simonb * written prior permission. The University of Delaware makes no *
19 1.29.6.1 simonb * representations about the suitability this software for any *
20 1.29.6.1 simonb * purpose. It is provided "as is" without express or implied *
21 1.29.6.1 simonb * warranty. *
22 1.29.6.1 simonb * *
23 1.29.6.1 simonb **********************************************************************/
24 1.1 jonathan
25 1.29.6.1 simonb /*
26 1.29.6.1 simonb * Adapted from the original sources for FreeBSD and timecounters by:
27 1.29.6.1 simonb * Poul-Henning Kamp <phk (at) FreeBSD.org>.
28 1.29.6.1 simonb *
29 1.29.6.1 simonb * The 32bit version of the "LP" macros seems a bit past its "sell by"
30 1.29.6.1 simonb * date so I have retained only the 64bit version and included it directly
31 1.29.6.1 simonb * in this file.
32 1.29.6.1 simonb *
33 1.29.6.1 simonb * Only minor changes done to interface with the timecounters over in
34 1.29.6.1 simonb * sys/kern/kern_clock.c. Some of the comments below may be (even more)
35 1.29.6.1 simonb * confusing and/or plain wrong in that context.
36 1.29.6.1 simonb */
37 1.29.6.1 simonb
38 1.29.6.1 simonb #include <sys/cdefs.h>
39 1.29.6.1 simonb /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
40 1.29.6.2 kardel __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.2 2006/02/28 21:01:52 kardel Exp $");
41 1.29.6.1 simonb
42 1.29.6.1 simonb #include "opt_ntp.h"
43 1.29.6.1 simonb
44 1.29.6.1 simonb #include <sys/param.h>
45 1.29.6.1 simonb #include <sys/resourcevar.h>
46 1.29.6.1 simonb #include <sys/systm.h>
47 1.29.6.1 simonb #include <sys/kernel.h>
48 1.29.6.1 simonb #include <sys/proc.h>
49 1.29.6.1 simonb #include <sys/sysctl.h>
50 1.29.6.1 simonb #include <sys/timex.h>
51 1.29.6.1 simonb #include <sys/vnode.h>
52 1.29.6.1 simonb
53 1.29.6.1 simonb #include <sys/mount.h>
54 1.29.6.1 simonb #include <sys/sa.h>
55 1.29.6.1 simonb #include <sys/syscallargs.h>
56 1.29.6.1 simonb
57 1.29.6.1 simonb #include <machine/cpu.h>
58 1.29.6.1 simonb
59 1.29.6.1 simonb #ifdef NTP
60 1.29.6.1 simonb /*
61 1.29.6.1 simonb * Single-precision macros for 64-bit machines
62 1.29.6.1 simonb */
63 1.29.6.1 simonb typedef int64_t l_fp;
64 1.29.6.1 simonb #define L_ADD(v, u) ((v) += (u))
65 1.29.6.1 simonb #define L_SUB(v, u) ((v) -= (u))
66 1.29.6.1 simonb #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
67 1.29.6.1 simonb #define L_NEG(v) ((v) = -(v))
68 1.29.6.1 simonb #define L_RSHIFT(v, n) \
69 1.29.6.1 simonb do { \
70 1.29.6.1 simonb if ((v) < 0) \
71 1.29.6.1 simonb (v) = -(-(v) >> (n)); \
72 1.29.6.1 simonb else \
73 1.29.6.1 simonb (v) = (v) >> (n); \
74 1.29.6.1 simonb } while (0)
75 1.29.6.1 simonb #define L_MPY(v, a) ((v) *= (a))
76 1.29.6.1 simonb #define L_CLR(v) ((v) = 0)
77 1.29.6.1 simonb #define L_ISNEG(v) ((v) < 0)
78 1.29.6.1 simonb #define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
79 1.29.6.1 simonb #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
80 1.29.6.1 simonb
81 1.29.6.1 simonb /*
82 1.29.6.1 simonb * Generic NTP kernel interface
83 1.29.6.1 simonb *
84 1.29.6.1 simonb * These routines constitute the Network Time Protocol (NTP) interfaces
85 1.29.6.1 simonb * for user and daemon application programs. The ntp_gettime() routine
86 1.29.6.1 simonb * provides the time, maximum error (synch distance) and estimated error
87 1.29.6.1 simonb * (dispersion) to client user application programs. The ntp_adjtime()
88 1.29.6.1 simonb * routine is used by the NTP daemon to adjust the system clock to an
89 1.29.6.1 simonb * externally derived time. The time offset and related variables set by
90 1.29.6.1 simonb * this routine are used by other routines in this module to adjust the
91 1.29.6.1 simonb * phase and frequency of the clock discipline loop which controls the
92 1.29.6.1 simonb * system clock.
93 1.29.6.1 simonb *
94 1.29.6.1 simonb * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
95 1.29.6.1 simonb * defined), the time at each tick interrupt is derived directly from
96 1.29.6.1 simonb * the kernel time variable. When the kernel time is reckoned in
97 1.29.6.1 simonb * microseconds, (NTP_NANO undefined), the time is derived from the
98 1.29.6.1 simonb * kernel time variable together with a variable representing the
99 1.29.6.1 simonb * leftover nanoseconds at the last tick interrupt. In either case, the
100 1.29.6.1 simonb * current nanosecond time is reckoned from these values plus an
101 1.29.6.1 simonb * interpolated value derived by the clock routines in another
102 1.29.6.1 simonb * architecture-specific module. The interpolation can use either a
103 1.29.6.1 simonb * dedicated counter or a processor cycle counter (PCC) implemented in
104 1.29.6.1 simonb * some architectures.
105 1.29.6.1 simonb *
106 1.29.6.1 simonb * Note that all routines must run at priority splclock or higher.
107 1.29.6.1 simonb */
108 1.29.6.1 simonb /*
109 1.29.6.1 simonb * Phase/frequency-lock loop (PLL/FLL) definitions
110 1.29.6.1 simonb *
111 1.29.6.1 simonb * The nanosecond clock discipline uses two variable types, time
112 1.29.6.1 simonb * variables and frequency variables. Both types are represented as 64-
113 1.29.6.1 simonb * bit fixed-point quantities with the decimal point between two 32-bit
114 1.29.6.1 simonb * halves. On a 32-bit machine, each half is represented as a single
115 1.29.6.1 simonb * word and mathematical operations are done using multiple-precision
116 1.29.6.1 simonb * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
117 1.29.6.1 simonb * used.
118 1.29.6.1 simonb *
119 1.29.6.1 simonb * A time variable is a signed 64-bit fixed-point number in ns and
120 1.29.6.1 simonb * fraction. It represents the remaining time offset to be amortized
121 1.29.6.1 simonb * over succeeding tick interrupts. The maximum time offset is about
122 1.29.6.1 simonb * 0.5 s and the resolution is about 2.3e-10 ns.
123 1.29.6.1 simonb *
124 1.29.6.1 simonb * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
125 1.29.6.1 simonb * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
126 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
127 1.29.6.1 simonb * |s s s| ns |
128 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129 1.29.6.1 simonb * | fraction |
130 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131 1.29.6.1 simonb *
132 1.29.6.1 simonb * A frequency variable is a signed 64-bit fixed-point number in ns/s
133 1.29.6.1 simonb * and fraction. It represents the ns and fraction to be added to the
134 1.29.6.1 simonb * kernel time variable at each second. The maximum frequency offset is
135 1.29.6.1 simonb * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
136 1.29.6.1 simonb *
137 1.29.6.1 simonb * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
138 1.29.6.1 simonb * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
139 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
140 1.29.6.1 simonb * |s s s s s s s s s s s s s| ns/s |
141 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
142 1.29.6.1 simonb * | fraction |
143 1.29.6.1 simonb * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
144 1.29.6.1 simonb */
145 1.29.6.1 simonb /*
146 1.29.6.1 simonb * The following variables establish the state of the PLL/FLL and the
147 1.29.6.1 simonb * residual time and frequency offset of the local clock.
148 1.29.6.1 simonb */
149 1.29.6.1 simonb #define SHIFT_PLL 4 /* PLL loop gain (shift) */
150 1.29.6.1 simonb #define SHIFT_FLL 2 /* FLL loop gain (shift) */
151 1.29.6.1 simonb
152 1.29.6.1 simonb static int time_state = TIME_OK; /* clock state */
153 1.29.6.1 simonb static int time_status = STA_UNSYNC; /* clock status bits */
154 1.29.6.1 simonb static long time_tai; /* TAI offset (s) */
155 1.29.6.1 simonb static long time_monitor; /* last time offset scaled (ns) */
156 1.29.6.1 simonb static long time_constant; /* poll interval (shift) (s) */
157 1.29.6.1 simonb static long time_precision = 1; /* clock precision (ns) */
158 1.29.6.1 simonb static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
159 1.29.6.1 simonb static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
160 1.29.6.1 simonb static long time_reftime; /* time at last adjustment (s) */
161 1.29.6.1 simonb static l_fp time_offset; /* time offset (ns) */
162 1.29.6.1 simonb static l_fp time_freq; /* frequency offset (ns/s) */
163 1.29.6.2 kardel #endif /* NTP */
164 1.29.6.1 simonb
165 1.29.6.2 kardel static l_fp time_adj; /* tick adjust (ns/s) */
166 1.29.6.2 kardel int64_t time_adjtime; /* correction from adjtime(2) (usec) */
167 1.29.6.1 simonb
168 1.29.6.1 simonb extern int time_adjusted; /* ntp might have changed the system time */
169 1.29.6.1 simonb
170 1.29.6.2 kardel #ifdef NTP
171 1.29.6.1 simonb #ifdef PPS_SYNC
172 1.29.6.1 simonb /*
173 1.29.6.1 simonb * The following variables are used when a pulse-per-second (PPS) signal
174 1.29.6.1 simonb * is available and connected via a modem control lead. They establish
175 1.29.6.1 simonb * the engineering parameters of the clock discipline loop when
176 1.29.6.1 simonb * controlled by the PPS signal.
177 1.29.6.1 simonb */
178 1.29.6.1 simonb #define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
179 1.29.6.1 simonb #define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
180 1.29.6.1 simonb #define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
181 1.29.6.1 simonb #define PPS_PAVG 4 /* phase avg interval (s) (shift) */
182 1.29.6.1 simonb #define PPS_VALID 120 /* PPS signal watchdog max (s) */
183 1.29.6.1 simonb #define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
184 1.29.6.1 simonb #define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
185 1.29.6.1 simonb
186 1.29.6.1 simonb static struct timespec pps_tf[3]; /* phase median filter */
187 1.29.6.1 simonb static l_fp pps_freq; /* scaled frequency offset (ns/s) */
188 1.29.6.1 simonb static long pps_fcount; /* frequency accumulator */
189 1.29.6.1 simonb static long pps_jitter; /* nominal jitter (ns) */
190 1.29.6.1 simonb static long pps_stabil; /* nominal stability (scaled ns/s) */
191 1.29.6.1 simonb static long pps_lastsec; /* time at last calibration (s) */
192 1.29.6.1 simonb static int pps_valid; /* signal watchdog counter */
193 1.29.6.1 simonb static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
194 1.29.6.1 simonb static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
195 1.29.6.1 simonb static int pps_intcnt; /* wander counter */
196 1.29.6.1 simonb
197 1.29.6.1 simonb /*
198 1.29.6.1 simonb * PPS signal quality monitors
199 1.29.6.1 simonb */
200 1.29.6.1 simonb static long pps_calcnt; /* calibration intervals */
201 1.29.6.1 simonb static long pps_jitcnt; /* jitter limit exceeded */
202 1.29.6.1 simonb static long pps_stbcnt; /* stability limit exceeded */
203 1.29.6.1 simonb static long pps_errcnt; /* calibration errors */
204 1.29.6.1 simonb #endif /* PPS_SYNC */
205 1.29.6.1 simonb /*
206 1.29.6.1 simonb * End of phase/frequency-lock loop (PLL/FLL) definitions
207 1.29.6.1 simonb */
208 1.29.6.1 simonb
209 1.29.6.1 simonb static void hardupdate(long offset);
210 1.29.6.1 simonb
211 1.29.6.1 simonb /*ARGSUSED*/
212 1.29.6.1 simonb /*
213 1.29.6.1 simonb * ntp_gettime() - NTP user application interface
214 1.29.6.1 simonb */
215 1.29.6.1 simonb int
216 1.29.6.1 simonb sys_ntp_gettime(l, v, retval)
217 1.29.6.1 simonb struct lwp *l;
218 1.29.6.1 simonb void *v;
219 1.29.6.1 simonb register_t *retval;
220 1.29.6.1 simonb
221 1.29.6.1 simonb {
222 1.29.6.1 simonb struct sys_ntp_gettime_args /* {
223 1.29.6.1 simonb syscallarg(struct ntptimeval *) ntvp;
224 1.29.6.1 simonb } */ *uap = v;
225 1.29.6.1 simonb struct ntptimeval ntv;
226 1.29.6.1 simonb int error = 0;
227 1.29.6.1 simonb
228 1.29.6.1 simonb if (SCARG(uap, ntvp)) {
229 1.29.6.1 simonb nanotime(&ntv.time);
230 1.29.6.1 simonb ntv.maxerror = time_maxerror;
231 1.29.6.1 simonb ntv.esterror = time_esterror;
232 1.29.6.1 simonb ntv.tai = time_tai;
233 1.29.6.1 simonb ntv.time_state = time_state;
234 1.29.6.1 simonb
235 1.29.6.1 simonb error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
236 1.29.6.1 simonb sizeof(ntv));
237 1.29.6.1 simonb }
238 1.29.6.1 simonb if (!error) {
239 1.29.6.1 simonb
240 1.29.6.1 simonb /*
241 1.29.6.1 simonb * Status word error decode. If any of these conditions occur,
242 1.29.6.1 simonb * an error is returned, instead of the status word. Most
243 1.29.6.1 simonb * applications will care only about the fact the system clock
244 1.29.6.1 simonb * may not be trusted, not about the details.
245 1.29.6.1 simonb *
246 1.29.6.1 simonb * Hardware or software error
247 1.29.6.1 simonb */
248 1.29.6.1 simonb if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
249 1.29.6.1 simonb
250 1.29.6.1 simonb /*
251 1.29.6.1 simonb * PPS signal lost when either time or frequency synchronization
252 1.29.6.1 simonb * requested
253 1.29.6.1 simonb */
254 1.29.6.1 simonb (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
255 1.29.6.1 simonb !(time_status & STA_PPSSIGNAL)) ||
256 1.29.6.1 simonb
257 1.29.6.1 simonb /*
258 1.29.6.1 simonb * PPS jitter exceeded when time synchronization requested
259 1.29.6.1 simonb */
260 1.29.6.1 simonb (time_status & STA_PPSTIME &&
261 1.29.6.1 simonb time_status & STA_PPSJITTER) ||
262 1.29.6.1 simonb
263 1.29.6.1 simonb /*
264 1.29.6.1 simonb * PPS wander exceeded or calibration error when frequency
265 1.29.6.1 simonb * synchronization requested
266 1.29.6.1 simonb */
267 1.29.6.1 simonb (time_status & STA_PPSFREQ &&
268 1.29.6.1 simonb time_status & (STA_PPSWANDER | STA_PPSERROR)))
269 1.29.6.1 simonb ntv.time_state = TIME_ERROR;
270 1.29.6.1 simonb
271 1.29.6.1 simonb *retval = (register_t)ntv.time_state;
272 1.29.6.1 simonb }
273 1.29.6.1 simonb return(error);
274 1.29.6.1 simonb }
275 1.29.6.1 simonb
276 1.29.6.1 simonb /* ARGSUSED */
277 1.29.6.1 simonb /*
278 1.29.6.1 simonb * ntp_adjtime() - NTP daemon application interface
279 1.29.6.1 simonb */
280 1.29.6.1 simonb int
281 1.29.6.1 simonb sys_ntp_adjtime(l, v, retval)
282 1.29.6.1 simonb struct lwp *l;
283 1.29.6.1 simonb void *v;
284 1.29.6.1 simonb register_t *retval;
285 1.29.6.1 simonb {
286 1.29.6.1 simonb struct sys_ntp_adjtime_args /* {
287 1.29.6.1 simonb syscallarg(struct timex *) tp;
288 1.29.6.1 simonb } */ *uap = v;
289 1.29.6.1 simonb struct proc *p = l->l_proc;
290 1.29.6.1 simonb struct timex ntv;
291 1.29.6.1 simonb int error = 0;
292 1.29.6.1 simonb
293 1.29.6.1 simonb if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
294 1.29.6.1 simonb sizeof(ntv))) != 0)
295 1.29.6.1 simonb return (error);
296 1.29.6.1 simonb
297 1.29.6.1 simonb if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
298 1.29.6.1 simonb return (error);
299 1.29.6.1 simonb
300 1.29.6.1 simonb return (ntp_adjtime1(&ntv, v, retval));
301 1.29.6.1 simonb }
302 1.29.6.1 simonb
303 1.29.6.1 simonb int
304 1.29.6.1 simonb ntp_adjtime1(ntv, v, retval)
305 1.29.6.1 simonb struct timex *ntv;
306 1.29.6.1 simonb void *v;
307 1.29.6.1 simonb register_t *retval;
308 1.29.6.1 simonb {
309 1.29.6.1 simonb struct sys_ntp_adjtime_args /* {
310 1.29.6.1 simonb syscallarg(struct timex *) tp;
311 1.29.6.1 simonb } */ *uap = v;
312 1.29.6.1 simonb long freq;
313 1.29.6.1 simonb int modes;
314 1.29.6.1 simonb int s;
315 1.29.6.1 simonb int error = 0;
316 1.29.6.1 simonb
317 1.29.6.1 simonb /*
318 1.29.6.1 simonb * Update selected clock variables - only the superuser can
319 1.29.6.1 simonb * change anything. Note that there is no error checking here on
320 1.29.6.1 simonb * the assumption the superuser should know what it is doing.
321 1.29.6.1 simonb * Note that either the time constant or TAI offset are loaded
322 1.29.6.1 simonb * from the ntv.constant member, depending on the mode bits. If
323 1.29.6.1 simonb * the STA_PLL bit in the status word is cleared, the state and
324 1.29.6.1 simonb * status words are reset to the initial values at boot.
325 1.29.6.1 simonb */
326 1.29.6.1 simonb modes = ntv->modes;
327 1.29.6.1 simonb if (modes != 0)
328 1.29.6.1 simonb /* We need to save the system time during shutdown */
329 1.29.6.1 simonb time_adjusted |= 2;
330 1.29.6.1 simonb s = splclock();
331 1.29.6.1 simonb if (modes & MOD_MAXERROR)
332 1.29.6.1 simonb time_maxerror = ntv->maxerror;
333 1.29.6.1 simonb if (modes & MOD_ESTERROR)
334 1.29.6.1 simonb time_esterror = ntv->esterror;
335 1.29.6.1 simonb if (modes & MOD_STATUS) {
336 1.29.6.1 simonb if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
337 1.29.6.1 simonb time_state = TIME_OK;
338 1.29.6.1 simonb time_status = STA_UNSYNC;
339 1.29.6.1 simonb #ifdef PPS_SYNC
340 1.29.6.1 simonb pps_shift = PPS_FAVG;
341 1.29.6.1 simonb #endif /* PPS_SYNC */
342 1.29.6.1 simonb }
343 1.29.6.1 simonb time_status &= STA_RONLY;
344 1.29.6.1 simonb time_status |= ntv->status & ~STA_RONLY;
345 1.29.6.1 simonb }
346 1.29.6.1 simonb if (modes & MOD_TIMECONST) {
347 1.29.6.1 simonb if (ntv->constant < 0)
348 1.29.6.1 simonb time_constant = 0;
349 1.29.6.1 simonb else if (ntv->constant > MAXTC)
350 1.29.6.1 simonb time_constant = MAXTC;
351 1.29.6.1 simonb else
352 1.29.6.1 simonb time_constant = ntv->constant;
353 1.29.6.1 simonb }
354 1.29.6.1 simonb if (modes & MOD_TAI) {
355 1.29.6.1 simonb if (ntv->constant > 0) /* XXX zero & negative numbers ? */
356 1.29.6.1 simonb time_tai = ntv->constant;
357 1.29.6.1 simonb }
358 1.29.6.1 simonb #ifdef PPS_SYNC
359 1.29.6.1 simonb if (modes & MOD_PPSMAX) {
360 1.29.6.1 simonb if (ntv->shift < PPS_FAVG)
361 1.29.6.1 simonb pps_shiftmax = PPS_FAVG;
362 1.29.6.1 simonb else if (ntv->shift > PPS_FAVGMAX)
363 1.29.6.1 simonb pps_shiftmax = PPS_FAVGMAX;
364 1.29.6.1 simonb else
365 1.29.6.2 kardel pps_shiftmax = ntv->shift;
366 1.29.6.1 simonb }
367 1.29.6.1 simonb #endif /* PPS_SYNC */
368 1.29.6.1 simonb if (modes & MOD_NANO)
369 1.29.6.1 simonb time_status |= STA_NANO;
370 1.29.6.1 simonb if (modes & MOD_MICRO)
371 1.29.6.1 simonb time_status &= ~STA_NANO;
372 1.29.6.1 simonb if (modes & MOD_CLKB)
373 1.29.6.1 simonb time_status |= STA_CLK;
374 1.29.6.1 simonb if (modes & MOD_CLKA)
375 1.29.6.1 simonb time_status &= ~STA_CLK;
376 1.29.6.1 simonb if (modes & MOD_FREQUENCY) {
377 1.29.6.1 simonb freq = (ntv->freq * 1000LL) >> 16;
378 1.29.6.1 simonb if (freq > MAXFREQ)
379 1.29.6.1 simonb L_LINT(time_freq, MAXFREQ);
380 1.29.6.1 simonb else if (freq < -MAXFREQ)
381 1.29.6.1 simonb L_LINT(time_freq, -MAXFREQ);
382 1.29.6.1 simonb else {
383 1.29.6.1 simonb /*
384 1.29.6.1 simonb * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
385 1.29.6.1 simonb * time_freq is [ns/s * 2^32]
386 1.29.6.1 simonb */
387 1.29.6.1 simonb time_freq = ntv->freq * 1000LL * 65536LL;
388 1.29.6.1 simonb }
389 1.29.6.1 simonb #ifdef PPS_SYNC
390 1.29.6.1 simonb pps_freq = time_freq;
391 1.29.6.1 simonb #endif /* PPS_SYNC */
392 1.29.6.1 simonb }
393 1.29.6.1 simonb if (modes & MOD_OFFSET) {
394 1.29.6.1 simonb if (time_status & STA_NANO)
395 1.29.6.1 simonb hardupdate(ntv->offset);
396 1.29.6.1 simonb else
397 1.29.6.1 simonb hardupdate(ntv->offset * 1000);
398 1.29.6.1 simonb }
399 1.29.6.1 simonb
400 1.29.6.1 simonb /*
401 1.29.6.1 simonb * Retrieve all clock variables. Note that the TAI offset is
402 1.29.6.1 simonb * returned only by ntp_gettime();
403 1.29.6.1 simonb */
404 1.29.6.1 simonb if (time_status & STA_NANO)
405 1.29.6.1 simonb ntv->offset = L_GINT(time_offset);
406 1.29.6.1 simonb else
407 1.29.6.1 simonb ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
408 1.29.6.1 simonb ntv->freq = L_GINT((time_freq / 1000LL) << 16);
409 1.29.6.1 simonb ntv->maxerror = time_maxerror;
410 1.29.6.1 simonb ntv->esterror = time_esterror;
411 1.29.6.1 simonb ntv->status = time_status;
412 1.29.6.1 simonb ntv->constant = time_constant;
413 1.29.6.1 simonb if (time_status & STA_NANO)
414 1.29.6.1 simonb ntv->precision = time_precision;
415 1.29.6.1 simonb else
416 1.29.6.1 simonb ntv->precision = time_precision / 1000;
417 1.29.6.1 simonb ntv->tolerance = MAXFREQ * SCALE_PPM;
418 1.29.6.1 simonb #ifdef PPS_SYNC
419 1.29.6.1 simonb ntv->shift = pps_shift;
420 1.29.6.1 simonb ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
421 1.29.6.1 simonb if (time_status & STA_NANO)
422 1.29.6.1 simonb ntv->jitter = pps_jitter;
423 1.29.6.1 simonb else
424 1.29.6.1 simonb ntv->jitter = pps_jitter / 1000;
425 1.29.6.1 simonb ntv->stabil = pps_stabil;
426 1.29.6.1 simonb ntv->calcnt = pps_calcnt;
427 1.29.6.1 simonb ntv->errcnt = pps_errcnt;
428 1.29.6.1 simonb ntv->jitcnt = pps_jitcnt;
429 1.29.6.1 simonb ntv->stbcnt = pps_stbcnt;
430 1.29.6.1 simonb #endif /* PPS_SYNC */
431 1.29.6.1 simonb splx(s);
432 1.29.6.1 simonb
433 1.29.6.1 simonb error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
434 1.29.6.1 simonb if (!error) {
435 1.29.6.1 simonb
436 1.29.6.1 simonb /*
437 1.29.6.1 simonb * Status word error decode. See comments in
438 1.29.6.1 simonb * ntp_gettime() routine.
439 1.29.6.1 simonb */
440 1.29.6.1 simonb if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
441 1.29.6.1 simonb (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
442 1.29.6.1 simonb !(time_status & STA_PPSSIGNAL)) ||
443 1.29.6.1 simonb (time_status & STA_PPSTIME &&
444 1.29.6.1 simonb time_status & STA_PPSJITTER) ||
445 1.29.6.1 simonb (time_status & STA_PPSFREQ &&
446 1.29.6.1 simonb time_status & (STA_PPSWANDER | STA_PPSERROR))) {
447 1.29.6.1 simonb *retval = TIME_ERROR;
448 1.29.6.1 simonb } else
449 1.29.6.1 simonb *retval = (register_t)time_state;
450 1.29.6.1 simonb }
451 1.29.6.1 simonb return error;
452 1.29.6.1 simonb }
453 1.29.6.2 kardel #endif /* NTP */
454 1.29.6.1 simonb
455 1.29.6.1 simonb /*
456 1.29.6.1 simonb * second_overflow() - called after ntp_tick_adjust()
457 1.29.6.1 simonb *
458 1.29.6.1 simonb * This routine is ordinarily called immediately following the above
459 1.29.6.1 simonb * routine ntp_tick_adjust(). While these two routines are normally
460 1.29.6.1 simonb * combined, they are separated here only for the purposes of
461 1.29.6.1 simonb * simulation.
462 1.29.6.1 simonb */
463 1.29.6.1 simonb void
464 1.29.6.1 simonb ntp_update_second(int64_t *adjustment, time_t *newsec)
465 1.29.6.1 simonb {
466 1.29.6.1 simonb int tickrate;
467 1.29.6.1 simonb l_fp ftemp; /* 32/64-bit temporary */
468 1.29.6.1 simonb
469 1.29.6.2 kardel #ifdef NTP
470 1.29.6.2 kardel
471 1.29.6.1 simonb /*
472 1.29.6.1 simonb * On rollover of the second both the nanosecond and microsecond
473 1.29.6.1 simonb * clocks are updated and the state machine cranked as
474 1.29.6.1 simonb * necessary. The phase adjustment to be used for the next
475 1.29.6.1 simonb * second is calculated and the maximum error is increased by
476 1.29.6.1 simonb * the tolerance.
477 1.29.6.1 simonb */
478 1.29.6.1 simonb time_maxerror += MAXFREQ / 1000;
479 1.29.6.1 simonb
480 1.29.6.1 simonb /*
481 1.29.6.1 simonb * Leap second processing. If in leap-insert state at
482 1.29.6.1 simonb * the end of the day, the system clock is set back one
483 1.29.6.1 simonb * second; if in leap-delete state, the system clock is
484 1.29.6.1 simonb * set ahead one second. The nano_time() routine or
485 1.29.6.1 simonb * external clock driver will insure that reported time
486 1.29.6.1 simonb * is always monotonic.
487 1.29.6.1 simonb */
488 1.29.6.1 simonb switch (time_state) {
489 1.29.6.1 simonb
490 1.29.6.1 simonb /*
491 1.29.6.1 simonb * No warning.
492 1.29.6.1 simonb */
493 1.29.6.1 simonb case TIME_OK:
494 1.29.6.1 simonb if (time_status & STA_INS)
495 1.29.6.1 simonb time_state = TIME_INS;
496 1.29.6.1 simonb else if (time_status & STA_DEL)
497 1.29.6.1 simonb time_state = TIME_DEL;
498 1.29.6.1 simonb break;
499 1.29.6.1 simonb
500 1.29.6.1 simonb /*
501 1.29.6.1 simonb * Insert second 23:59:60 following second
502 1.29.6.1 simonb * 23:59:59.
503 1.29.6.1 simonb */
504 1.29.6.1 simonb case TIME_INS:
505 1.29.6.1 simonb if (!(time_status & STA_INS))
506 1.29.6.1 simonb time_state = TIME_OK;
507 1.29.6.1 simonb else if ((*newsec) % 86400 == 0) {
508 1.29.6.1 simonb (*newsec)--;
509 1.29.6.1 simonb time_state = TIME_OOP;
510 1.29.6.1 simonb time_tai++;
511 1.29.6.1 simonb }
512 1.29.6.1 simonb break;
513 1.29.6.1 simonb
514 1.29.6.1 simonb /*
515 1.29.6.1 simonb * Delete second 23:59:59.
516 1.29.6.1 simonb */
517 1.29.6.1 simonb case TIME_DEL:
518 1.29.6.1 simonb if (!(time_status & STA_DEL))
519 1.29.6.1 simonb time_state = TIME_OK;
520 1.29.6.1 simonb else if (((*newsec) + 1) % 86400 == 0) {
521 1.29.6.1 simonb (*newsec)++;
522 1.29.6.1 simonb time_tai--;
523 1.29.6.1 simonb time_state = TIME_WAIT;
524 1.29.6.1 simonb }
525 1.29.6.1 simonb break;
526 1.29.6.1 simonb
527 1.29.6.1 simonb /*
528 1.29.6.1 simonb * Insert second in progress.
529 1.29.6.1 simonb */
530 1.29.6.1 simonb case TIME_OOP:
531 1.29.6.1 simonb time_state = TIME_WAIT;
532 1.29.6.1 simonb break;
533 1.29.6.1 simonb
534 1.29.6.1 simonb /*
535 1.29.6.1 simonb * Wait for status bits to clear.
536 1.29.6.1 simonb */
537 1.29.6.1 simonb case TIME_WAIT:
538 1.29.6.1 simonb if (!(time_status & (STA_INS | STA_DEL)))
539 1.29.6.1 simonb time_state = TIME_OK;
540 1.29.6.1 simonb }
541 1.29.6.1 simonb
542 1.29.6.1 simonb /*
543 1.29.6.1 simonb * Compute the total time adjustment for the next second
544 1.29.6.1 simonb * in ns. The offset is reduced by a factor depending on
545 1.29.6.1 simonb * whether the PPS signal is operating. Note that the
546 1.29.6.1 simonb * value is in effect scaled by the clock frequency,
547 1.29.6.1 simonb * since the adjustment is added at each tick interrupt.
548 1.29.6.1 simonb */
549 1.29.6.1 simonb ftemp = time_offset;
550 1.29.6.1 simonb #ifdef PPS_SYNC
551 1.29.6.1 simonb /* XXX even if PPS signal dies we should finish adjustment ? */
552 1.29.6.1 simonb if (time_status & STA_PPSTIME && time_status &
553 1.29.6.1 simonb STA_PPSSIGNAL)
554 1.29.6.1 simonb L_RSHIFT(ftemp, pps_shift);
555 1.29.6.1 simonb else
556 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
557 1.29.6.1 simonb #else
558 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
559 1.29.6.1 simonb #endif /* PPS_SYNC */
560 1.29.6.1 simonb time_adj = ftemp;
561 1.29.6.1 simonb L_SUB(time_offset, ftemp);
562 1.29.6.1 simonb L_ADD(time_adj, time_freq);
563 1.29.6.1 simonb
564 1.29.6.2 kardel #ifdef PPS_SYNC
565 1.29.6.2 kardel if (pps_valid > 0)
566 1.29.6.2 kardel pps_valid--;
567 1.29.6.2 kardel else
568 1.29.6.2 kardel time_status &= ~STA_PPSSIGNAL;
569 1.29.6.2 kardel #endif /* PPS_SYNC */
570 1.29.6.2 kardel
571 1.29.6.2 kardel #endif /* NTP */
572 1.29.6.2 kardel
573 1.29.6.1 simonb /*
574 1.29.6.1 simonb * Apply any correction from adjtime(2). If more than one second
575 1.29.6.1 simonb * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
576 1.29.6.1 simonb * until the last second is slewed the final < 500 usecs.
577 1.29.6.1 simonb */
578 1.29.6.1 simonb if (time_adjtime != 0) {
579 1.29.6.1 simonb if (time_adjtime > 1000000)
580 1.29.6.1 simonb tickrate = 5000;
581 1.29.6.1 simonb else if (time_adjtime < -1000000)
582 1.29.6.1 simonb tickrate = -5000;
583 1.29.6.1 simonb else if (time_adjtime > 500)
584 1.29.6.1 simonb tickrate = 500;
585 1.29.6.1 simonb else if (time_adjtime < -500)
586 1.29.6.1 simonb tickrate = -500;
587 1.29.6.1 simonb else
588 1.29.6.1 simonb tickrate = time_adjtime;
589 1.29.6.1 simonb time_adjtime -= tickrate;
590 1.29.6.1 simonb L_LINT(ftemp, tickrate * 1000);
591 1.29.6.1 simonb L_ADD(time_adj, ftemp);
592 1.29.6.1 simonb }
593 1.29.6.1 simonb *adjustment = time_adj;
594 1.29.6.1 simonb
595 1.29.6.1 simonb }
596 1.29.6.1 simonb
597 1.29.6.1 simonb /*
598 1.29.6.1 simonb * ntp_init() - initialize variables and structures
599 1.29.6.1 simonb *
600 1.29.6.1 simonb * This routine must be called after the kernel variables hz and tick
601 1.29.6.1 simonb * are set or changed and before the next tick interrupt. In this
602 1.29.6.1 simonb * particular implementation, these values are assumed set elsewhere in
603 1.29.6.1 simonb * the kernel. The design allows the clock frequency and tick interval
604 1.29.6.1 simonb * to be changed while the system is running. So, this routine should
605 1.29.6.1 simonb * probably be integrated with the code that does that.
606 1.29.6.1 simonb */
607 1.29.6.1 simonb void
608 1.29.6.1 simonb ntp_init(void)
609 1.29.6.1 simonb {
610 1.29.6.1 simonb
611 1.29.6.1 simonb /*
612 1.29.6.1 simonb * The following variables are initialized only at startup. Only
613 1.29.6.1 simonb * those structures not cleared by the compiler need to be
614 1.29.6.1 simonb * initialized, and these only in the simulator. In the actual
615 1.29.6.1 simonb * kernel, any nonzero values here will quickly evaporate.
616 1.29.6.1 simonb */
617 1.29.6.2 kardel L_CLR(time_adj);
618 1.29.6.2 kardel #ifdef NTP
619 1.29.6.1 simonb L_CLR(time_offset);
620 1.29.6.1 simonb L_CLR(time_freq);
621 1.29.6.1 simonb #ifdef PPS_SYNC
622 1.29.6.1 simonb pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
623 1.29.6.1 simonb pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
624 1.29.6.1 simonb pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
625 1.29.6.1 simonb pps_fcount = 0;
626 1.29.6.1 simonb L_CLR(pps_freq);
627 1.29.6.2 kardel #endif /* PPS_SYNC */
628 1.29.6.2 kardel #endif
629 1.29.6.1 simonb }
630 1.29.6.1 simonb
631 1.29.6.2 kardel #ifdef NTP
632 1.29.6.1 simonb /*
633 1.29.6.1 simonb * hardupdate() - local clock update
634 1.29.6.1 simonb *
635 1.29.6.1 simonb * This routine is called by ntp_adjtime() to update the local clock
636 1.29.6.1 simonb * phase and frequency. The implementation is of an adaptive-parameter,
637 1.29.6.1 simonb * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
638 1.29.6.1 simonb * time and frequency offset estimates for each call. If the kernel PPS
639 1.29.6.1 simonb * discipline code is configured (PPS_SYNC), the PPS signal itself
640 1.29.6.1 simonb * determines the new time offset, instead of the calling argument.
641 1.29.6.1 simonb * Presumably, calls to ntp_adjtime() occur only when the caller
642 1.29.6.1 simonb * believes the local clock is valid within some bound (+-128 ms with
643 1.29.6.1 simonb * NTP). If the caller's time is far different than the PPS time, an
644 1.29.6.1 simonb * argument will ensue, and it's not clear who will lose.
645 1.29.6.1 simonb *
646 1.29.6.1 simonb * For uncompensated quartz crystal oscillators and nominal update
647 1.29.6.1 simonb * intervals less than 256 s, operation should be in phase-lock mode,
648 1.29.6.1 simonb * where the loop is disciplined to phase. For update intervals greater
649 1.29.6.1 simonb * than 1024 s, operation should be in frequency-lock mode, where the
650 1.29.6.1 simonb * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
651 1.29.6.1 simonb * is selected by the STA_MODE status bit.
652 1.29.6.1 simonb *
653 1.29.6.1 simonb * Note: splclock() is in effect.
654 1.29.6.1 simonb */
655 1.29.6.1 simonb void
656 1.29.6.1 simonb hardupdate(long offset)
657 1.29.6.1 simonb {
658 1.29.6.1 simonb long mtemp;
659 1.29.6.1 simonb l_fp ftemp;
660 1.29.6.1 simonb
661 1.29.6.1 simonb /*
662 1.29.6.1 simonb * Select how the phase is to be controlled and from which
663 1.29.6.1 simonb * source. If the PPS signal is present and enabled to
664 1.29.6.1 simonb * discipline the time, the PPS offset is used; otherwise, the
665 1.29.6.1 simonb * argument offset is used.
666 1.29.6.1 simonb */
667 1.29.6.1 simonb if (!(time_status & STA_PLL))
668 1.29.6.1 simonb return;
669 1.29.6.1 simonb if (!(time_status & STA_PPSTIME && time_status &
670 1.29.6.1 simonb STA_PPSSIGNAL)) {
671 1.29.6.1 simonb if (offset > MAXPHASE)
672 1.29.6.1 simonb time_monitor = MAXPHASE;
673 1.29.6.1 simonb else if (offset < -MAXPHASE)
674 1.29.6.1 simonb time_monitor = -MAXPHASE;
675 1.29.6.1 simonb else
676 1.29.6.1 simonb time_monitor = offset;
677 1.29.6.1 simonb L_LINT(time_offset, time_monitor);
678 1.29.6.1 simonb }
679 1.29.6.1 simonb
680 1.29.6.1 simonb /*
681 1.29.6.1 simonb * Select how the frequency is to be controlled and in which
682 1.29.6.1 simonb * mode (PLL or FLL). If the PPS signal is present and enabled
683 1.29.6.1 simonb * to discipline the frequency, the PPS frequency is used;
684 1.29.6.1 simonb * otherwise, the argument offset is used to compute it.
685 1.29.6.1 simonb */
686 1.29.6.1 simonb if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
687 1.29.6.1 simonb time_reftime = time_second;
688 1.29.6.1 simonb return;
689 1.29.6.1 simonb }
690 1.29.6.1 simonb if (time_status & STA_FREQHOLD || time_reftime == 0)
691 1.29.6.1 simonb time_reftime = time_second;
692 1.29.6.1 simonb mtemp = time_second - time_reftime;
693 1.29.6.1 simonb L_LINT(ftemp, time_monitor);
694 1.29.6.1 simonb L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
695 1.29.6.1 simonb L_MPY(ftemp, mtemp);
696 1.29.6.1 simonb L_ADD(time_freq, ftemp);
697 1.29.6.1 simonb time_status &= ~STA_MODE;
698 1.29.6.1 simonb if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
699 1.29.6.1 simonb MAXSEC)) {
700 1.29.6.1 simonb L_LINT(ftemp, (time_monitor << 4) / mtemp);
701 1.29.6.1 simonb L_RSHIFT(ftemp, SHIFT_FLL + 4);
702 1.29.6.1 simonb L_ADD(time_freq, ftemp);
703 1.29.6.1 simonb time_status |= STA_MODE;
704 1.29.6.1 simonb }
705 1.29.6.1 simonb time_reftime = time_second;
706 1.29.6.1 simonb if (L_GINT(time_freq) > MAXFREQ)
707 1.29.6.1 simonb L_LINT(time_freq, MAXFREQ);
708 1.29.6.1 simonb else if (L_GINT(time_freq) < -MAXFREQ)
709 1.29.6.1 simonb L_LINT(time_freq, -MAXFREQ);
710 1.29.6.1 simonb }
711 1.29.6.1 simonb
712 1.29.6.1 simonb #ifdef PPS_SYNC
713 1.29.6.1 simonb /*
714 1.29.6.1 simonb * hardpps() - discipline CPU clock oscillator to external PPS signal
715 1.29.6.1 simonb *
716 1.29.6.1 simonb * This routine is called at each PPS interrupt in order to discipline
717 1.29.6.1 simonb * the CPU clock oscillator to the PPS signal. It measures the PPS phase
718 1.29.6.1 simonb * and leaves it in a handy spot for the hardclock() routine. It
719 1.29.6.1 simonb * integrates successive PPS phase differences and calculates the
720 1.29.6.1 simonb * frequency offset. This is used in hardclock() to discipline the CPU
721 1.29.6.1 simonb * clock oscillator so that intrinsic frequency error is cancelled out.
722 1.29.6.1 simonb * The code requires the caller to capture the time and hardware counter
723 1.29.6.1 simonb * value at the on-time PPS signal transition.
724 1.29.6.1 simonb *
725 1.29.6.1 simonb * Note that, on some Unix systems, this routine runs at an interrupt
726 1.29.6.1 simonb * priority level higher than the timer interrupt routine hardclock().
727 1.29.6.1 simonb * Therefore, the variables used are distinct from the hardclock()
728 1.29.6.1 simonb * variables, except for certain exceptions: The PPS frequency pps_freq
729 1.29.6.1 simonb * and phase pps_offset variables are determined by this routine and
730 1.29.6.1 simonb * updated atomically. The time_tolerance variable can be considered a
731 1.29.6.1 simonb * constant, since it is infrequently changed, and then only when the
732 1.29.6.1 simonb * PPS signal is disabled. The watchdog counter pps_valid is updated
733 1.29.6.1 simonb * once per second by hardclock() and is atomically cleared in this
734 1.29.6.1 simonb * routine.
735 1.29.6.1 simonb */
736 1.29.6.1 simonb void
737 1.29.6.2 kardel hardpps(struct timespec *tsp, /* time at PPS */
738 1.29.6.2 kardel long nsec /* hardware counter at PPS */)
739 1.29.6.1 simonb {
740 1.29.6.1 simonb long u_sec, u_nsec, v_nsec; /* temps */
741 1.29.6.1 simonb l_fp ftemp;
742 1.29.6.1 simonb
743 1.29.6.1 simonb /*
744 1.29.6.1 simonb * The signal is first processed by a range gate and frequency
745 1.29.6.1 simonb * discriminator. The range gate rejects noise spikes outside
746 1.29.6.1 simonb * the range +-500 us. The frequency discriminator rejects input
747 1.29.6.1 simonb * signals with apparent frequency outside the range 1 +-500
748 1.29.6.1 simonb * PPM. If two hits occur in the same second, we ignore the
749 1.29.6.1 simonb * later hit; if not and a hit occurs outside the range gate,
750 1.29.6.1 simonb * keep the later hit for later comparison, but do not process
751 1.29.6.1 simonb * it.
752 1.29.6.1 simonb */
753 1.29.6.1 simonb time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
754 1.29.6.1 simonb time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
755 1.29.6.1 simonb pps_valid = PPS_VALID;
756 1.29.6.1 simonb u_sec = tsp->tv_sec;
757 1.29.6.1 simonb u_nsec = tsp->tv_nsec;
758 1.29.6.1 simonb if (u_nsec >= (NANOSECOND >> 1)) {
759 1.29.6.1 simonb u_nsec -= NANOSECOND;
760 1.29.6.1 simonb u_sec++;
761 1.29.6.1 simonb }
762 1.29.6.1 simonb v_nsec = u_nsec - pps_tf[0].tv_nsec;
763 1.29.6.1 simonb if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
764 1.29.6.1 simonb MAXFREQ)
765 1.29.6.1 simonb return;
766 1.29.6.1 simonb pps_tf[2] = pps_tf[1];
767 1.29.6.1 simonb pps_tf[1] = pps_tf[0];
768 1.29.6.1 simonb pps_tf[0].tv_sec = u_sec;
769 1.29.6.1 simonb pps_tf[0].tv_nsec = u_nsec;
770 1.29.6.1 simonb
771 1.29.6.1 simonb /*
772 1.29.6.1 simonb * Compute the difference between the current and previous
773 1.29.6.1 simonb * counter values. If the difference exceeds 0.5 s, assume it
774 1.29.6.1 simonb * has wrapped around, so correct 1.0 s. If the result exceeds
775 1.29.6.1 simonb * the tick interval, the sample point has crossed a tick
776 1.29.6.1 simonb * boundary during the last second, so correct the tick. Very
777 1.29.6.1 simonb * intricate.
778 1.29.6.1 simonb */
779 1.29.6.1 simonb u_nsec = nsec;
780 1.29.6.1 simonb if (u_nsec > (NANOSECOND >> 1))
781 1.29.6.1 simonb u_nsec -= NANOSECOND;
782 1.29.6.1 simonb else if (u_nsec < -(NANOSECOND >> 1))
783 1.29.6.1 simonb u_nsec += NANOSECOND;
784 1.29.6.1 simonb pps_fcount += u_nsec;
785 1.29.6.1 simonb if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
786 1.29.6.1 simonb return;
787 1.29.6.1 simonb time_status &= ~STA_PPSJITTER;
788 1.29.6.1 simonb
789 1.29.6.1 simonb /*
790 1.29.6.1 simonb * A three-stage median filter is used to help denoise the PPS
791 1.29.6.1 simonb * time. The median sample becomes the time offset estimate; the
792 1.29.6.1 simonb * difference between the other two samples becomes the time
793 1.29.6.1 simonb * dispersion (jitter) estimate.
794 1.29.6.1 simonb */
795 1.29.6.1 simonb if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
796 1.29.6.1 simonb if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
797 1.29.6.1 simonb v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
798 1.29.6.1 simonb u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
799 1.29.6.1 simonb } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
800 1.29.6.1 simonb v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
801 1.29.6.1 simonb u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
802 1.29.6.1 simonb } else {
803 1.29.6.1 simonb v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
804 1.29.6.1 simonb u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
805 1.29.6.1 simonb }
806 1.29.6.1 simonb } else {
807 1.29.6.1 simonb if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
808 1.29.6.1 simonb v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
809 1.29.6.1 simonb u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
810 1.29.6.1 simonb } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
811 1.29.6.1 simonb v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
812 1.29.6.1 simonb u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
813 1.29.6.1 simonb } else {
814 1.29.6.1 simonb v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
815 1.29.6.1 simonb u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
816 1.29.6.1 simonb }
817 1.29.6.1 simonb }
818 1.29.6.1 simonb
819 1.29.6.1 simonb /*
820 1.29.6.1 simonb * Nominal jitter is due to PPS signal noise and interrupt
821 1.29.6.1 simonb * latency. If it exceeds the popcorn threshold, the sample is
822 1.29.6.1 simonb * discarded. otherwise, if so enabled, the time offset is
823 1.29.6.1 simonb * updated. We can tolerate a modest loss of data here without
824 1.29.6.1 simonb * much degrading time accuracy.
825 1.29.6.1 simonb */
826 1.29.6.1 simonb if (u_nsec > (pps_jitter << PPS_POPCORN)) {
827 1.29.6.1 simonb time_status |= STA_PPSJITTER;
828 1.29.6.1 simonb pps_jitcnt++;
829 1.29.6.1 simonb } else if (time_status & STA_PPSTIME) {
830 1.29.6.1 simonb time_monitor = -v_nsec;
831 1.29.6.1 simonb L_LINT(time_offset, time_monitor);
832 1.29.6.1 simonb }
833 1.29.6.1 simonb pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
834 1.29.6.1 simonb u_sec = pps_tf[0].tv_sec - pps_lastsec;
835 1.29.6.1 simonb if (u_sec < (1 << pps_shift))
836 1.29.6.1 simonb return;
837 1.29.6.1 simonb
838 1.29.6.1 simonb /*
839 1.29.6.1 simonb * At the end of the calibration interval the difference between
840 1.29.6.1 simonb * the first and last counter values becomes the scaled
841 1.29.6.1 simonb * frequency. It will later be divided by the length of the
842 1.29.6.1 simonb * interval to determine the frequency update. If the frequency
843 1.29.6.1 simonb * exceeds a sanity threshold, or if the actual calibration
844 1.29.6.1 simonb * interval is not equal to the expected length, the data are
845 1.29.6.1 simonb * discarded. We can tolerate a modest loss of data here without
846 1.29.6.1 simonb * much degrading frequency accuracy.
847 1.29.6.1 simonb */
848 1.29.6.1 simonb pps_calcnt++;
849 1.29.6.1 simonb v_nsec = -pps_fcount;
850 1.29.6.1 simonb pps_lastsec = pps_tf[0].tv_sec;
851 1.29.6.1 simonb pps_fcount = 0;
852 1.29.6.1 simonb u_nsec = MAXFREQ << pps_shift;
853 1.29.6.1 simonb if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
854 1.29.6.1 simonb pps_shift)) {
855 1.29.6.1 simonb time_status |= STA_PPSERROR;
856 1.29.6.1 simonb pps_errcnt++;
857 1.29.6.1 simonb return;
858 1.29.6.1 simonb }
859 1.29.6.1 simonb
860 1.29.6.1 simonb /*
861 1.29.6.1 simonb * Here the raw frequency offset and wander (stability) is
862 1.29.6.1 simonb * calculated. If the wander is less than the wander threshold
863 1.29.6.1 simonb * for four consecutive averaging intervals, the interval is
864 1.29.6.1 simonb * doubled; if it is greater than the threshold for four
865 1.29.6.1 simonb * consecutive intervals, the interval is halved. The scaled
866 1.29.6.1 simonb * frequency offset is converted to frequency offset. The
867 1.29.6.1 simonb * stability metric is calculated as the average of recent
868 1.29.6.1 simonb * frequency changes, but is used only for performance
869 1.29.6.1 simonb * monitoring.
870 1.29.6.1 simonb */
871 1.29.6.1 simonb L_LINT(ftemp, v_nsec);
872 1.29.6.1 simonb L_RSHIFT(ftemp, pps_shift);
873 1.29.6.1 simonb L_SUB(ftemp, pps_freq);
874 1.29.6.1 simonb u_nsec = L_GINT(ftemp);
875 1.29.6.1 simonb if (u_nsec > PPS_MAXWANDER) {
876 1.29.6.1 simonb L_LINT(ftemp, PPS_MAXWANDER);
877 1.29.6.1 simonb pps_intcnt--;
878 1.29.6.1 simonb time_status |= STA_PPSWANDER;
879 1.29.6.1 simonb pps_stbcnt++;
880 1.29.6.1 simonb } else if (u_nsec < -PPS_MAXWANDER) {
881 1.29.6.1 simonb L_LINT(ftemp, -PPS_MAXWANDER);
882 1.29.6.1 simonb pps_intcnt--;
883 1.29.6.1 simonb time_status |= STA_PPSWANDER;
884 1.29.6.1 simonb pps_stbcnt++;
885 1.29.6.1 simonb } else {
886 1.29.6.1 simonb pps_intcnt++;
887 1.29.6.1 simonb }
888 1.29.6.1 simonb if (pps_intcnt >= 4) {
889 1.29.6.1 simonb pps_intcnt = 4;
890 1.29.6.1 simonb if (pps_shift < pps_shiftmax) {
891 1.29.6.1 simonb pps_shift++;
892 1.29.6.1 simonb pps_intcnt = 0;
893 1.29.6.1 simonb }
894 1.29.6.1 simonb } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
895 1.29.6.1 simonb pps_intcnt = -4;
896 1.29.6.1 simonb if (pps_shift > PPS_FAVG) {
897 1.29.6.1 simonb pps_shift--;
898 1.29.6.1 simonb pps_intcnt = 0;
899 1.29.6.1 simonb }
900 1.29.6.1 simonb }
901 1.29.6.1 simonb if (u_nsec < 0)
902 1.29.6.1 simonb u_nsec = -u_nsec;
903 1.29.6.1 simonb pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
904 1.29.6.1 simonb
905 1.29.6.1 simonb /*
906 1.29.6.1 simonb * The PPS frequency is recalculated and clamped to the maximum
907 1.29.6.1 simonb * MAXFREQ. If enabled, the system clock frequency is updated as
908 1.29.6.1 simonb * well.
909 1.29.6.1 simonb */
910 1.29.6.1 simonb L_ADD(pps_freq, ftemp);
911 1.29.6.1 simonb u_nsec = L_GINT(pps_freq);
912 1.29.6.1 simonb if (u_nsec > MAXFREQ)
913 1.29.6.1 simonb L_LINT(pps_freq, MAXFREQ);
914 1.29.6.1 simonb else if (u_nsec < -MAXFREQ)
915 1.29.6.1 simonb L_LINT(pps_freq, -MAXFREQ);
916 1.29.6.1 simonb if (time_status & STA_PPSFREQ)
917 1.29.6.1 simonb time_freq = pps_freq;
918 1.29.6.1 simonb }
919 1.29.6.1 simonb #endif /* PPS_SYNC */
920 1.29.6.1 simonb
921 1.29.6.1 simonb /*
922 1.29.6.1 simonb * return information about kernel precision timekeeping
923 1.29.6.1 simonb * XXX this should share code with sys_ntp_gettime
924 1.29.6.1 simonb */
925 1.29.6.1 simonb static int
926 1.29.6.1 simonb sysctl_kern_ntptime(SYSCTLFN_ARGS)
927 1.29.6.1 simonb {
928 1.29.6.1 simonb struct sysctlnode node;
929 1.29.6.1 simonb struct ntptimeval ntv;
930 1.29.6.1 simonb
931 1.29.6.1 simonb /*
932 1.29.6.1 simonb * Construct ntp_timeval.
933 1.29.6.1 simonb */
934 1.29.6.1 simonb
935 1.29.6.1 simonb nanotime(&ntv.time);
936 1.29.6.1 simonb ntv.maxerror = time_maxerror;
937 1.29.6.1 simonb ntv.esterror = time_esterror;
938 1.29.6.1 simonb ntv.tai = time_tai;
939 1.29.6.1 simonb ntv.time_state = time_state;
940 1.29.6.1 simonb
941 1.29.6.1 simonb #ifdef notyet
942 1.29.6.1 simonb /*
943 1.29.6.1 simonb * Status word error decode. If any of these conditions occur,
944 1.29.6.1 simonb * an error is returned, instead of the status word. Most
945 1.29.6.1 simonb * applications will care only about the fact the system clock
946 1.29.6.1 simonb * may not be trusted, not about the details.
947 1.29.6.1 simonb *
948 1.29.6.1 simonb * Hardware or software error
949 1.29.6.1 simonb */
950 1.29.6.1 simonb if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
951 1.29.6.1 simonb
952 1.29.6.1 simonb /*
953 1.29.6.1 simonb * PPS signal lost when either time or frequency synchronization
954 1.29.6.1 simonb * requested
955 1.29.6.1 simonb */
956 1.29.6.1 simonb (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
957 1.29.6.1 simonb !(time_status & STA_PPSSIGNAL)) ||
958 1.29.6.1 simonb
959 1.29.6.1 simonb /*
960 1.29.6.1 simonb * PPS jitter exceeded when time synchronization requested
961 1.29.6.1 simonb */
962 1.29.6.1 simonb (time_status & STA_PPSTIME &&
963 1.29.6.1 simonb time_status & STA_PPSJITTER) ||
964 1.29.6.1 simonb
965 1.29.6.1 simonb /*
966 1.29.6.1 simonb * PPS wander exceeded or calibration error when frequency
967 1.29.6.1 simonb * synchronization requested
968 1.29.6.1 simonb */
969 1.29.6.1 simonb (time_status & STA_PPSFREQ &&
970 1.29.6.1 simonb time_status & (STA_PPSWANDER | STA_PPSERROR)))
971 1.29.6.1 simonb ntv.time_state = TIME_ERROR;
972 1.29.6.1 simonb else
973 1.29.6.1 simonb ntv.time_state = time_state;
974 1.29.6.1 simonb #endif /* notyet */
975 1.29.6.1 simonb
976 1.29.6.1 simonb node = *rnode;
977 1.29.6.1 simonb node.sysctl_data = &ntv;
978 1.29.6.1 simonb node.sysctl_size = sizeof(ntv);
979 1.29.6.1 simonb return (sysctl_lookup(SYSCTLFN_CALL(&node)));
980 1.29.6.1 simonb }
981 1.29.6.1 simonb
982 1.29.6.1 simonb SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
983 1.29.6.1 simonb {
984 1.29.6.1 simonb
985 1.29.6.1 simonb sysctl_createv(clog, 0, NULL, NULL,
986 1.29.6.1 simonb CTLFLAG_PERMANENT,
987 1.29.6.1 simonb CTLTYPE_NODE, "kern", NULL,
988 1.29.6.1 simonb NULL, 0, NULL, 0,
989 1.29.6.1 simonb CTL_KERN, CTL_EOL);
990 1.29.6.1 simonb
991 1.29.6.1 simonb sysctl_createv(clog, 0, NULL, NULL,
992 1.29.6.1 simonb CTLFLAG_PERMANENT,
993 1.29.6.1 simonb CTLTYPE_STRUCT, "ntptime",
994 1.29.6.1 simonb SYSCTL_DESCR("Kernel clock values for NTP"),
995 1.29.6.1 simonb sysctl_kern_ntptime, 0, NULL,
996 1.29.6.1 simonb sizeof(struct ntptimeval),
997 1.29.6.1 simonb CTL_KERN, KERN_NTPTIME, CTL_EOL);
998 1.29.6.1 simonb }
999 1.29.6.1 simonb #else /* !NTP */
1000 1.29.6.1 simonb /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1001 1.29.6.1 simonb
1002 1.29.6.1 simonb int
1003 1.29.6.1 simonb sys_ntp_gettime(l, v, retval)
1004 1.29.6.1 simonb struct lwp *l;
1005 1.29.6.1 simonb void *v;
1006 1.29.6.1 simonb register_t *retval;
1007 1.29.6.1 simonb {
1008 1.29.6.1 simonb
1009 1.29.6.1 simonb return(ENOSYS);
1010 1.29.6.1 simonb }
1011 1.29.6.1 simonb #endif /* !NTP */
1012 1.29.6.1 simonb #else /* !__HAVE_TIMECOUNTER */
1013 1.1 jonathan /******************************************************************************
1014 1.1 jonathan * *
1015 1.1 jonathan * Copyright (c) David L. Mills 1993, 1994 *
1016 1.1 jonathan * *
1017 1.1 jonathan * Permission to use, copy, modify, and distribute this software and its *
1018 1.1 jonathan * documentation for any purpose and without fee is hereby granted, provided *
1019 1.1 jonathan * that the above copyright notice appears in all copies and that both the *
1020 1.1 jonathan * copyright notice and this permission notice appear in supporting *
1021 1.1 jonathan * documentation, and that the name University of Delaware not be used in *
1022 1.1 jonathan * advertising or publicity pertaining to distribution of the software *
1023 1.1 jonathan * without specific, written prior permission. The University of Delaware *
1024 1.1 jonathan * makes no representations about the suitability this software for any *
1025 1.1 jonathan * purpose. It is provided "as is" without express or implied warranty. *
1026 1.1 jonathan * *
1027 1.1 jonathan ******************************************************************************/
1028 1.1 jonathan
1029 1.1 jonathan /*
1030 1.1 jonathan * Modification history kern_ntptime.c
1031 1.1 jonathan *
1032 1.1 jonathan * 24 Sep 94 David L. Mills
1033 1.1 jonathan * Tightened code at exits.
1034 1.1 jonathan *
1035 1.1 jonathan * 24 Mar 94 David L. Mills
1036 1.1 jonathan * Revised syscall interface to include new variables for PPS
1037 1.1 jonathan * time discipline.
1038 1.1 jonathan *
1039 1.1 jonathan * 14 Feb 94 David L. Mills
1040 1.1 jonathan * Added code for external clock
1041 1.1 jonathan *
1042 1.1 jonathan * 28 Nov 93 David L. Mills
1043 1.1 jonathan * Revised frequency scaling to conform with adjusted parameters
1044 1.1 jonathan *
1045 1.1 jonathan * 17 Sep 93 David L. Mills
1046 1.1 jonathan * Created file
1047 1.1 jonathan */
1048 1.1 jonathan /*
1049 1.1 jonathan * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
1050 1.1 jonathan * V4.1.1 and V4.1.3
1051 1.1 jonathan *
1052 1.1 jonathan * These routines consitute the Network Time Protocol (NTP) interfaces
1053 1.1 jonathan * for user and daemon application programs. The ntp_gettime() routine
1054 1.1 jonathan * provides the time, maximum error (synch distance) and estimated error
1055 1.1 jonathan * (dispersion) to client user application programs. The ntp_adjtime()
1056 1.1 jonathan * routine is used by the NTP daemon to adjust the system clock to an
1057 1.1 jonathan * externally derived time. The time offset and related variables set by
1058 1.1 jonathan * this routine are used by hardclock() to adjust the phase and
1059 1.1 jonathan * frequency of the phase-lock loop which controls the system clock.
1060 1.1 jonathan */
1061 1.16 lukem
1062 1.16 lukem #include <sys/cdefs.h>
1063 1.29.6.2 kardel __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.29.6.2 2006/02/28 21:01:52 kardel Exp $");
1064 1.16 lukem
1065 1.6 jonathan #include "opt_ntp.h"
1066 1.6 jonathan
1067 1.1 jonathan #include <sys/param.h>
1068 1.1 jonathan #include <sys/resourcevar.h>
1069 1.1 jonathan #include <sys/systm.h>
1070 1.1 jonathan #include <sys/kernel.h>
1071 1.1 jonathan #include <sys/proc.h>
1072 1.18 simonb #include <sys/sysctl.h>
1073 1.1 jonathan #include <sys/timex.h>
1074 1.1 jonathan #include <sys/vnode.h>
1075 1.1 jonathan
1076 1.1 jonathan #include <sys/mount.h>
1077 1.22 thorpej #include <sys/sa.h>
1078 1.1 jonathan #include <sys/syscallargs.h>
1079 1.1 jonathan
1080 1.1 jonathan #include <machine/cpu.h>
1081 1.2 christos
1082 1.4 thorpej #ifdef NTP
1083 1.1 jonathan /*
1084 1.1 jonathan * The following variables are used by the hardclock() routine in the
1085 1.28 perry * kern_clock.c module and are described in that module.
1086 1.1 jonathan */
1087 1.1 jonathan extern int time_state; /* clock state */
1088 1.1 jonathan extern int time_status; /* clock status bits */
1089 1.1 jonathan extern long time_offset; /* time adjustment (us) */
1090 1.1 jonathan extern long time_freq; /* frequency offset (scaled ppm) */
1091 1.1 jonathan extern long time_maxerror; /* maximum error (us) */
1092 1.1 jonathan extern long time_esterror; /* estimated error (us) */
1093 1.1 jonathan extern long time_constant; /* pll time constant */
1094 1.1 jonathan extern long time_precision; /* clock precision (us) */
1095 1.1 jonathan extern long time_tolerance; /* frequency tolerance (scaled ppm) */
1096 1.24 drochner extern int time_adjusted; /* ntp might have changed the system time */
1097 1.1 jonathan
1098 1.1 jonathan #ifdef PPS_SYNC
1099 1.1 jonathan /*
1100 1.1 jonathan * The following variables are used only if the PPS signal discipline
1101 1.1 jonathan * is configured in the kernel.
1102 1.1 jonathan */
1103 1.1 jonathan extern int pps_shift; /* interval duration (s) (shift) */
1104 1.1 jonathan extern long pps_freq; /* pps frequency offset (scaled ppm) */
1105 1.1 jonathan extern long pps_jitter; /* pps jitter (us) */
1106 1.1 jonathan extern long pps_stabil; /* pps stability (scaled ppm) */
1107 1.1 jonathan extern long pps_jitcnt; /* jitter limit exceeded */
1108 1.1 jonathan extern long pps_calcnt; /* calibration intervals */
1109 1.1 jonathan extern long pps_errcnt; /* calibration errors */
1110 1.1 jonathan extern long pps_stbcnt; /* stability limit exceeded */
1111 1.1 jonathan #endif /* PPS_SYNC */
1112 1.1 jonathan
1113 1.1 jonathan /*ARGSUSED*/
1114 1.1 jonathan /*
1115 1.1 jonathan * ntp_gettime() - NTP user application interface
1116 1.1 jonathan */
1117 1.1 jonathan int
1118 1.22 thorpej sys_ntp_gettime(l, v, retval)
1119 1.22 thorpej struct lwp *l;
1120 1.1 jonathan void *v;
1121 1.1 jonathan register_t *retval;
1122 1.1 jonathan
1123 1.1 jonathan {
1124 1.3 thorpej struct sys_ntp_gettime_args /* {
1125 1.5 cgd syscallarg(struct ntptimeval *) ntvp;
1126 1.1 jonathan } */ *uap = v;
1127 1.1 jonathan struct timeval atv;
1128 1.1 jonathan struct ntptimeval ntv;
1129 1.1 jonathan int error = 0;
1130 1.1 jonathan int s;
1131 1.1 jonathan
1132 1.5 cgd if (SCARG(uap, ntvp)) {
1133 1.1 jonathan s = splclock();
1134 1.1 jonathan #ifdef EXT_CLOCK
1135 1.1 jonathan /*
1136 1.1 jonathan * The microtime() external clock routine returns a
1137 1.1 jonathan * status code. If less than zero, we declare an error
1138 1.1 jonathan * in the clock status word and return the kernel
1139 1.1 jonathan * (software) time variable. While there are other
1140 1.1 jonathan * places that call microtime(), this is the only place
1141 1.1 jonathan * that matters from an application point of view.
1142 1.1 jonathan */
1143 1.1 jonathan if (microtime(&atv) < 0) {
1144 1.1 jonathan time_status |= STA_CLOCKERR;
1145 1.1 jonathan ntv.time = time;
1146 1.1 jonathan } else
1147 1.1 jonathan time_status &= ~STA_CLOCKERR;
1148 1.1 jonathan #else /* EXT_CLOCK */
1149 1.1 jonathan microtime(&atv);
1150 1.1 jonathan #endif /* EXT_CLOCK */
1151 1.1 jonathan ntv.time = atv;
1152 1.1 jonathan ntv.maxerror = time_maxerror;
1153 1.1 jonathan ntv.esterror = time_esterror;
1154 1.1 jonathan (void) splx(s);
1155 1.1 jonathan
1156 1.5 cgd error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
1157 1.7 perry sizeof(ntv));
1158 1.1 jonathan }
1159 1.1 jonathan if (!error) {
1160 1.1 jonathan
1161 1.1 jonathan /*
1162 1.1 jonathan * Status word error decode. If any of these conditions
1163 1.1 jonathan * occur, an error is returned, instead of the status
1164 1.1 jonathan * word. Most applications will care only about the fact
1165 1.1 jonathan * the system clock may not be trusted, not about the
1166 1.1 jonathan * details.
1167 1.1 jonathan *
1168 1.1 jonathan * Hardware or software error
1169 1.1 jonathan */
1170 1.1 jonathan if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1171 1.1 jonathan
1172 1.1 jonathan /*
1173 1.1 jonathan * PPS signal lost when either time or frequency
1174 1.1 jonathan * synchronization requested
1175 1.1 jonathan */
1176 1.1 jonathan (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1177 1.1 jonathan !(time_status & STA_PPSSIGNAL)) ||
1178 1.1 jonathan
1179 1.1 jonathan /*
1180 1.1 jonathan * PPS jitter exceeded when time synchronization
1181 1.1 jonathan * requested
1182 1.1 jonathan */
1183 1.1 jonathan (time_status & STA_PPSTIME &&
1184 1.1 jonathan time_status & STA_PPSJITTER) ||
1185 1.1 jonathan
1186 1.1 jonathan /*
1187 1.1 jonathan * PPS wander exceeded or calibration error when
1188 1.1 jonathan * frequency synchronization requested
1189 1.1 jonathan */
1190 1.1 jonathan (time_status & STA_PPSFREQ &&
1191 1.1 jonathan time_status & (STA_PPSWANDER | STA_PPSERROR)))
1192 1.1 jonathan *retval = TIME_ERROR;
1193 1.1 jonathan else
1194 1.1 jonathan *retval = (register_t)time_state;
1195 1.1 jonathan }
1196 1.1 jonathan return(error);
1197 1.1 jonathan }
1198 1.1 jonathan
1199 1.1 jonathan /* ARGSUSED */
1200 1.1 jonathan /*
1201 1.1 jonathan * ntp_adjtime() - NTP daemon application interface
1202 1.1 jonathan */
1203 1.1 jonathan int
1204 1.22 thorpej sys_ntp_adjtime(l, v, retval)
1205 1.22 thorpej struct lwp *l;
1206 1.1 jonathan void *v;
1207 1.1 jonathan register_t *retval;
1208 1.1 jonathan {
1209 1.3 thorpej struct sys_ntp_adjtime_args /* {
1210 1.1 jonathan syscallarg(struct timex *) tp;
1211 1.1 jonathan } */ *uap = v;
1212 1.22 thorpej struct proc *p = l->l_proc;
1213 1.1 jonathan struct timex ntv;
1214 1.1 jonathan int error = 0;
1215 1.1 jonathan
1216 1.1 jonathan if ((error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv,
1217 1.14 manu sizeof(ntv))) != 0)
1218 1.14 manu return (error);
1219 1.14 manu
1220 1.14 manu if (ntv.modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)) != 0)
1221 1.1 jonathan return (error);
1222 1.1 jonathan
1223 1.21 eeh return (ntp_adjtime1(&ntv, v, retval));
1224 1.14 manu }
1225 1.14 manu
1226 1.14 manu int
1227 1.15 jmc ntp_adjtime1(ntv, v, retval)
1228 1.14 manu struct timex *ntv;
1229 1.15 jmc void *v;
1230 1.14 manu register_t *retval;
1231 1.14 manu {
1232 1.21 eeh struct sys_ntp_adjtime_args /* {
1233 1.21 eeh syscallarg(struct timex *) tp;
1234 1.21 eeh } */ *uap = v;
1235 1.14 manu int error = 0;
1236 1.14 manu int modes;
1237 1.14 manu int s;
1238 1.14 manu
1239 1.1 jonathan /*
1240 1.28 perry * Update selected clock variables. Note that there is no error
1241 1.28 perry * checking here on the assumption the superuser should know
1242 1.14 manu * what it is doing.
1243 1.1 jonathan */
1244 1.15 jmc modes = ntv->modes;
1245 1.23 dsl if (modes != 0)
1246 1.23 dsl /* We need to save the system time during shutdown */
1247 1.23 dsl time_adjusted |= 2;
1248 1.1 jonathan s = splclock();
1249 1.1 jonathan if (modes & MOD_FREQUENCY)
1250 1.1 jonathan #ifdef PPS_SYNC
1251 1.15 jmc time_freq = ntv->freq - pps_freq;
1252 1.1 jonathan #else /* PPS_SYNC */
1253 1.15 jmc time_freq = ntv->freq;
1254 1.1 jonathan #endif /* PPS_SYNC */
1255 1.1 jonathan if (modes & MOD_MAXERROR)
1256 1.15 jmc time_maxerror = ntv->maxerror;
1257 1.1 jonathan if (modes & MOD_ESTERROR)
1258 1.15 jmc time_esterror = ntv->esterror;
1259 1.1 jonathan if (modes & MOD_STATUS) {
1260 1.1 jonathan time_status &= STA_RONLY;
1261 1.15 jmc time_status |= ntv->status & ~STA_RONLY;
1262 1.1 jonathan }
1263 1.1 jonathan if (modes & MOD_TIMECONST)
1264 1.15 jmc time_constant = ntv->constant;
1265 1.1 jonathan if (modes & MOD_OFFSET)
1266 1.15 jmc hardupdate(ntv->offset);
1267 1.1 jonathan
1268 1.1 jonathan /*
1269 1.1 jonathan * Retrieve all clock variables
1270 1.1 jonathan */
1271 1.1 jonathan if (time_offset < 0)
1272 1.15 jmc ntv->offset = -(-time_offset >> SHIFT_UPDATE);
1273 1.1 jonathan else
1274 1.15 jmc ntv->offset = time_offset >> SHIFT_UPDATE;
1275 1.1 jonathan #ifdef PPS_SYNC
1276 1.15 jmc ntv->freq = time_freq + pps_freq;
1277 1.1 jonathan #else /* PPS_SYNC */
1278 1.15 jmc ntv->freq = time_freq;
1279 1.1 jonathan #endif /* PPS_SYNC */
1280 1.15 jmc ntv->maxerror = time_maxerror;
1281 1.15 jmc ntv->esterror = time_esterror;
1282 1.15 jmc ntv->status = time_status;
1283 1.15 jmc ntv->constant = time_constant;
1284 1.15 jmc ntv->precision = time_precision;
1285 1.15 jmc ntv->tolerance = time_tolerance;
1286 1.1 jonathan #ifdef PPS_SYNC
1287 1.15 jmc ntv->shift = pps_shift;
1288 1.15 jmc ntv->ppsfreq = pps_freq;
1289 1.15 jmc ntv->jitter = pps_jitter >> PPS_AVG;
1290 1.15 jmc ntv->stabil = pps_stabil;
1291 1.15 jmc ntv->calcnt = pps_calcnt;
1292 1.15 jmc ntv->errcnt = pps_errcnt;
1293 1.15 jmc ntv->jitcnt = pps_jitcnt;
1294 1.15 jmc ntv->stbcnt = pps_stbcnt;
1295 1.1 jonathan #endif /* PPS_SYNC */
1296 1.1 jonathan (void)splx(s);
1297 1.1 jonathan
1298 1.21 eeh error = copyout((caddr_t)ntv, (caddr_t)SCARG(uap, tp), sizeof(*ntv));
1299 1.1 jonathan if (!error) {
1300 1.1 jonathan
1301 1.1 jonathan /*
1302 1.1 jonathan * Status word error decode. See comments in
1303 1.1 jonathan * ntp_gettime() routine.
1304 1.1 jonathan */
1305 1.1 jonathan if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1306 1.1 jonathan (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1307 1.1 jonathan !(time_status & STA_PPSSIGNAL)) ||
1308 1.1 jonathan (time_status & STA_PPSTIME &&
1309 1.1 jonathan time_status & STA_PPSJITTER) ||
1310 1.1 jonathan (time_status & STA_PPSFREQ &&
1311 1.1 jonathan time_status & (STA_PPSWANDER | STA_PPSERROR)))
1312 1.1 jonathan *retval = TIME_ERROR;
1313 1.1 jonathan else
1314 1.1 jonathan *retval = (register_t)time_state;
1315 1.1 jonathan }
1316 1.1 jonathan return error;
1317 1.1 jonathan }
1318 1.1 jonathan
1319 1.1 jonathan /*
1320 1.1 jonathan * return information about kernel precision timekeeping
1321 1.1 jonathan */
1322 1.25 atatat static int
1323 1.25 atatat sysctl_kern_ntptime(SYSCTLFN_ARGS)
1324 1.1 jonathan {
1325 1.25 atatat struct sysctlnode node;
1326 1.1 jonathan struct timeval atv;
1327 1.1 jonathan struct ntptimeval ntv;
1328 1.1 jonathan int s;
1329 1.1 jonathan
1330 1.1 jonathan /*
1331 1.1 jonathan * Construct ntp_timeval.
1332 1.1 jonathan */
1333 1.1 jonathan
1334 1.1 jonathan s = splclock();
1335 1.1 jonathan #ifdef EXT_CLOCK
1336 1.1 jonathan /*
1337 1.1 jonathan * The microtime() external clock routine returns a
1338 1.1 jonathan * status code. If less than zero, we declare an error
1339 1.1 jonathan * in the clock status word and return the kernel
1340 1.1 jonathan * (software) time variable. While there are other
1341 1.1 jonathan * places that call microtime(), this is the only place
1342 1.1 jonathan * that matters from an application point of view.
1343 1.1 jonathan */
1344 1.1 jonathan if (microtime(&atv) < 0) {
1345 1.1 jonathan time_status |= STA_CLOCKERR;
1346 1.1 jonathan ntv.time = time;
1347 1.1 jonathan } else {
1348 1.1 jonathan time_status &= ~STA_CLOCKERR;
1349 1.1 jonathan }
1350 1.1 jonathan #else /* EXT_CLOCK */
1351 1.1 jonathan microtime(&atv);
1352 1.1 jonathan #endif /* EXT_CLOCK */
1353 1.1 jonathan ntv.time = atv;
1354 1.1 jonathan ntv.maxerror = time_maxerror;
1355 1.1 jonathan ntv.esterror = time_esterror;
1356 1.1 jonathan splx(s);
1357 1.1 jonathan
1358 1.1 jonathan #ifdef notyet
1359 1.1 jonathan /*
1360 1.1 jonathan * Status word error decode. If any of these conditions
1361 1.1 jonathan * occur, an error is returned, instead of the status
1362 1.1 jonathan * word. Most applications will care only about the fact
1363 1.1 jonathan * the system clock may not be trusted, not about the
1364 1.1 jonathan * details.
1365 1.1 jonathan *
1366 1.1 jonathan * Hardware or software error
1367 1.1 jonathan */
1368 1.1 jonathan if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
1369 1.1 jonathan ntv.time_state = TIME_ERROR;
1370 1.1 jonathan
1371 1.1 jonathan /*
1372 1.1 jonathan * PPS signal lost when either time or frequency
1373 1.1 jonathan * synchronization requested
1374 1.1 jonathan */
1375 1.1 jonathan (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
1376 1.1 jonathan !(time_status & STA_PPSSIGNAL)) ||
1377 1.1 jonathan
1378 1.1 jonathan /*
1379 1.1 jonathan * PPS jitter exceeded when time synchronization
1380 1.1 jonathan * requested
1381 1.1 jonathan */
1382 1.1 jonathan (time_status & STA_PPSTIME &&
1383 1.1 jonathan time_status & STA_PPSJITTER) ||
1384 1.1 jonathan
1385 1.1 jonathan /*
1386 1.1 jonathan * PPS wander exceeded or calibration error when
1387 1.1 jonathan * frequency synchronization requested
1388 1.1 jonathan */
1389 1.1 jonathan (time_status & STA_PPSFREQ &&
1390 1.1 jonathan time_status & (STA_PPSWANDER | STA_PPSERROR)))
1391 1.1 jonathan ntv.time_state = TIME_ERROR;
1392 1.1 jonathan else
1393 1.1 jonathan ntv.time_state = time_state;
1394 1.1 jonathan #endif /* notyet */
1395 1.25 atatat
1396 1.25 atatat node = *rnode;
1397 1.25 atatat node.sysctl_data = &ntv;
1398 1.25 atatat node.sysctl_size = sizeof(ntv);
1399 1.25 atatat return (sysctl_lookup(SYSCTLFN_CALL(&node)));
1400 1.25 atatat }
1401 1.25 atatat
1402 1.25 atatat SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
1403 1.25 atatat {
1404 1.25 atatat
1405 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1406 1.26 atatat CTLFLAG_PERMANENT,
1407 1.25 atatat CTLTYPE_NODE, "kern", NULL,
1408 1.25 atatat NULL, 0, NULL, 0,
1409 1.25 atatat CTL_KERN, CTL_EOL);
1410 1.25 atatat
1411 1.26 atatat sysctl_createv(clog, 0, NULL, NULL,
1412 1.26 atatat CTLFLAG_PERMANENT,
1413 1.27 atatat CTLTYPE_STRUCT, "ntptime",
1414 1.27 atatat SYSCTL_DESCR("Kernel clock values for NTP"),
1415 1.25 atatat sysctl_kern_ntptime, 0, NULL,
1416 1.25 atatat sizeof(struct ntptimeval),
1417 1.25 atatat CTL_KERN, KERN_NTPTIME, CTL_EOL);
1418 1.1 jonathan }
1419 1.4 thorpej #else /* !NTP */
1420 1.13 bjh21 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
1421 1.13 bjh21
1422 1.4 thorpej int
1423 1.22 thorpej sys_ntp_gettime(l, v, retval)
1424 1.22 thorpej struct lwp *l;
1425 1.4 thorpej void *v;
1426 1.4 thorpej register_t *retval;
1427 1.4 thorpej {
1428 1.19 simonb
1429 1.4 thorpej return(ENOSYS);
1430 1.4 thorpej }
1431 1.13 bjh21 #endif /* !NTP */
1432 1.29.6.1 simonb #endif /* !__HAVE_TIMECOUNTER */
1433